[en] The pancreas of adult mammals displays a branched structure which transports digestive enzymes produced in the distal acini through a tree-like network of ducts into the duodenum. In contrast to several other branched organs, its branching patterns are not stereotypic. Moreover, the branches do not grow from dichotomic splitting of an initial stem but rather from the formation of microlumen in a mass of cells. These lumen progressively assemble into a hyperconnected network that refines into a tree by the time of birth. We review the cell remodeling events and the molecular mechanisms governing pancreas branching, as well as the role of the surrounding tissues in this process. Furthermore, we draw parallels with other branched organs such as the salivary and mammary gland.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Flasse, Lydie ; Université de Liège - ULiège > GIGA > GIGA Stem Cells - Zebrafish Development and Disease Model ; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany. Electronic address: flasse@mpi-cbg.de
Schewin, Coline; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
Grapin-Botton, Anne; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany, Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany, The Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen, Denmark. Electronic address: botton@mpi-cbg.de
Language :
English
Title :
Pancreas morphogenesis: Branching in and then out.
Ahren, B., Autonomic regulation of islet hormone secretion—Implications for health and disease. Diabetologia 43:4 (2000), 393–410, 10.1007/s001250051322.
Anastasiadis, P.Z., Moon, S.Y., Thoreson, M.A., Mariner, D.J., Crawford, H.C., Zheng, Y., et al. Inhibition of RhoA by p120 catenin. Nature Cell Biology 2:9 (2000), 637–644, 10.1038/35023588.
Andrew, D.J., Ewald, A.J., Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration. Developmental Biology 341:1 (2010), 34–55, 10.1016/j.ydbio.2009.09.024.
Anita, C.-n.S., Chien, M.C.-y., Dickson, C., Slack, J.M.W., Tosh, D., Jonathan, C.-n.S.Á., et al. All-trans retinoic acid suppresses exocrine differentiation and branching morphogenesis in the embryonic pancreas. Differentiation 75:1 (2007), 62–74, 10.1111/j.1432-0436.2006.00116.x.
Arntfield, M., van der Kooy, D., The adult mammalian pancreas contains separate precursors of pancreatic and neural crest developmental origins. Stem Cells and Development 22:15 (2013), 2145–2157, 10.1089/scd.2013.0027.
Azizoglu, D.B., Braitsch, C., Marciano, D.K., Cleaver, O., Afadin and RhoA control pancreatic endocrine mass via lumen morphogenesis. Genes & Development 31:23–24 (2017), 2376–2390, 10.1101/gad.307637.117.
Azizoglu, D.B., Chong, D.C., Villasenor, A., Magenheim, J., Barry, D.M., Lee, S., et al. Vascular development in the vertebrate pancreas. Developmental Biology 420:1 (2016), 67–78, 10.1016/j.ydbio.2016.10.009.
Azizoglu, D.B., Cleaver, O., Blood vessel crosstalk during organogenesis-focus on pancreas and endothelial cells. Wiley Interdisciplinary Reviews: Developmental Biology 5:5 (2016), 598–617, 10.1002/wdev.240.
Bankaitis, E.D., Bechard, M.E., Gu, G., Magnuson, M.A., Wright, C.V.E., ROCK-nmMyoII, notch and Neurog3 gene-dosage link epithelial morphogenesis with cell fate in the pancreatic endocrine-progenitor niche. Development, 145(18), 2018, dev162115, 10.1242/dev.162115.
Bankaitis, E.D., Bechard, M.E., Wright, C.V., Feedback control of growth, differentiation, and morphogenesis of pancreatic endocrine progenitors in an epithelial plexus niche. Genes & Development 29:20 (2015), 2203–2216, 10.1101/gad.267914.115.
Baumgartner, B.K., Cash, G., Hansen, H., Ostler, S., Murtaugh, L.C., Distinct requirements for beta-catenin in pancreatic epithelial growth and patterning. Developmental Biology 391:1 (2014), 89–98, 10.1016/j.ydbio.2014.03.019.
Bhushan, A., Itoh, N., Kato, S., Thiery, J.P., Czernichow, P., Bellusci, S., et al. Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 128:24 (2001), 5109–5117.
Borden, P., Houtz, J., Leach, S.D., Kuruvilla, R., Sympathetic innervation during development is necessary for pancreatic islet architecture and functional maturation. Cell Reports 4:2 (2013), 287–301, 10.1016/j.celrep.2013.06.019.
Brodland, G.W., The differential interfacial tension hypothesis (DITH): A comprehensive theory for the self-rearrangement of embryonic cells and tissues. Journal of Biomechanical Engineering 124:2 (2002), 188–197, 10.1115/1.1449491.
Bryant, D.M., Datta, A., Rodriguez-Fraticelli, A.E., Peranen, J., Martin-Belmonte, F., Mostov, K.E., A molecular network for de novo generation of the apical surface and lumen. Nature Cell Biology 12:11 (2010), 1035–1045, 10.1038/ncb2106.
Burris, R.E., Hebrok, M., Pancreatic innervation in mouse development and beta-cell regeneration. Neuroscience 150:3 (2007), 592–602, 10.1016/j.neuroscience.2007.09.079.
Cabrera-Vasquez, S., Navarro-Tableros, V., Sanchez-Soto, C., Gutierrez-Ospina, G., Hiriart, M., Remodelling sympathetic innervation in rat pancreatic islets ontogeny. BMC Developmental Biology, 9, 2009, 34, 10.1186/1471-213X-9-34.
Caussinus, E., Colombelli, J., Affolter, M., Tip-cell migration controls stalk-cell intercalation during Drosophila tracheal tube elongation. Current Biology 18:22 (2008), 1727–1734, 10.1016/j.cub.2008.10.062.
Cortijo, C., Gouzi, M., Tissir, F., Grapin-Botton, A., Planar cell polarity controls pancreatic beta cell differentiation and glucose homeostasis. Cell Reports 2:6 (2012), 1593–1606, 10.1016/j.celrep.2012.10.016.
Cozzitorto, C., Spagnoli, F.M., Pancreas organogenesis: The interplay between surrounding microenvironment(s) and epithelium-intrinsic factors. 1st ed., Vol. 132, 2019, Elsevier Inc.
Crisera, C.A., Kadison, A.S., Breslow, G.D., Maldonado, T.S., Longaker, M.T., Gittes, G.K., Expression and role of laminin-1 in mouse pancreatic organogenesis. Diabetes 49:6 (2000), 936–944, 10.2337/diabetes.49.6.936.
Dahl-Jensen, S.B., Yennek, S., Flasse, L., Larsen, H.L., Sever, D., Karremore, G., et al. Deconstructing the principles of ductal network formation in the pancreas. PLoS Biology, 16(7), 2018, e2002842, 10.1371/journal.pbio.2002842.
Daley, W.P., Matsumoto, K., Doyle, A.D., Wang, S., DuChez, B.J., Holmbeck, K., et al. Btbd7 is essential for region-specific epithelial cell dynamics and branching morphogenesis in vivo. Development 144:12 (2017), 2200–2211, 10.1242/dev.146894.
Davis, M.A., Reynolds, A.B., Blocked acinar development, E-cadherin reduction, and intraepithelial neoplasia upon ablation of p120-catenin in the mouse salivary gland. Developmental Cell 10:1 (2006), 21–31, 10.1016/j.devcel.2005.12.004.
Derish, I., Lee, J.K.H., Wong-King-Cheong, M., Babayeva, S., Caplan, J., Leung, V., et al. Differential role of planar cell polarity gene Vangl2 in embryonic and adult mammalian kidneys. PLoS One, 15(3), 2020, e0230586, 10.1371/journal.pone.0230586.
Dolensek, J., Rupnik, M.S., Stozer, A., Structural similarities and differences between the human and the mouse pancreas. Islets, 7(1), 2015, e1024405, 10.1080/19382014.2015.1024405.
Fischer, E., Legue, E., Doyen, A., Nato, F., Nicolas, J.F., Torres, V., et al. Defective planar cell polarity in polycystic kidney disease. Nature Genetics 38:1 (2006), 21–23, 10.1038/ng1701.
Flasse, L., Yennek, S., Cortijo, C., Barandiaran, I.S., Kraus, M.R., Grapin-Botton, A., Apical restriction of the planar cell polarity component VANGL in pancreatic ducts is required to maintain epithelial integrity. Cell Reports, 31(8), 2020, 107677, 10.1016/j.celrep.2020.107677.
Gilliam, L.K., Palmer, J.P., Taborsky, G.J. Jr., Tyramine-mediated activation of sympathetic nerves inhibits insulin secretion in humans. The Journal of Clinical Endocrinology and Metabolism 92:10 (2007), 4035–4038, 10.1210/jc.2007-0536.
Gittes, G.K., Developmental biology of the pancreas: A comprehensive review. Developmental Biology 326:1 (2009), 4–35, 10.1016/j.ydbio.2008.10.024.
Gouzi, M., Kim, Y.H., Katsumoto, K., Johansson, K., Grapin-Botton, A., Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development. Developmental Dynamics 240:3 (2011), 589–604, 10.1002/dvdy.22544.
Greggio, C., De Franceschi, F., Figueiredo-Larsen, M., Grapin-Botton, A., In vitro pancreas organogenesis from dispersed mouse embryonic progenitors. Journal of Visualized Experiments, 89, 2014, e51725, 10.3791/51725.
Gu, G., Dubauskaite, J., Melton, D.A., Direct evidence for the pancreatic lineage: NGN3 + cells are islet progenitors and are distinct from duct progenitors. Development 129:10 (2002), 2447–2457 Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11973276.
Hannezo, E., Scheele, C., Moad, M., Drogo, N., Heer, R., Sampogna, R.V., et al. A unifying theory of branching morphogenesis. Cell 171:1 (2017), 242–255, 10.1016/j.cell.2017.08.026 e227.
Harunaga, J.S., Doyle, A.D., Yamada, K.M., Local and global dynamics of the basement membrane during branching morphogenesis require protease activity and actomyosin contractility. Developmental Biology 394:2 (2014), 197–205, 10.1016/j.ydbio.2014.08.014.
Havel, P.J., Ahren, B., Activation of autonomic nerves and the adrenal medulla contributes to increased glucagon secretion during moderate insulin-induced hypoglycemia in women. Diabetes 46:5 (1997), 801–807, 10.2337/diab.46.5.801.
Heiser, P.W., Lau, J., Taketo, M.M., Herrera, P.L., Hebrok, M., Stabilization of β-catenin impacts pancreas growth. Development 133:10 (2006), 2023–2032, 10.1242/dev.02366.
Heller, R.S., Dichmann, D.S., Jensen, J., Miller, C., Wong, G., Madsen, O.D., et al. Expression patterns of Wnts, Frizzleds, sFRPs, and misexpression in transgenic mice suggesting a role for Wnts in pancreas and foregut pattern formation. Developmental Dynamics 225:3 (2002), 260–270, 10.1002/dvdy.10157.
Hendley, A.M., Provost, E., Bailey, J.M., Wang, Y.J., Cleveland, M.H., Blake, D., et al. p120 catenin is required for normal tubulogenesis but not epithelial integrity in developing mouse pancreas. Developmental Biology 399:1 (2015), 41–53, 10.1016/j.ydbio.2014.12.010.
Hibsher, D., Epshtein, A., Oren, N., Landsman, L., Pancreatic mesenchyme regulates islet cellular composition in a patched/hedgehog-dependent manner. Scientific Reports 6 (2016), 1–12, 10.1038/srep38008 November.
Hick, A.C., van Eyll, J.M., Cordi, S., Forez, C., Passante, L., Kohara, H., et al. Mechanism of primitive duct formation in the pancreas and submandibular glands: A role for SDF-1. BMC Developmental Biology, 9, 2009, 66, 10.1186/1471-213X-9-66.
Higashiyama, H., Kanai, Y., Biliary system; anatomy and development. 2nd ed., 2020, Elsevier Inc.
Hisaoka, M., Haratake, J., Hashimoto, H., Pancreatic morphogenesis and extracellular matrix organization during rat development. Differentiation 53:3 (1993), 163–172, 10.1111/j.1432-0436.1993.tb00705.x.
Honda, H., Yoshizato, K., Formation of the branching pattern of blood vessels in the wall of the avian yolk sac studied by a computer simulation. Development, Growth & Differentiation 39:5 (1997), 581–589, 10.1046/j.1440-169x.1997.t01-4-00005.x.
Horne-Badovinac, S., Lin, D., Waldron, S., Schwarz, M., Mbamalu, G., Pawson, T., et al. Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis. Current Biology 11:19 (2001), 1492–1502, 10.1016/s0960-9822(01)00458-4.
Hsueh, B., Burns, V.M., Pauerstein, P., Holzem, K., Ye, L., Engberg, K., et al. Pathways to clinical CLARITY: Volumetric analysis of irregular, soft, and heterogeneous tissues in development and disease. Scientific Reports, 7(1), 2017, 5899, 10.1038/s41598-017-05614-4.
Huebner, R.J., Ewald, A.J., Cellular foundations of mammary tubulogenesis. Seminars in Cell & Developmental Biology 31 (2014), 124–131, 10.1016/j.semcdb.2014.04.019.
Ishiyama, N., Lee, S.H., Liu, S., Li, G.Y., Smith, M.J., Reichardt, L.F., et al. Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell-cell adhesion. Cell 141:1 (2010), 117–128, 10.1016/j.cell.2010.01.017.
Jacquemin, P., Yoshitomi, H., Kashima, Y., Rousseau, G.G., Lemaigre, F.P., Zaret, K.S., An endothelial-mesenchymal relay pathway regulates early phases of pancreas development. Developmental Biology 290:1 (2006), 189–199, 10.1016/j.ydbio.2005.11.023.
Jaskoll, T., Abichaker, G., Witcher, D., Sala, F.G., Bellusci, S., Hajihosseini, M.K., et al. FGF10/FGFR2b signaling plays essential roles during in vivo embryonic submandibular salivary gland morphogenesis. BMC Developmental Biology, 5, 2005, 11, 10.1186/1471-213X-5-11.
Jiang, F.-X., Naselli, G., Harrison, L.C., Distinct distribution of laminin and its integrin receptors in the pancreas. The Journal of Histochemistry and Cytochemistry 50 (2002), 1625–1632, 10.1177/002215540205001206.
Jorgensen, M.C., Ahnfelt-Ronne, J., Hald, J., Madsen, O.D., Serup, P., Hecksher-Sorensen, J., An illustrated review of early pancreas development in the mouse. Endocrine Reviews 28:6 (2007), 685–705, 10.1210/er.2007-0016.
Kaneta, Y., Sato, T., Hikiba, Y., Sugimori, M., Sue, S., Kaneko, H., et al. Loss of pancreatic E-cadherin causes pancreatitis-like changes and contributes to carcinogenesis. Cellular and Molecular Gastroenterology and Hepatology 9:1 (2020), 105–119, 10.1016/j.jcmgh.2019.09.001.
Kopinke, D., Brailsford, M., Shea, J.E., Leavitt, R., Scaife, C.L., Murtaugh, L.C., Lineage tracing reveals the dynamic contribution of Hes1 + cells to the developing and adult pancreas. Development 138:3 (2011), 431–441, 10.1242/dev.053843.
Krentz, N.A.J., Lee, M.Y.Y., Xu, E.E., Sproul, S.L.J., Maslova, A., Sasaki, S., et al. Single-cell transcriptome profiling of mouse and hESC-derived pancreatic progenitors. Stem Cell Reports 11:6 (2018), 1551–1564, 10.1016/j.stemcr.2018.11.008.
Lammert, E., Cleaver, O., Melton, D., Induction of pancreatic differentiation by signals from blood vessels. Science 294:5542 (2001), 564–567, 10.1126/science.1064344.
Landsman, L., Nijagal, A., Whitchurch, T.J., VanderLaan, R.L., Zimmer, W.E., MacKenzie, T.C., et al. Pancreatic mesenchyme regulates epithelial organogenesis throughout development. PLoS Biology, 9(9), 2011, e1001143, 10.1371/journal.pbio.1001143.
Larsen, H.L., Grapin-Botton, A., The molecular and morphogenetic basis of pancreas organogenesis. Seminars in Cell & Developmental Biology 66 (2017), 51–68, 10.1016/j.semcdb.2017.01.005.
Larsen, H.L., Martin-Coll, L., Nielsen, A.V., Wright, C.V.E., Trusina, A., Kim, Y.H., et al. Stochastic priming and spatial cues orchestrate heterogeneous clonal contribution to mouse pancreas organogenesis. Nature Communications, 8(1), 2017, 605, 10.1038/s41467-017-00258-4.
Larsen, M., Wei, C., Yamada, K.M., Cell and fibronectin dynamics during branching morphogenesis. Journal of Cell Science 119:Pt. 16 (2006), 3376–3384, 10.1242/jcs.03079.
Li, Z., Manna, P., Kobayashi, H., Spilde, T., Bhatia, A., Preuett, B., et al. Multifaceted pancreatic mesenchymal control of epithelial lineage selection. Developmental Biology 269:1 (2004), 252–263, 10.1016/j.ydbio.2004.01.043.
Lienkamp, S.S., Liu, K., Karner, C.M., Carroll, T.J., Ronneberger, O., Wallingford, J.B., et al. Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension. Nature Genetics 44:12 (2012), 1382–1387, 10.1038/ng.2452.
Löf-Öhlin, Z.M., Nyeng, P., Bechard, M.E., Hess, K., Bankaitis, E., Greiner, T.U., et al. EGFR signalling controls cellular fate and pancreatic organogenesis by regulating apicobasal polarity. Nature Cell Biology 19:11 (2017), 1313–1325, 10.1038/ncb3628.
Lu, P., Takai, K., Weaver, V.M., Werb, Z., Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives in Biology, 3(12), 2011, a005058, 10.1101/cshperspect.a005058.
Magenheim, J., Ilovich, O., Lazarus, A., Klochendler, A., Ziv, O., Werman, R., et al. Blood vessels restrain pancreas branching, differentiation and growth. Development 138:21 (2011), 4743–4752, 10.1242/dev.066548.
Magenheim, J., Klein, A.M., Stanger, B.Z., Ashery-Padan, R., Sosa-Pineda, B., Gu, G., et al. Ngn3(+) endocrine progenitor cells control the fate and morphogenesis of pancreatic ductal epithelium. Developmental Biology 359:1 (2011), 26–36, 10.1016/j.ydbio.2011.08.006.
Marty-Santos, L., Cleaver, O., Pdx1 regulates pancreas tubulogenesis and E-cadherin expression. Development 143:1 (2016), 101–112, 10.1242/dev.126755.
Metzger, R.J., Klein, O.D., Martin, G.R., Krasnow, M.A., The branching programme of mouse lung development. Nature 453:7196 (2008), 745–750, 10.1038/nature07005.
Miettinen, P.J., Huotari, M.-a., Koivisto, T., Ustinov, J., Palgi, J., Rasilainen, S., Impaired migration and delayed differentiation of pancreatic islet cells in mice lacking EGF-receptors. Development 127 (2000), 2617–2627.
Miralles, F., Czernichow, P., Scharfmann, R., Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. Development 125:6 (1998), 1017–1024.
Munoz-Bravo, J.L., Hidalgo-Figueroa, M., Pascual, A., Lopez-Barneo, J., Leal-Cerro, A., Cano, D.A., GDNF is required for neural colonization of the pancreas. Development 140:17 (2013), 3669–3679, 10.1242/dev.091256.
Nekrep, N., Wang, J., Miyatsuka, T., German, M.S., Signals from the neural crest regulate beta-cell mass in the pancreas. Development 135:12 (2008), 2151–2160, 10.1242/dev.015859.
Noren, N.K., Liu, B.P., Burridge, K., Kreft, B., p120 catenin regulates the actin cytoskeleton via Rho family GTPases. The Journal of Cell Biology 150:3 (2000), 567–580, 10.1083/jcb.150.3.567.
Norgaard, G.A., Jensen, J.N., Jensen, J., FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development. Developmental Biology 264:2 (2003), 323–338, 10.1016/j.ydbio.2003.08.013.
Nyeng, P., Heilmann, S., Lof-Ohlin, Z.M., Pettersson, N.F., Hermann, F.M., Reynolds, A.B., et al. p120ctn-Mediated organ patterning precedes and determines pancreatic progenitor fate. Developmental Cell 49:1 (2019), 31–47.e39, 10.1016/j.devcel.2019.02.005.
Pan, F.C., Bankaitis, E.D., Boyer, D., Xu, X., Van de Casteele, M., Magnuson, M.A., et al. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development 140:4 (2013), 751–764, 10.1242/dev.090159.
Pan, F.C., Wright, C., Pancreas organogenesis: From bud to plexus to gland. Developmental Dynamics 240:3 (2011), 530–565, 10.1002/dvdy.22584.
Patel, V.N., Hoffman, M.P., Salivary gland development: A template for regeneration. Seminars in Cell & Developmental Biology 25-26 (2014), 52–60, 10.1016/j.semcdb.2013.12.001.
Perez, S.E., Cano, D.A., Dao-Pick, T., Rougier, J.P., Werb, Z., Hebrok, M., Matrix metalloproteinases 2 and 9 are dispensable for pancreatic islet formation and function in vivo. Diabetes 54:3 (2005), 694–701, 10.2337/diabetes.54.3.694.
Petzold, K.M., Naumann, H., Spagnoli, F.M., Rho signalling restriction by the RhoGAP Stard13 integrates growth and morphogenesis in the pancreas. Development 140:1 (2013), 126–135, 10.1242/dev.082701.
Plank, J.L., Mundell, N.A., Frist, A.Y., LeGrone, A.W., Kim, T., Musser, M.A., et al. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation. Developmental Biology 349:2 (2011), 321–330, 10.1016/j.ydbio.2010.11.013.
Pulkkinen, M.-A., Spencer-Dene, B., Dickson, C., Otonkoski, T., The IIIb isoform of fibroblast growth factor receptor 2 is required for proper growth and branching of pancreatic ductal epithelium but not for differentiation of exocrine or endocrine cells. Mechanisms of Development 120:2 (2003), 167–175, 10.1016/s0925-4773(02)00440-9.
Puri, S., Hebrok, M., Dynamics of embryonic pancreas development using real-time imaging. Developmental Biology 306:1 (2007), 82–93, 10.1016/j.ydbio.2007.03.003.
Rahier, J., Wallon, J., Henquin, J.C., Cell populations in the endocrine pancreas of human neonates and infants. Diabetologia 20:5 (1981), 540–546, 10.1007/BF00252762.
Reichert, M., Rustgi, A.K., Pancreatic ductal cells in development, regeneration, and neoplasia. The Journal of Clinical Investigation 121:12 (2011), 4572–4578, 10.1172/JCI57131.
Reinert, R.B., Cai, Q., Hong, J.Y., Plank, J.L., Aamodt, K., Prasad, N., et al. Vascular endothelial growth factor coordinates islet innervation via vascular scaffolding. Development 141:7 (2014), 1480–1491, 10.1242/dev.098657.
Rieck, S., Bankaitis, E.D., Wright, C.V., Lineage determinants in early endocrine development. Seminars in Cell & Developmental Biology 23:6 (2012), 673–684, 10.1016/j.semcdb.2012.06.005.
Ritvos, O., Tuuri, T., Erämaa, M., Sainio, K., Hildén, K., Saxén, L., et al. Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mechanisms of Development 50:2–3 (1995), 229–245, 10.1016/0925-4773(94)00342-k.
Rosen, S.D., Lemjabbar-Alaoui, H., Sulf-2: An extracellular modulator of cell signaling and a cancer target candidate. Expert Opinion on Therapeutic Targets 14:9 (2010), 935–949, 10.1517/14728222.2010.504718.
Russ, H.A., Landsman, L., Moss, C.L., Higdon, R., Greer, R.L., Kaihara, K., et al. Dynamic proteomic analysis of pancreatic mesenchyme reveals novel factors that enhance human embryonic stem cell to pancreatic cell differentiation. Stem Cells International, 2016, 2016, 6183562, 10.1155/2016/6183562.
Saburi, S., Hester, I., Fischer, E., Pontoglio, M., Eremina, V., Gessler, M., et al. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nature Genetics 40:8 (2008), 1010–1015, 10.1038/ng.179.
Sakhneny, L., Khalifa-Malka, L., Landsman, L., Pancreas organogenesis: Approaches to elucidate the role of epithelial-mesenchymal interactions. Seminars in Cell & Developmental Biology 92 (2019), 89–96, 10.1016/j.semcdb.2018.08.012.
Seymour, P.A., Collin, C.A., Egeskov-Madsen, A.R., Jorgensen, M.C., Shimojo, H., Imayoshi, I., et al. Jag1 modulates an oscillatory Dll1-notch-Hes1 signaling module to coordinate growth and fate of pancreatic progenitors. Developmental Cell 52:6 (2020), 731–747.e738, 10.1016/j.devcel.2020.01.015.
Seymour, P.A., Shih, H.P., Patel, N.A., Freude, K.K., Xie, R., Lim, C.J., et al. A Sox9/Fgf feed-forward loop maintains pancreatic organ identity. Development 139:18 (2012), 3363–3372, 10.1242/dev.078733.
Sharon, N., Chawla, R., Mueller, J., Vanderhooft, J., Whitehorn, L.J., Rosenthal, B., et al. A peninsular structure coordinates asynchronous differentiation with morphogenesis to generate pancreatic islets. Cell 176:4 (2019), 790–804.e713, 10.1016/j.cell.2018.12.003.
Shih, H.P., Panlasigui, D., Cirulli, V., Sander, M., ECM signaling regulates collective cellular dynamics to control pancreas branching morphogenesis. Cell Reports 14:2 (2016), 169–179, 10.1016/j.celrep.2015.12.027.
Sigurbjornsdottir, S., Mathew, R., Leptin, M., Molecular mechanisms of de novo lumen formation. Nature Reviews. Molecular Cell Biology 15:10 (2014), 665–676, 10.1038/nrm3871.
Solar, M., Cardalda, C., Houbracken, I., Martin, M., Maestro, M.A., De Medts, N., et al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Developmental Cell 17:6 (2009), 849–860, 10.1016/j.devcel.2009.11.003.
Steinberg, M.S., Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science 141:3579 (1963), 401–408, 10.1126/science.141.3579.401.
Swarr, D.T., Morrisey, E.E., Lung endoderm morphogenesis: Gasping for form and function. Annual Review of Cell and Developmental Biology 31 (2015), 553–573, 10.1146/annurev-cellbio-100814-125249.
Sznurkowska, M.K., Hannezo, E., Azzarelli, R., Rulands, S., Nestorowa, S., Hindley, C.J., et al. Defining lineage potential and fate behavior of precursors during pancreas development. Developmental Cell 46:3 (2018), 360–375.e365, 10.1016/j.devcel.2018.06.028.
Taborsky, G.J. Jr., Ahren, B., Havel, P.J., Autonomic mediation of glucagon secretion during hypoglycemia: Implications for impaired alpha-cell responses in type 1 diabetes. Diabetes 47:7 (1998), 995–1005, 10.2337/diabetes.47.7.995.
Tang, S.C., Baeyens, L., Shen, C.N., Peng, S.J., Chien, H.J., Scheel, D.W., et al. Human pancreatic neuro-insular network in health and fatty infiltration. Diabetologia 61:1 (2018), 168–181, 10.1007/s00125-017-4409-x.
Tang, N., Marshall, W.F., McMahon, M., Metzger, R.J., Martin, G.R., Control of mitotic spindle angle by the RAS-regulated ERK1/2 pathway determines lung tube shape. Science 333:6040 (2011), 342–345, 10.1126/science.1204831.
Tang, S.C., Shen, C.N., Lin, P.Y., Peng, S.J., Chien, H.J., Chou, Y.H., et al. Pancreatic neuro-insular network in young mice revealed by 3D panoramic histology. Diabetologia 61:1 (2018), 158–167, 10.1007/s00125-017-4408-y.
van Eyll, J.M., Passante, L., Pierreux, C.E., Lemaigre, F.P., Vanderhaeghen, P., Rousseau, G.G., Eph receptors and their ephrin ligands are expressed in developing mouse pancreas. Gene Expression Patterns 6:4 (2006), 353–359, 10.1016/j.modgep.2005.09.010.
Villasenor, A., Chong, D.C., Henkemeyer, M., Cleaver, O., Epithelial dynamics of pancreatic branching morphogenesis. Development 137:24 (2010), 4295–4305, 10.1242/dev.052993.
Walker, J.L., Menko, A.S., Khalil, S., Rebustini, I., Hoffman, M.P., Kreidberg, J.A., et al. Diverse roles of E-cadherin in the morphogenesis of the submandibular gland: Insights into the formation of acinar and ductal structures. Developmental Dynamics 237:11 (2008), 3128–3141, 10.1002/dvdy.21717.
Wang, S., Sekiguchi, R., Daley, W.P., Yamada, K.M., Patterned cell and matrix dynamics in branching morphogenesis. The Journal of Cell Biology 216:3 (2017), 559–570, 10.1083/jcb.201610048.
Watanabe, S., Abe, K., Anbo, Y., Katoh, H., Changes in the mouse exocrine pancreas after pancreatic duct ligation: A qualitative and quantitative histological study. Archives of Histology and Cytology 58:3 (1995), 365–374, 10.1679/aohc.58.365.
Wells, K.L., Patel, N., Lumen formation in salivary gland development. Frontiers of Oral Biology 14 (2010), 78–89, 10.1159/000313708.
Yang, Y.H.C., Kawakami, K., Stainier, D.Y., A new mode of pancreatic islet innervation revealed by live imaging in zebrafish. eLife, 7, 2018, e34519, 10.7554/eLife.34519.
Yee, N.S., Lorent, K., Pack, M., Exocrine pancreas development in zebrafish. Developmental Biology 284:1 (2005), 84–101, 10.1016/j.ydbio.2005.04.035.
Yin, Y., Ornitz, D.M., FGF9 and FGF10 activate distinct signaling pathways to direct lung epithelial specification and branching. Science Signaling, 13(621), 2020, eaay4353, 10.1126/scisignal.aay4353.
Yoshitomi, H., Zaret, K.S., Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a. Development 131:4 (2004), 807–817, 10.1242/dev.00960.
Zhang, Y.Q., Cleary, M.M., Si, Y., Liu, G., Eto, Y., Kritzik, M., et al. Inhibition of activin signaling induces pancreatic epithelial cell expansion and diminishes terminal differentiation of pancreatic beta-cells. Diabetes 53:8 (2004), 2024–2033, 10.2337/diabetes.53.8.2024.