[en] Cell polarity is essential for the architecture and function of numerous epithelial tissues. Here, we show that apical restriction of planar cell polarity (PCP) components is necessary for the maintenance of epithelial integrity. Using the mammalian pancreas as a model, we find that components of the core PCP pathway, such as the transmembrane protein Van Gogh-like (VANGL), become apically restricted over a period of several days. Expansion of VANGL localization to the basolateral membranes of progenitors leads to their death and disruption of the epithelial integrity. VANGL basolateral expansion does not affect apico-basal polarity but acts in the cells where Vangl is mislocalized by reducing Dishevelled and its downstream target ROCK. This reduction in ROCK activity culminates in progenitor cell egression, death, and eventually pancreatic hypoplasia. Thus, precise spatiotemporal modulation of VANGL-dependent PCP signaling is crucial for proper pancreatic morphogenesis.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Flasse, Lydie ; Université de Liège - ULiège > GIGA > GIGA Stem Cells - Zebrafish Development and Disease Model ; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany. Electronic address: flasse@mpi-cbg.de
Yennek, Siham; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
Cortijo, Cédric; Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausannne, Switzerland
Barandiaran, Irene Seijo; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
Kraus, Marine R-C; Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausannne, Switzerland
Grapin-Botton, Anne; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany. Electronic address: botton@mpi-cbg.de
Language :
English
Title :
Apical Restriction of the Planar Cell Polarity Component VANGL in Pancreatic Ducts Is Required to Maintain Epithelial Integrity.
NNF - Novo Nordisk Fonden EPLF - École Polytechnique Fédérale de Lausanne
Funding text :
We would like to thank M. Figueiredo-Larsen for his experimental contributions with respect to whole-pancreas organoids and Heike Petzold for technical support. We thank D. Devenport for the Cherry-Vangl2 construct and N. Thompson and the EPFL Transgenesis Core Facility for generating the transgenic lines. We are grateful to J. Bulkescher and G. Karemore for their expert assistance with imaging and statistics, respectively, and to J. Brickman and P. Seymour for their comments on the manuscript. We also thank T. Ohtsuka and J. Nathans for the PK2 and Frizzled3 antibodies, respectively. The Novo Nordisk Foundation Center for Stem Cell Biology is supported by Novo Nordisk Foundation grant number NNF17CC0027852 .We would like to thank M. Figueiredo-Larsen for his experimental contributions with respect to whole-pancreas organoids and Heike Petzold for technical support. We thank D. Devenport for the Cherry-Vangl2 construct and N. Thompson and the EPFL Transgenesis Core Facility for generating the transgenic lines. We are grateful to J. Bulkescher and G. Karemore for their expert assistance with imaging and statistics, respectively, and to J. Brickman and P. Seymour for their comments on the manuscript. We also thank T. Ohtsuka and J. Nathans for the PK2 and Frizzled3 antibodies, respectively. The Novo Nordisk Foundation Center for Stem Cell Biology is supported by Novo Nordisk Foundation grant number NNF17CC0027852. L.F. contributed to project design as well as most experimental data collection and analyses; S.Y. contributed to all experiments with the ex vivo systems; I.S.B. contributed to the quantification of CAS3+ cells in the Inversin mutant and in the neural tube and participated in the analysis of the pancreatosphere videos; C.C. characterized hypoplasia in E16.5 Cherry-Vangl2 pancreata; M.R.-C.K. quantified pancreatic size in E14.5 Inversin mutants; C.C. M.R.-C.K. and L.F. demonstrated VANGL upregulation in Inversin mice. A.G.-B. supervised and helped design the project. C.C. is an employee of Neurimmune. M.R-C.K. is an employee of Société des produits Nestlé SA.
Amonlirdviman, K., Khare, N.A., Tree, D.R., Chen, W.S., Axelrod, J.D., Tomlin, C.J., Mathematical modeling of planar cell polarity to understand domineering nonautonomy. Science 307 (2005), 423–426.
Apodaca, G., Role of Polarity Proteins in the Generation and Organization of Apical Surface Protrusions. Cold Spring Harb. Perspect. Biol., 10, 2018, a027813.
Axelrod, J.D., Unipolar membrane association of Dishevelled mediates Frizzled planar cell polarity signaling. Genes Dev. 15 (2001), 1182–1187.
Axelrod, J.D., Miller, J.R., Shulman, J.M., Moon, R.T., Perrimon, N., Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev. 12 (1998), 2610–2622.
Bailly, E., Walton, A., Borg, J.P., The Planar Cell Polarity Vangl2 protein: from genetics to cellular and molecular functions. Semin. Cell Dev. Biol. 81 (2017), 62–70.
Bankaitis, E.D., Bechard, M.E., Wright, C.V., Feedback control of growth, differentiation, and morphogenesis of pancreatic endocrine progenitors in an epithelial plexus niche. Genes Dev. 29 (2015), 2203–2216.
Bastock, R., Strutt, H., Strutt, D., Strabismus is asymmetrically localised and binds to Prickle and Dishevelled during Drosophila planar polarity patterning. Development 130 (2003), 3007–3014.
Boutros, M., Paricio, N., Strutt, D.I., Mlodzik, M., Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell 94 (1998), 109–118.
Butler, M.T., Wallingford, J.B., Planar cell polarity in development and disease. Nat. Rev. Mol. Cell Biol. 18 (2017), 375–388.
Campanale, J.P., Sun, T.Y., Montell, D.J., Development and dynamics of cell polarity at a glance. J. Cell Sci. 130 (2017), 1201–1207.
Carreira-Barbosa, F., Concha, M.L., Takeuchi, M., Ueno, N., Wilson, S.W., Tada, M., Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish. Development 130 (2003), 4037–4046.
Chen, H., Mruk, D.D., Lee, W.M., Cheng, C.Y., Planar Cell Polarity (PCP) Protein Vangl2 Regulates Ectoplasmic Specialization Dynamics via Its Effects on Actin Microfilaments in the Testes of Male Rats. Endocrinology 157 (2016), 2140–2159.
Chevalier, C., Nicolas, J.F., Petit, A.C., Preparation and delivery of 4-hydroxy-tamoxifen for clonal and polyclonal labeling of cells of the surface ectoderm, skin, and hair follicle. Methods Mol. Biol. 1195 (2014), 239–245.
Collombat, P., Hecksher-Sørensen, J., Krull, J., Berger, J., Riedel, D., Herrera, P.L., Serup, P., Mansouri, A., Embryonic endocrine pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression. J. Clin. Invest. 117 (2007), 961–970.
Cortijo, C., Gouzi, M., Tissir, F., Grapin-Botton, A., Planar cell polarity controls pancreatic beta cell differentiation and glucose homeostasis. Cell Rep. 2 (2012), 1593–1606.
Dahl-Jensen, S.B., Yennek, S., Flasse, L., Larsen, H.L., Sever, D., Karremore, G., Novak, I., Sneppen, K., Grapin-Botton, A., Deconstructing the principles of ductal network formation in the pancreas. PLoS Biol., 16, 2018, e2002842.
Daulat, A.M., Borg, J.P., Wnt/Planar Cell Polarity Signaling: New Opportunities for Cancer Treatment. Trends Cancer 3 (2017), 113–125.
Devenport, D., Fuchs, E., Planar polarization in embryonic epidermis orchestrates global asymmetric morphogenesis of hair follicles. Nat. Cell Biol. 10 (2008), 1257–1268.
Di Gregorio, A., Bowling, S., Rodriguez, T.A., Cell Competition and Its Role in the Regulation of Cell Fitness from Development to Cancer. Dev. Cell 38 (2016), 621–634.
Djiane, A., Yogev, S., Mlodzik, M., The apical determinants aPKC and dPatj regulate Frizzled-dependent planar cell polarity in the Drosophila eye. Cell 121 (2005), 621–631.
Fischer, E., Legue, E., Doyen, A., Nato, F., Nicolas, J.F., Torres, V., Yaniv, M., Pontoglio, M., Defective planar cell polarity in polycystic kidney disease. Nat. Genet. 38 (2006), 21–23.
Galea, G.L., Nychyk, O., Mole, M.A., Moulding, D., Savery, D., Nikolopoulou, E., Henderson, D.J., Greene, N.D.E., Copp, A.J., Vangl2 disruption alters the biomechanics of late spinal neurulation leading to spina bifida in mouse embryos. Dis. Model. Mech., 11, 2018, dmm032219.
Goodrich, L.V., Strutt, D., Principles of planar polarity in animal development. Development 138 (2011), 1877–1892.
Greggio, C., De Franceschi, F., Figueiredo-Larsen, M., Gobaa, S., Ranga, A., Semb, H., Lutolf, M., Grapin-Botton, A., Artificial three-dimensional niches deconstruct pancreas development in vitro. Development 140 (2013), 4452–4462.
Greggio, C., De Franceschi, F., Figueiredo-Larsen, M., Grapin-Botton, A., In vitro pancreas organogenesis from dispersed mouse embryonic progenitors. J. Vis. Exp.(89), 2014, 51725.
Habas, R., Kato, Y., He, X., Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107 (2001), 843–854.
Hatakeyama, J., Wald, J.H., Printsev, I., Ho, H.Y., Carraway, K.L. 3rd, Vangl1 and Vangl2: planar cell polarity components with a developing role in cancer. Endocr. Relat. Cancer 21 (2014), R345–R356.
Hayes, M.N., Mccarthy, K., Jin, A., Oliveira, M.L., Iyer, S., Garcia, S.P., Sindiri, S., Gryder, B., Motala, Z., Nielsen, G.P., Borg, J.P., Van De Rijn, M., Malkin, D., Khan, J., Ignatius, M.S., Langenau, D.M., Vangl2/RhoA Signaling Pathway Regulates Stem Cell Self-Renewal Programs and Growth in Rhabdomyosarcoma. Cell Stem Cell 22 (2018), 414–427.e6.
Higashi, T., Miller, A.L., Tricellular junctions: how to build junctions at the TRICkiest points of epithelial cells. Mol. Biol. Cell 28 (2017), 2023–2034.
Hingorani, S.R., Petricoin, E.F., Maitra, A., Rajapakse, V., King, C., Jacobetz, M.A., Ross, S., Conrads, T.P., Veenstra, T.D., Hitt, B.A., et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4 (2003), 437–450.
Iliescu, A., Gravel, M., Horth, C., Gros, P., Independent mutations at Arg181 and Arg274 of Vangl proteins that are associated with neural tube defects in humans decrease protein stability and impair membrane targeting. Biochemistry 53 (2014), 5356–5364.
Jenny, A., Darken, R.S., Wilson, P.A., Mlodzik, M., Prickle and Strabismus form a functional complex to generate a correct axis during planar cell polarity signaling. EMBO J. 22 (2003), 4409–4420.
Knust, E., Tepass, U., Wodarz, A., crumbs and stardust, two genes of Drosophila required for the development of epithelial cell polarity. Dev. Suppl. 1993 (1993), 261–268.
Kolahgar, G., Bardet, P.L., Langton, P.F., Alexandre, C., Vincent, J.P., Apical deficiency triggers JNK-dependent apoptosis in the embryonic epidermis of Drosophila. Development 138 (2011), 3021–3031.
Kunimoto, K., Bayly, R.D., Vladar, E.K., Vonderfecht, T., Gallagher, A.R., Axelrod, J.D., Disruption of Core Planar Cell Polarity Signaling Regulates Renal Tubule Morphogenesis but Is Not Cystogenic. Curr. Biol. 27 (2017), 3120–3131.e4.
Lapébie, P., Borchiellini, C., Houliston, E., Dissecting the PCP pathway: one or more pathways?: Does a separate Wnt-Fz-Rho pathway drive morphogenesis?. BioEssays 33 (2011), 759–768.
Larsen, H.L., Grapin-Botton, A., The molecular and morphogenetic basis of pancreas organogenesis. Semin. Cell Dev. Biol. 66 (2017), 51–68.
Larsen, H.L., Martín-Coll, L., Nielsen, A.V., Wright, C.V.E., Trusina, A., Kim, Y.H., Grapin-Botton, A., Stochastic priming and spatial cues orchestrate heterogeneous clonal contribution to mouse pancreas organogenesis. Nat. Commun., 8, 2017, 605.
Lemaire, L.A., Goulley, J., Kim, Y.H., Carat, S., Jacquemin, P., Rougemont, J., Constam, D.B., Grapin-Botton, A., Bicaudal C1 promotes pancreatic NEUROG3+ endocrine progenitor differentiation and ductal morphogenesis. Development 142 (2015), 858–870.
Li, D., Wang, J., Planar Cell Polarity Signaling in Mammalian Cardiac Morphogenesis. Pediatr. Cardiol. 39 (2018), 1052–1062.
Li, L., Yuan, H., Xie, W., Mao, J., Caruso, A.M., McMahon, A., Sussman, D.J., Wu, D., Dishevelled proteins lead to two signaling pathways. Regulation of LEF-1 and c-Jun N-terminal kinase in mammalian cells. J. Biol. Chem. 274 (1999), 129–134.
Lindqvist, M., Horn, Z., Bryja, V., Schulte, G., Papachristou, P., Ajima, R., Dyberg, C., Arenas, E., Yamaguchi, T.P., Lagercrantz, H., Ringstedt, T., Vang-like protein 2 and Rac1 interact to regulate adherens junctions. J. Cell Sci. 123 (2010), 472–483.
McGreevy, E.M., Vijayraghavan, D., Davidson, L.A., Hildebrand, J.D., Shroom3 functions downstream of planar cell polarity to regulate myosin II distribution and cellular organization during neural tube closure. Biol. Open 4 (2015), 186–196.
Merello, E., Mascelli, S., Raso, A., Piatelli, G., Consales, A., Cama, A., Kibar, Z., Capra, V., Marco, P.D., Expanding the mutational spectrum associated to neural tube defects: literature revision and description of novel VANGL1 mutations. Birth Defects Res. A Clin. Mol. Teratol. 103 (2015), 51–61.
Milgrom-Hoffman, M., Humbert, P.O., Regulation of cellular and PCP signalling by the Scribble polarity module. Semin. Cell Dev. Biol. 81 (2018), 33–45.
Montcouquiol, M., Rachel, R.A., Lanford, P.J., Copeland, N.G., Jenkins, N.A., Kelley, M.W., Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 423 (2003), 173–177.
Montcouquiol, M., Sans, N., Huss, D., Kach, J., Dickman, J.D., Forge, A., Rachel, R.A., Copeland, N.G., Jenkins, N.A., Bogani, D., et al. Asymmetric localization of Vangl2 and Fz3 indicate novel mechanisms for planar cell polarity in mammals. J. Neurosci. 26 (2006), 5265–5275.
Moore, M., Marroquin, B.A., Gugliotta, W., Tse, R., White, S.R., Rho kinase inhibition initiates apoptosis in human airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 30 (2004), 379–387.
Morgan, D., Turnpenny, L., Goodship, J., Dai, W., Majumder, K., Matthews, L., Gardner, A., Schuster, G., Vien, L., Harrison, W., et al. Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat. Genet. 20 (1998), 149–156.
Moriguchi, T., Kawachi, K., Kamakura, S., Masuyama, N., Yamanaka, H., Matsumoto, K., Kikuchi, A., Nishida, E., Distinct domains of mouse dishevelled are responsible for the c-Jun N-terminal kinase/stress-activated protein kinase activation and the axis formation in vertebrates. J. Biol. Chem. 274 (1999), 30957–30962.
Müller, H.A., Wieschaus, E., armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. J. Cell Biol. 134 (1996), 149–163.
Narimatsu, M., Bose, R., Pye, M., Zhang, L., Miller, B., Ching, P., Sakuma, R., Luga, V., Roncari, L., Attisano, L., Wrana, J.L., Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell 137 (2009), 295–307.
Nishimura, T., Honda, H., Takeichi, M., Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149 (2012), 1084–1097.
Norman, M., Wisniewska, K.A., Lawrenson, K., Garcia-Miranda, P., Tada, M., Kajita, M., Mano, H., Ishikawa, S., Ikegawa, M., Shimada, T., Fujita, Y., Loss of Scribble causes cell competition in mammalian cells. J. Cell Sci. 125 (2012), 59–66.
Ohsawa, S., Vaughen, J., Igaki, T., Cell Extrusion: A Stress-Responsive Force for Good or Evil in Epithelial Homeostasis. Dev. Cell, 44, 2018, 532.
Pan, F.C., Wright, C., Pancreas organogenesis: from bud to plexus to gland. Dev. Dyn. 240 (2011), 530–565.
Papakrivopoulou, E., Vasilopoulou, E., Lindenmeyer, M.T., Pacheco, S., Brzoska, H.L., Price, K.L., Kolatsi-Joannou, M., White, K.E., Henderson, D.J., Dean, C.H., Cohen, C.D., Salama, A.D., Woolf, A.S., Long, D.A., Vangl2, a planar cell polarity molecule, is implicated in irreversible and reversible kidney glomerular injury. J. Pathol. 246 (2018), 485–496.
Park, M., Moon, R.T., The planar cell-polarity gene stbm regulates cell behaviour and cell fate in vertebrate embryos. Nat. Cell Biol. 4 (2002), 20–25.
Park, T.J., Gray, R.S., Sato, A., Habas, R., Wallingford, J.B., Subcellular localization and signaling properties of dishevelled in developing vertebrate embryos. Curr. Biol. 15 (2005), 1039–1044.
Peng, Y., Axelrod, J.D., Asymmetric protein localization in planar cell polarity: mechanisms, puzzles, and challenges. Curr. Top. Dev. Biol. 101 (2012), 33–53.
Román-Fernández, A., Bryant, D.M., Complex Polarity: Building Multicellular Tissues Through Apical Membrane Traffic. Traffic 17 (2016), 1244–1261.
Saito, Y., Desai, R.R., Muthuswamy, S.K., Reinterpreting polarity and cancer: The changing landscape from tumor suppression to tumor promotion. Biochim. Biophys. Acta Rev. Cancer 1869 (2018), 103–116.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 (2012), 676–682.
Schnell, U., Carroll, T.J., Planar cell polarity of the kidney. Exp. Cell Res. 343 (2016), 258–266.
Seo, H.S., Habas, R., Chang, C., Wang, J., Bimodal regulation of Dishevelled function by Vangl2 during morphogenesis. Hum. Mol. Genet. 26 (2017), 2053–2061.
Shimada, Y., Usui, T., Yanagawa, S., Takeichi, M., Uemura, T., Asymmetric colocalization of Flamingo, a seven-pass transmembrane cadherin, and Dishevelled in planar cell polarization. Curr. Biol. 11 (2001), 859–863.
Simons, M., Gloy, J., Ganner, A., Bullerkotte, A., Bashkurov, M., Krönig, C., Schermer, B., Benzing, T., Cabello, O.A., Jenny, A., et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet. 37 (2005), 537–543.
Street, C.A., Bryan, B.A., Rho kinase proteins—pleiotropic modulators of cell survival and apoptosis. Anticancer Res. 31 (2011), 3645–3657.
Strutt, D., Strutt, H., Differential activities of the core planar polarity proteins during Drosophila wing patterning. Dev. Biol. 302 (2007), 181–194.
Strutt, H., Strutt, D., Differential stability of flamingo protein complexes underlies the establishment of planar polarity. Curr. Biol. 18 (2008), 1555–1564.
Strutt, H., Searle, E., Thomas-Macarthur, V., Brookfield, R., Strutt, D., A Cul-3-BTB ubiquitylation pathway regulates junctional levels and asymmetry of core planar polarity proteins. Development 140 (2013), 1693–1702.
Strutt, H., Gamage, J., Strutt, D., Robust Asymmetric Localization of Planar Polarity Proteins Is Associated with Organization into Signalosome-like Domains of Variable Stoichiometry. Cell Rep. 17 (2016), 2660–2671.
Sugiyama, T., Benitez, C.M., Ghodasara, A., Liu, L., McLean, G.W., Lee, J., Blauwkamp, T.A., Nusse, R., Wright, C.V., Gu, G., Kim, S.K., Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proc. Natl. Acad. Sci. USA 110 (2013), 12691–12696.
Tao, H., Suzuki, M., Kiyonari, H., Abe, T., Sasaoka, T., Ueno, N., Mouse prickle1, the homolog of a PCP gene, is essential for epiblast apical-basal polarity. Proc. Natl. Acad. Sci. USA 106 (2009), 14426–14431.
Tepass, U., Theres, C., Knust, E., crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61 (1990), 787–799.
Torban, E., Iliescu, A., Gros, P., An expanding role of Vangl proteins in embryonic development. Curr. Top. Dev. Biol. 101 (2012), 237–261.
Tree, D.R., Shulman, J.M., Rousset, R., Scott, M.P., Gubb, D., Axelrod, J.D., Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell 109 (2002), 371–381.
Vandenberg, A.L., Sassoon, D.A., Non-canonical Wnt signaling regulates cell polarity in female reproductive tract development via van gogh-like 2. Development 136 (2009), 1559–1570.
VanderVorst, K., Hatakeyama, J., Berg, A., Lee, H., Carraway, K.L. III., Cellular and molecular mechanisms underlying planar cell polarity pathway contributions to cancer malignancy. Semin. Cell Dev. Biol. 81 (2018), 78–87.
Ventura, A., Kirsch, D.G., McLaughlin, M.E., Tuveson, D.A., Grimm, J., Lintault, L., Newman, J., Reczek, E.E., Weissleder, R., Jacks, T., Restoration of p53 function leads to tumour regression in vivo. Nature 445 (2007), 661–665.
Vicente-Manzanares, M., Ma, X., Adelstein, R.S., Horwitz, A.R., Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10 (2009), 778–790.
Villasenor, A., Chong, D.C., Henkemeyer, M., Cleaver, O., Epithelial dynamics of pancreatic branching morphogenesis. Development 137 (2010), 4295–4305.
Wald, J.H., Hatakeyama, J., Printsev, I., Cuevas, A., Fry, W.H.D., Saldana, M.J., VanderVorst, K., Rowson-Hodel, A., Angelastro, J.M., Sweeney, C., Carraway, K.L.R., Suppression of planar cell polarity signaling and migration in glioblastoma by Nrdp1-mediated Dvl polyubiquitination. Oncogene 36 (2017), 5158–5167.
Wang, Y., Chang, H., Rattner, A., Nathans, J., Frizzled Receptors in Development and Disease. Curr. Top. Dev. Biol. 117 (2016), 113–139.
Wu, J., Mlodzik, M., The frizzled extracellular domain is a ligand for Van Gogh/Stbm during nonautonomous planar cell polarity signaling. Dev. Cell 15 (2008), 462–469.
Yang, Y., Mlodzik, M., Wnt-Frizzled/planar cell polarity signaling: cellular orientation by facing the wind (Wnt). Annu. Rev. Cell Dev. Biol. 31 (2015), 623–646.
Yates, L.L., Dean, C.H., Planar polarity: A new player in both lung development and disease. Organogenesis 7 (2011), 209–216.
Yates, L.L., Papakrivopoulou, J., Long, D.A., Goggolidou, P., Connolly, J.O., Woolf, A.S., Dean, C.H., The planar cell polarity gene Vangl2 is required for mammalian kidney-branching morphogenesis and glomerular maturation. Hum. Mol. Genet. 19 (2010), 4663–4676.
Yates, L.L., Schnatwinkel, C., Murdoch, J.N., Bogani, D., Formstone, C.J., Townsend, S., Greenfield, A., Niswander, L.A., Dean, C.H., The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis. Hum. Mol. Genet. 19 (2010), 2251–2267.
Yokoyama, T., Copeland, N.G., Jenkins, N.A., Montgomery, C.A., Elder, F.F., Overbeek, P.A., Reversal of left-right asymmetry: a situs inversus mutation. Science 260 (1993), 679–682.
Yuan, Y., Gao, Y., Wang, H., Ma, X., Ma, D., Huang, G., Promoter methylation and expression of the VANGL2 gene in the myocardium of pediatric patients with tetralogy of fallot. Birth Defects Res. A Clin. Mol. Teratol. 100 (2014), 973–984.