BALP; Bone turnover markers; CTX; Children; Osteoblasts; Osteoclasts; PINP; TRAP; Endocrinology, Diabetes and Metabolism; Orthopedics and Sports Medicine; Endocrinology
Abstract :
[en] Bone turnover markers (BTMs) have been developed many years ago to study, in combination with imaging techniques, bone remodeling in adults. In children and adolescents, bone metabolism differs from adults since it implies both growth and bone remodeling, suggesting an age- and gender-dependent BTM concentration. Therefore, specific studies have evaluated BTMs in not only physiological but also pathological conditions. However, in pediatrics, the use of BTMs in clinical practice is still limited due to these many children-related specificities. This review will discuss about physiological levels of BTMs as well as their modifications under pathological conditions in children and adolescents. A focus is also given on analytical and clinical challenges that restrain BTM usefulness in pediatrics.
Disciplines :
Laboratory medicine & medical technology Pediatrics
Author, co-author :
LADANG, Aurélie ; Centre Hospitalier Universitaire de Liège - CHU > > Service de chimie clinique
Rauch, Frank; Shriners Hospital for Children, McGill University, Montreal, Canada
Delvin, Edgard; Centre & Department of Biochemistry, Ste-Justine University Hospital Research, Université de Montréal, Montreal, Canada
Cavalier, Etienne ; Centre Hospitalier Universitaire de Liège - CHU > > Service de chimie clinique
Language :
English
Title :
Bone Turnover Markers in Children: From Laboratory Challenges to Clinical Interpretation.
Tuchman S, Thayu M, Shults J et al (2008) Interpretation of biomarkers of bone metabolism in children: impact of growth velocity and body size in healthy children and chronic disease. J Pediatr 153:484–490. 10.1016/j.jpeds.2008.04.028 DOI: 10.1016/j.jpeds.2008.04.028
Bayer M (2014) Reference values of osteocalcin and procollagen type I N-propeptide plasma levels in a healthy Central European population aged 0–18 years. Osteoporos Int 25:729–736. 10.1007/s00198-013-2485-4 DOI: 10.1007/s00198-013-2485-4
Eastell R, Szulc P (2017) Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol 5:908–923 DOI: 10.1016/S2213-8587(17)30184-5
Ivaska KK, Gerdhem P, Åkesson K et al (2007) Effect of fracture on bone turnover markers: a longitudinal study comparing marker levels before and after injury in 113 elderly women. J Bone Miner Res. 10.1359/jbmr.070505 DOI: 10.1359/jbmr.070505
Camacho PM, Petak SM, Binkley N et al (2016) American association of clinical endocrinologists and american college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-executive summary. Endocr Pract 22:1–42. 10.4158/EP161435.ESGL DOI: 10.4158/EP161435.ESGL
Bakkaloglu SA, Bacchetta J, Lalayiannis AD et al (2021) Bone evaluation in paediatric chronic kidney disease: clinical practice points from the european society for paediatric nephrology CKD-MBD and dialysis working groups and CKD-MBD working group of the ERA-EDTA. Nephrol Dial Transplant. 10.1093/ndt/gfaa210 DOI: 10.1093/ndt/gfaa210
Simm PJ, Biggin A, Zacharin MR et al (2018) Consensus guidelines on the use of bisphosphonate therapy in children and adolescents. J Paediatr Child Health 54:223–233 DOI: 10.1111/jpc.13768
Eapen E, Grey V, Don-Wauchope A, Atkinson SA (2008) Bone health in childhood: usefulness of biochemical biomarkers. EJIFCC 123–135
Jürimäe J (2010) Interpretation and application of bone turnover markers in children and adolescents. Curr Opin Pediatr 22(4):494–500 DOI: 10.1097/MOP.0b013e32833b0b9e
Tahmasebi H, Higgins V, Fung AWS, et al (2017) Pediatric reference intervals for biochemical markers: gaps and challenges, recent national initiatives and future perspectives. eJIFCC 82:43–63
Rustad P, Felding P, Lahti A (2004) Proposal for guidelines to establish common biological reference intervals in large geographical areas for biochemical quantities measured frequently in serum and plasma. Clin Chem Lab Med 42:783–791. 10.1515/CCLM.2004.131 DOI: 10.1515/CCLM.2004.131
Karbasy K, Ariadne P, Gaglione S et al (2014) Advances in pediatric reference intervals for biochemical markers: establishment of the caliper database in healthy children and adolescents/Napredak U Oblasti Pedijatrijskih Referentnih Intervala Za Biohemijske Markere: Izrada Baze Podataka Caliper Kod Z. J Med Biochem 34:23–30. 10.2478/jomb-2014-0063 DOI: 10.2478/jomb-2014-0063
Estey MP, Cohen AH, Colantonio DA et al (2013) CLSI-based transference of the CALIPER database of pediatric reference intervals from abbott to beckman, ortho, roche and siemens clinical chemistry assays: direct validation using reference samples from the CALIPER cohort. Clin Biochem 46:1197–1219. 10.1016/j.clinbiochem.2013.04.001 DOI: 10.1016/j.clinbiochem.2013.04.001
Bauer D, Krege J, Lane N et al (2012) National bone health alliance bone turnover marker project: current practices and the need for US harmonization, standardization, and common reference ranges. Osteoporos Int. 10.1007/s00198-012-2049-z DOI: 10.1007/s00198-012-2049-z
Vasikaran S, Cooper C, Eastell R et al (2011) International osteoporosis foundation and international federation of clinical chemistry and laboratory medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med. 10.1515/CCLM.2011.602 DOI: 10.1515/CCLM.2011.602
Cavalier E, Eastell R, Rye Jørgensen N et al (2019) A multicenter study to evaluate harmonization of assays for N-terminal propeptide of type i procollagen (PINP): a report from the IFCC-IOF joint committee for bone metabolism. Clin Chem Lab Med. 10.1515/cclm-2019-0174 DOI: 10.1515/cclm-2019-0174
Vasikaran SD, Bhattoa HP, Eastell R et al (2020) Harmonization of commercial assays for PINP; the way forward. Osteoporos Int. 10.1007/s00198-020-05310-6 DOI: 10.1007/s00198-020-05310-6
Huang Y, Eapen E, Steele S, Grey V (2011) Establishment of reference intervals for bone markers in children and adolescents. Clin Biochem 44:771–778. 10.1016/j.clinbiochem.2011.04.008 DOI: 10.1016/j.clinbiochem.2011.04.008
Morovat A, Catchpole A, Meurisse A et al (2013) IDS iSYS automated intact procollagen-1-Nterminus pro-peptide assay: Method evaluation and reference intervals in adults and children. Clin Chem Lab Med 51:2009–2018. 10.1515/cclm-2012-0531 DOI: 10.1515/cclm-2012-0531
Diemar SS, Lylloff L, Rønne MS et al (2021) Reference intervals in Danish children and adolescents for bone turnover markers carboxy-terminal cross-linked telopeptide of type I collagen (β-CTX), pro-collagen type I N-terminal propeptide (PINP), osteocalcin (OC) and bone-specific alkaline phosphatas. Bone 146:115879. 10.1016/j.bone.2021.115879 DOI: 10.1016/j.bone.2021.115879
Geserick M, Vogel M, Eckelt F et al (2020) Children and adolescents with obesity have reduced serum bone turnover markers and 25-hydroxyvitamin D but increased parathyroid hormone concentrations – Results derived from new pediatric reference ranges. Bone. 10.1016/j.bone.2019.115124 DOI: 10.1016/j.bone.2019.115124
Van Der Sluis IM, Hop WC, Van Leeuwen JPTM et al (2002) A cross-sectional study on biochemical parameters of bone turnover and vitamin D metabolites in healthy dutch children and young adults. Horm Res. 10.1159/000058378 DOI: 10.1159/000058378
Jürimäe J, Pomerants T, Tillmann V, Jürimäe T (2009) Bone metabolism markers and ghrelin in boys at different stages of sexual maturity. Acta Paediatr Int J Paediatr 98:892–896. 10.1111/j.1651-2227.2008.01193.x DOI: 10.1111/j.1651-2227.2008.01193.x
Kajantie E, Dunkel L, Risteli J et al (2001) Markers of type I and III collagen turnover as indicators of growth velocity in very low birth weight infants. J Clin Endocrinol Metab 86:4299–4306. 10.1210/jcem.86.9.7869 DOI: 10.1210/jcem.86.9.7869
Van Coeverden SCCM, Netelenbos JC, De Ridder CM et al (2002) Bone metabolism markers and bone mass in healthy pubertal boys and girls. Clin Endocrinol 57:107–116. 10.1046/j.1365-2265.2002.01573.x DOI: 10.1046/j.1365-2265.2002.01573.x
Christo K, Prabhakaran R, Lamparello B et al (2008) Bone metabolism in adolescent athletes with amenorrhea, athletes with eumenorrhea, and control subjects. Pediatrics 121:1127–1136. 10.1542/peds.2007-2392 DOI: 10.1542/peds.2007-2392
Zürcher SJ, Borter N, Kränzlin M et al (2020) Relationship between bone mineral content and bone turnover markers, sex hormones and calciotropic hormones in pre- and early pubertal children. Osteoporos Int 31:335–349. 10.1007/s00198-019-05180-7 DOI: 10.1007/s00198-019-05180-7
Koivula MK, Ruotsalainen V, Björkman M et al (2010) Difference between total and intact assays for N-terminal propeptide of type I procollagen reflects degradation of pN-collagen rather than denaturation of intact propeptide. Ann Clin Biochem 47:67–71. 10.1258/acb.2009.009110 DOI: 10.1258/acb.2009.009110
Cavalier E, Lukas P, Carlisi A, et al (2013) Aminoterminal propeptide of type I procollagen (PINP) in chronic kidney disease patients: The assay matters. Clin Chim Acta 425
Szulc P, Naylor K, Hoyle NR et al (2017) Use of CTX-I and PINP as bone turnover markers: national bone health alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporos Int 28:2541–2556. 10.1007/s00198-017-4082-4 DOI: 10.1007/s00198-017-4082-4
Nizet A, Cavalier E, Stenvinkel P et al (2020) Bone alkaline phosphatase: an important biomarker in chronic kidney disease—mineral and bone disorder. Clin Chim Acta 501:198–206. 10.1016/j.cca.2019.11.012 DOI: 10.1016/j.cca.2019.11.012
Haarhaus M, Monier-Faugere MC, Magnusson P, Malluche HH (2015) Bone alkaline phosphatase isoforms in hemodialysis patients with low versus non-low bone turnover: a diagnostic test study. Am J Kidney Dis. 10.1053/j.ajkd.2015.02.323 DOI: 10.1053/j.ajkd.2015.02.323
Haarhaus M, Fernström A, Magnusson M, Magnusson P (2009) Clinical significance of bone alkaline phosphatase isoforms, including the novel B1x isoform, in mild to moderate chronic kidney disease. Nephrol Dial Transplant. 10.1093/ndt/gfp300 DOI: 10.1093/ndt/gfp300
Lomashvili KA, Cobbs S, Hennigar RA et al (2004) Phosphate-induced vascular calcification: Role of pyrophosphate and osteopontin. J Am Soc Nephrol 15:1392–1401. 10.1097/01.ASN.0000128955.83129.9C DOI: 10.1097/01.ASN.0000128955.83129.9C
Van Hoof VO, De Broe ME (1994) Interpretation and clinical significance of alkaline phosphatase isoenzyme patterns. Crit Rev Clin Lab Sci 31:197–293. 10.3109/10408369409084677 DOI: 10.3109/10408369409084677
Rauchenzauner M, Schmid A, Heinz-Erian P et al (2007) Sex- and age-specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J Clin Endocrinol Metab 92:443–449. 10.1210/jc.2006-1706 DOI: 10.1210/jc.2006-1706
Ladang A, Rousselle O, Huyghebaert L et al (2020) Parathormone, bone alkaline phosphatase and 25-hydroxyvitamin D status in a large cohort of 1200 children and teenagers. Acta Clin Belgica Int J Clin Lab Med 22:1–6. 10.1080/17843286.2020.1769285 DOI: 10.1080/17843286.2020.1769285
Fischer DC, Mischek A, Wolf S et al (2012) Paediatric reference values for the C-terminal fragment of fibroblast-growth factor-23, sclerostin, bone-specific alkaline phosphatase and isoform 5b of tartrate-resistant acid phosphatase. Ann Clin Biochem 49:546–553. 10.1258/acb.2012.011274 DOI: 10.1258/acb.2012.011274
Colantonio DA, Kyriakopoulou L, Chan MK et al (2012) Closing the gaps in pediatric laboratory reference intervals: a caliper database of 40 biochemical markers in a healthy and multiethnic population of children. Clin Chem 58:854–868. 10.1373/clinchem.2011.177741 DOI: 10.1373/clinchem.2011.177741
Topal İ, Gümüş B (2020) Can bone-specific alkaline phosphatase and osteocalcine levels be used to determine the age in children? Am J Forensic Med Pathol 41:182–187. 10.1097/PAF.0000000000000555 DOI: 10.1097/PAF.0000000000000555
Oladipo OO, DeCrescenzo AJ, Marquez CP, Okorodudu AO (2017) Increased alkaline phosphatase in a child. Clin Chem 63(6):1174–1175 DOI: 10.1373/clinchem.2016.268904
Otero JL, González-Peralta RP, Andres JM et al (2011) Elevated alkaline phosphatase in children: an algorithm to determine when a “Wait and See” approach is optimal. Clin Med Insights Pediatr 5:15–18. 10.4137/cmped.s6872 DOI: 10.4137/cmped.s6872
Magnusson P, Häger A, Larsson L (1995) Serumosteocalcin and bone and liver alkaline phosphatase isoforms in healthy children and adolescents. Pediatr Res 38:955–960. 10.1203/00006450-199512000-00021 DOI: 10.1203/00006450-199512000-00021
Chaplais E, Thivel D, Greene D et al (2015) Bone-adiposity cross-talk: implications for pediatric obesity: a narrative review of literature. J Bone Miner Metab 33:592–602. 10.1007/s00774-015-0654-6 DOI: 10.1007/s00774-015-0654-6
Gajewska J, Ambroszkiewicz J, Klemarczyk W et al (2018) The effect of weight loss on body composition, serum bone markers, and adipokines in prepubertal obese children after 1-year intervention. Endocr Res 43:80–89. 10.1080/07435800.2017.1403444 DOI: 10.1080/07435800.2017.1403444
Rizzoli R (2021) Dairy products and bone health. Aging Clin Exp Res. 10.1007/s40520-021-01970-4 DOI: 10.1007/s40520-021-01970-4
Landry BW, Driscoll SW (2012) Physical activity in children and adolescents. PM R 4:826–832. 10.1016/j.pmrj.2012.09.585 DOI: 10.1016/j.pmrj.2012.09.585
Gajewska J, Weker H, Ambroszkiewicz J et al (2013) Alterations in markers of bone metabolism and adipokines following a 3-month lifestyle intervention induced weight loss in obese prepubertal children. Exp Clin Endocrinol Diabetes 121:498–504. 10.1055/s-0033-1347198 DOI: 10.1055/s-0033-1347198
Ambroszkiewicz J, Rowicka G, Chelchowska M et al (2014) Biochemical markers of bone metabolism in children with cow’s milk allergy. Arch Med Sci 10:1135–1141. 10.5114/aoms.2013.36906 DOI: 10.5114/aoms.2013.36906
Ambroszkiewicz J, Klemarczyk W, Gajewska J et al (2007) Serum concentration of biochemical bone turnover markers in vegetarian children. Adv Med Sci 52:279–282
Hansen L, Tjønneland A, Køster B et al (2018) Vitamin D status and seasonal variation among danish children and adults: a descriptive study. Nutrients. 10.3390/nu10111801 DOI: 10.3390/nu10111801
Cavalier E, Souberbielle JC, Gadisseur R et al (2014) Inter-method variability in bone alkaline phosphatase measurement: clinical impact on the management of dialysis patients. Clin Biochem 47:1227–1230. 10.1016/j.clinbiochem.2014.04.007 DOI: 10.1016/j.clinbiochem.2014.04.007
Magnusson P, Löfman O, Larsson L (1992) Determination of alkaline phosphatase isoenzymes in serum by high-performance liquid chromatography with post-column reaction detection. J Chromatogr B Biomed Sci Appl 576:79–86. 10.1016/0378-4347(92)80177-R DOI: 10.1016/0378-4347(92)80177-R
Greenblatt MB, Tsai JN, Wein MN (2017) Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem 62(2):464–474 DOI: 10.1373/clinchem.2016.259085
Cavalier E, Delanaye P, Collette J et al (2006) Evaluation of different bone markers in hemodialyzed patients. Clin Chim Acta 371:107–111. 10.1016/j.cca.2006.02.029 DOI: 10.1016/j.cca.2006.02.029
Tobiume H, Kanzaki S, Hida S et al (1997) Serum bone alkaline phosphatase isoenzyme levels in normal children and children with growth hormone (GH) deficiency: a potential marker for bone formation and response to GH therapy. J Clin Endocrinol Metab 82:2056–2061. 10.1210/jc.82.7.2056 DOI: 10.1210/jc.82.7.2056
Koshihara Y, Hoshi K (1997) Vitamin K(2) enhances osteocalcin accumulation in the extracellular matrix of human osteoblasts in vitro. J Bone Miner Res 12:431–438. 10.1359/jbmr.1997.12.3.431 DOI: 10.1359/jbmr.1997.12.3.431
Lee NK, Sowa H, Hinoi E et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469. 10.1016/j.cell.2007.05.047 DOI: 10.1016/j.cell.2007.05.047
Delmas PD, Demiaux B, Malaval L et al (1986) Serum bone gamma carboxyglutamic acid-containing protein in primary hyperparathyroidism and in malignant hypercalcemia. Comparison with bone histomorphometry. J Clin Invest 77:985–991. 10.1172/JCI112400 DOI: 10.1172/JCI112400
Van Summeren M, Braam L, Noirt F et al (2007) Pronounced elevation of undercarboxylated osteocalcin in healthy children. Pediatr Res 61:366–370. 10.1203/pdr.0b013e318030d0b1 DOI: 10.1203/pdr.0b013e318030d0b1
Sokoll LJ, Sadowski JA (1996) Comparison of biochemical indexes for assessing vitamin K nutritional status in a healthy adult population. Am J Clin Nutr 63:566–573. 10.1093/ajcn/63.4.566 DOI: 10.1093/ajcn/63.4.566
Hao G, Zhang B, Gu M, Chen C, Zhang Q, Zhang G, Cao XM (2017) Vitamin K intake and the risk of fractures A meta-analysis. Medicine 96:e6725 DOI: 10.1097/MD.0000000000006725
Rodríguez-Olleros Rodríguez C, Díaz Curiel M (2019) Vitamin K and bone health: a review on the effects of vitamin K deficiency and supplementation and the effect of non-vitamin K antagonist oral anticoagulants on different bone parameters. J Osteoporos 20691476
Szulc P, Seeman E, Delmas PD (2000) Biochemical measurements of bone turnover in children and adolescents. Osteoporos Int 11:281–294 DOI: 10.1007/s001980070116
Im JA, Yu BP, Jeon JY, Kim SH (2008) Relationship between osteocalcin and glucose metabolism in postmenopausal women. Clin Chim Acta 396:66–69. 10.1016/j.cca.2008.07.001 DOI: 10.1016/j.cca.2008.07.001
Kindblom JM, Ohlsson C, Ljunggren O et al (2009) Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res 24:785–791. 10.1359/jbmr.081234 DOI: 10.1359/jbmr.081234
Bin OhS, Lee WY, Nam HK et al (2019) Serum osteocalcin levels in overweight children. Ann Pediatr Endocrinol Metab 24:104–107. 10.6065/apem.2019.24.2.104 DOI: 10.6065/apem.2019.24.2.104
Amin S, El Amrousy D, Elrifaey S et al (2018) Serum osteocalcin levels in children with nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr 66:117–121. 10.1097/MPG.0000000000001768 DOI: 10.1097/MPG.0000000000001768
Niimi H, Nishioka T, Kurayama H, Nakajima H (1988) Serum osteocalcin in normal children and children with glucocorticoid-induced osteoporosis. J Bone Miner Metab 6:38–42. 10.1007/BF02378738 DOI: 10.1007/BF02378738
Rosenquist C, Qvist P, Bjarnason N, Christiansen C (1995) Measurement of a more stable region of osteocalcin in serum by ELISA with two monoclonal antibodies. Clin Chem 41:1439–1445. 10.1093/clinchem/41.10.1439 DOI: 10.1093/clinchem/41.10.1439
Takahashi M, Kushida K, Nagano A, Inoue T (2000) Comparison of the analytical and clinical performance characteristics of an N-MID versus an intact osteocalcin immunoradiometric assay. Clin Chim Acta 294:67–76. 10.1016/S0009-8981(99)00251-X DOI: 10.1016/S0009-8981(99)00251-X
Nagasue K, Inaba M, Okuno S et al (2003) Serum N-terminal midfragment vs. intact osteocalcin immunoradiometric assay as markers for bone turnover and bone loss in hemodialysis patients. Biomed Pharmacother 57:98–104. 10.1016/S0753-3322(02)00344-X DOI: 10.1016/S0753-3322(02)00344-X
Garnero P, Ferreras M, Karsdal MA et al (2003) The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res. 10.1359/jbmr.2003.18.5.859 DOI: 10.1359/jbmr.2003.18.5.859
Risteli J, Elomaa I, Niemi S et al (1993) Radioimmunoassay for the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen: a new serum marker of bone collagen degradation. Clin Chem 39:635–640. 10.1093/clinchem/39.4.635 DOI: 10.1093/clinchem/39.4.635
Chubb SAP, Mandelt CD, Vasikaran SD (2015) Comparison of results from commercial assays for plasma CTX: the need for harmonization. Clin Biochem 48:519–524. 10.1016/j.clinbiochem.2015.03.002 DOI: 10.1016/j.clinbiochem.2015.03.002
Cavalier E, Eastell R, Jørgensen NR et al (2021) A multicenter study to evaluate harmonization of assays for C-terminal telopeptides of type I collagen (ß-CTX): a report from the IFCC-IOF committee for bone metabolism (C-BM). Calcif Tissue Int 108:785–797. 10.1007/s00223-021-00816-5 DOI: 10.1007/s00223-021-00816-5
Herrmann D, Intemann T, Lauria F et al (2014) Reference values of bone stiffness index and C-terminal telopeptide in healthy European children. Int J Obes 38:S76-85. 10.1038/ijo.2014.138 DOI: 10.1038/ijo.2014.138
Vincent A, Souberbielle JC, Brauner R (2018) Comparison of two bone markers with growth evolution in 74 girls with central precocious puberty. BMC Pediatr 18:224. 10.1186/s12887-018-1194-8 DOI: 10.1186/s12887-018-1194-8
Monjardino T, Silva P, Amaro J et al (2019) Bone formation and resorption markers at 7 years of age: relations with growth and bone mineralization. PLoS ONE 14:e0219423. 10.1371/journal.pone.0219423 DOI: 10.1371/journal.pone.0219423
Thiering E, Brüske I, Kratzsch J et al (2015) Associations between serum 25-hydroxyvitamin D and bone turnover markers in a population based sample of German children. Sci Rep 5:18138. 10.1038/srep18138 DOI: 10.1038/srep18138
Marwaha RK, Garg MK, Mithal A et al (2019) Effect of Vitamin D supplementation on bone turnover markers in children and adolescents from North India. Indian J Endocrinol Metab 23:27–34. 10.4103/ijem.IJEM_149_18 DOI: 10.4103/ijem.IJEM_149_18
Radetti G, Franceschi R, Adami S et al (2014) Higher circulating parathormone is associated with smaller and weaker bones in obese children. Calcif Tissue Int 95:1–7. 10.1007/s00223-014-9853-8 DOI: 10.1007/s00223-014-9853-8
Dimitri P, Wales JK, Bishop N (2011) Adipokines, bone-derived factors and bone turnover in obese children; evidence for altered fat-bone signalling resulting in reduced bone mass. Bone 48:189–196. 10.1016/j.bone.2010.09.034 DOI: 10.1016/j.bone.2010.09.034
Kurgan N, McKee K, Calleja M et al (2020) Cytokines, adipokines, and bone markers at rest and in response to plyometric exercise in obese vs normal weight adolescent females. Front Endocrinol. 10.3389/fendo.2020.531926 DOI: 10.3389/fendo.2020.531926
Qvist P, Christgau S, Pedersen BJ et al (2002) Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): Effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone 31:57–61. 10.1016/S8756-3282(02)00791-3 DOI: 10.1016/S8756-3282(02)00791-3
Mostafa YA, Meyer RA, Latorraca R (1982) A simple and rapid method for osteoclast identification using a histochemical method for acid phosphatase. Histochem J 14:409–413. 10.1007/BF01011853 DOI: 10.1007/BF01011853
Halleen JM, Tiitinen SL, Ylipahkala H et al (2006) Tartrate-resistant acid phosphates 5b (TRACP 5b) as a marker of bone resorption. Clin Lab 52(9–10):499–509
Rissanen JP, Suominen MI, Peng Z, Halleen JM (2008) Secreted tartrate-resistant acid phosphatase 5b is a marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. Calcif Tissue Int. 10.1007/s00223-007-9091-4 DOI: 10.1007/s00223-007-9091-4
Mira-Pascual L, Patlaka C, Desai S et al (2020) A Novel Sandwich ELISA for tartrate-resistant acid phosphatase 5a and 5b protein reveals that both isoforms are secreted by differentiating osteoclasts and correlate to the type i collagen degradation marker CTX-I in vivo and in vitro. Calcif Tissue Int 106:194–207. 10.1007/s00223-019-00618-w DOI: 10.1007/s00223-019-00618-w
Halleen JM, Hentunen TA, Karp M et al (1998) Characterization of serum tartrate-resistant acid phosphatase and development of a direct two-site immunoassay. J Bone Miner Res. 10.1359/jbmr.1998.13.4.683 DOI: 10.1359/jbmr.1998.13.4.683
Cavalier E (2018) Bone markers and chronic kidney diseases. J Lab Precis Med 3:62. 10.21037/jlpm.2018.07.03
Shidara K, Inaba M, Okuno S et al (2008) Serum levels of TRAP5b, a new bone resorption marker unaffected by renal dysfunction, as a useful marker of cortical bone loss in hemodialysis patients. Calcif Tissue Int 82:278–287. 10.1007/s00223-008-9127-4 DOI: 10.1007/s00223-008-9127-4
Cavalier E, Eastell R, Jørgensen NR, et al (2018) Bone turnover markers. In: Encyclopedia of Endocrine Diseases. pp 4; 116–127
Chen CJ, Chao TY, Janckila AJ et al (2005) Evaluation of the activity of tartrate-resistant acid phosphatase isoform 5b in normal Chinese children—A novel marker for bone growth. J Pediatr Endocrinol Metab 18:55–62. 10.1515/JPEM.2005.18.1.55 DOI: 10.1515/JPEM.2005.18.1.55
Lau KHW, Onishi T, Wergedal JE et al (1987) Characterization and assay of tartrate-resistant acid phosphatase activity in serum: potential use to assess bone resorption. Clin Chem. 10.1093/clinchem/33.4.458 DOI: 10.1093/clinchem/33.4.458
Scarnecchia L, Minisola S, Pacitti MT et al (1991) Clinical usefulness of serum tartrate-resistant acid phosphatase activity determination to evaluate bone turnover. Scand J Clin Lab Invest. 10.3109/00365519109104560 DOI: 10.3109/00365519109104560
Preussner R, Sauer-Eppel H, Oremek G (2014) Tartrate-resistant acid phosphatase 5b as a diagnostic marker of bone metastases in patients with renal cell carcinoma. Integr Cancer Sci Ther 1:35–38
Cavalier E, Lukas PDP (2021) Analytical evaluation of the Nittobo Medical tartrate resistant acid phosphatase isoform 5b (TRACP-5b) EIA and comparison with IDS iSYS in different clinically defined populations. Clin Chem Lab Med. 10.1515/cclm-2021-1190 DOI: 10.1515/cclm-2021-1190
Szulc P (2018) Bone turnover: biology and assessment tools. Best Pract. Res Clin Endocrinol Metab 32
Rauch F (2006) Watching bone cells at work: what we can see from bone biopsies. Pediatr Nephrol 21
Clark LC, Beck E (1950) Plasma “alkaline” phosphatase activity. I. Normative data for growing children. J Pediatr. 10.1016/S0022-3476(50)80103-8 DOI: 10.1016/S0022-3476(50)80103-8
Rauch F, Travers R, Parfitt AM, Glorieux FH (2000) Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone. 10.1016/S8756-3282(00)00269-6 DOI: 10.1016/S8756-3282(00)00269-6
Rauch F, Lalic L, Roughley P, Glorieux FH (2010) Relationship between genotype and skeletal phenotype in children and adolescents with osteogenesis imperfecta. J Bone Miner Res. 10.1359/jbmr.091109 DOI: 10.1359/jbmr.091109
Lund AM, Hansen M, Kollerup G et al (1998) Collagen-derived markers of bone metabolism in osteogenesis imperfecta. Acta Paediatr Int J Paediatr. 10.1111/j.1651-2227.1998.tb00920.x DOI: 10.1111/j.1651-2227.1998.tb00920.x
Barber LA, Abbott C, Nakhate V et al (2019) Longitudinal growth curves for children with classical osteogenesis imperfecta (types III and IV) caused by structural pathogenic variants in type I collagen. Genet Med. 10.1038/s41436-018-0307-y DOI: 10.1038/s41436-018-0307-y
Wein MN, Kronenberg HM (2018) Regulation of bone remodeling by parathyroid hormone. Cold Spring Harb Perspect Med. 10.1101/cshperspect.a031237 DOI: 10.1101/cshperspect.a031237
Baecker N, Tomic A, Mika C et al (2003) Bone resorption is induced on the second day of bed rest: results of a controlled crossover trial. J Appl Physiol. 10.1152/japplphysiol.00264.2003 DOI: 10.1152/japplphysiol.00264.2003
Buehlmeier J, Frings-Meuthen P, Mohorko N, et al (2017) Markers of bone metabolism during 14 days of bed rest in young and older men. J Musculoskelet Neuronal Interact 17
Chotiyarnwong P, McCloskey E V. (2020) Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat Rev Endocrinol 16
Hartmann K, Koenen M, Schauer S et al (2016) Molecular actions of glucocorticoids in cartilage and bone during health, disease, and steroid therapy. Physiol Rev. 10.1152/physrev.00011.2015 DOI: 10.1152/physrev.00011.2015
Hyams JS, Moore RE, Leichtner AM et al (1988) Relationship of type I procollagen to corticosteroid therapy in children with inflammatory bowel disease. J Pediatr. 10.1016/S0022-3476(88)80210-5 DOI: 10.1016/S0022-3476(88)80210-5
Saarela T, Risteli J, Koivisto M (2003) Effects of short-term dexamethasone treatment on collagen synthesis and degradation markers in preterm infants with developing lung disease. Acta Paediatr Int J Paediatr. 10.1080/08035320310002687 DOI: 10.1080/08035320310002687
Crofton PM, Shrivastava A, Wade JC et al (2000) Effects of dexamethasone treatment on bone and collagen turnover in preterm infants with chronic lung disease. Pediatr Res. 10.1203/00006450-200008000-00007 DOI: 10.1203/00006450-200008000-00007
Vihinen MK, Kolho KL, Ashorn M et al (2008) Bone turnover and metabolism in paediatric patients with inflammatory bowel disease treated with systemic glucocorticoids. Eur J Endocrinol. 10.1530/EJE-08-0429 DOI: 10.1530/EJE-08-0429
Söderpalm AC, Magnusson P, Åhlander AC et al (2007) Low bone mineral density and decreased bone turnover in Duchenne muscular dystrophy. Neuromuscul Disord. 10.1016/j.nmd.2007.05.008 DOI: 10.1016/j.nmd.2007.05.008
Crowley S, Trivedi P, Risteli L et al (1998) Collagen metabolism and growth in prepubertal children with asthma treated with inhaled steroids. J Pediatr. 10.1016/S0022-3476(98)70011-3 DOI: 10.1016/S0022-3476(98)70011-3
Heuck C, Heickendorff L, Wolthers OD (2000) A randomised controlled trial of short term growth and collagen turnover in asthmatics treated with inhaled formoterol and budesonide. Arch Dis Child. 10.1136/adc.83.4.334 DOI: 10.1136/adc.83.4.334
Russell RGG (2011) Bisphosphonates: the first 40 years. Bone 49
Rauch F, Plotkin H, Travers R et al (2003) Osteogenesis imperfecta types I, III, and IV: Effect of pamidronate therapy on bone and mineral metabolism. J Clin Endocrinol Metab. 10.1210/jc.2002-021371 DOI: 10.1210/jc.2002-021371
Ward LM, Rauch F, Whyte MP et al (2011) Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Clin Endocrinol Metab. 10.1210/jc.2010-0636 DOI: 10.1210/jc.2010-0636
Palomo T, Fassier F, Ouellet J et al (2015) Intravenous bisphosphonate therapy of young children with osteogenesis imperfecta: skeletal findings during follow up throughout the growing years. J Bone Miner Res. 10.1002/jbmr.2567 DOI: 10.1002/jbmr.2567
Rauch F, Munns C, Land C, Glorieux FH (2006) Pamidronate in children and adolescents with osteogenesis imperfecta: effect of treatment discontinuation. J Clin Endocrinol Metab. 10.1210/jc.2005-2413 DOI: 10.1210/jc.2005-2413
Boyce AM (2017) Denosumab: an emerging therapy in pediatric bone disorders. Curr Osteoporos Rep 15
Hoyer-Kuhn H, Franklin J, Allo G, et al (2016) Safety and efficacy of denosumab in children with osteogenesis imperfecta - A first prospective trial. J Musculoskelet Neuronal Interact 16
Trejo P, Rauch F, Ward L (2018) Hypercalcemia and hypercalciuria during denosumab treatment in children with osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact 18
Akel U, Robinson ME, Werier J et al (2019) Local tumor recurrence and escape from suppression of bone resorption with denosumab treatment in two adolescents with giant cell tumors of bone. JBMR Plus. 10.1002/jbm4.10196 DOI: 10.1002/jbm4.10196
Hartwell D, Riis BJ, Christiansen C (1990) Serum bone gla protein: a Potential marker of growth hormone (GH) deficiency and the response to GH therapy. J Clin Endocrinol Metab. 10.1210/jcem-71-1-122 DOI: 10.1210/jcem-71-1-122
Rauch F, Schnabel D, Seibel MJ et al (1995) Urinary excretion of galactosyl-hydroxylysine is a marker of growth in children. J Clin Endocrinol Metab. 10.1210/jcem.80.4.7714103 DOI: 10.1210/jcem.80.4.7714103
Andersson B, Swolin-Eide D, Magnusson P, Albertsson-Wikland K (2015) Short-term changes in bone formation markers following growth hormone (GH) treatment in short prepubertal children with a broad range of GH secretion. Clin Endocrinol. 10.1111/cen.12499 DOI: 10.1111/cen.12499
Swolin-Eide D, Andersson B, Hellgren G et al (2018) Variation of bone acquisition during growth hormone treatment in children can be explained by proteomic biomarkers, bone formation markers, body composition and nutritional factors. Bone. 10.1016/j.bone.2018.07.023 DOI: 10.1016/j.bone.2018.07.023
Schönau E, Westermann F, Rauch F et al (2001) A new and accurate prediction model for growth response to growth hormone treatment in children with growth hormone deficiency. Eur J Endocrinol. 10.1530/eje.0.1440013 DOI: 10.1530/eje.0.1440013
Rauch F, Georg M, Stabrey A et al (2002) Collagen markers deoxypyridinoline and hydroxylysine glycosides: pediatric reference data and use for growth prediction in growth hormone-deficient children. Clin Chem. 10.1093/clinchem/48.2.315 DOI: 10.1093/clinchem/48.2.315
Crofton PM, Stirling HF, Schönau E, Kelnar CJH (1996) Bone alkaline phosphatase and collagen markers as early predictors of height velocity response to growth-promoting treatments in short normal children. Clin Endocrinol. 10.1046/j.1365-2265.1996.706cn527.x DOI: 10.1046/j.1365-2265.1996.706cn527.x
Vihervuori E, Turpeinen M, Siimes MA et al (1997) Collagen formation and degradation increase during growth hormone therapy in children. Bone. 10.1016/S8756-3282(96)00332-8 DOI: 10.1016/S8756-3282(96)00332-8
Gascoin-Lachambre G, Trivin C, Brauner R, Souberbielle JC (2007) Serum procollagen type 1 amino-terminal propeptide (P1NP) as an early predictor of the growth response to growth hormone treatment: comparison of intrauterine growth retardation and idiopathic short stature. Growth Horm IGF Res. 10.1016/j.ghir.2007.01.008 DOI: 10.1016/j.ghir.2007.01.008
Loftus J, Lindberg A, Aydin F, et al (2017) Individualised growth response optimisation (iGRO) tool: an accessible and easy-to-use growth prediction system to enable treatment optimisation for children treated with growth hormone. J Pediatr Endocrinol Metab 30
Baroncelli GI, Bertelloni S, Ceccarelli C et al (2000) Bone turnover in children with vitamin D deficiency rickets before and during treatment. Acta Paediatr Int J Paediatr. 10.1111/j.1651-2227.2000.tb00329.x DOI: 10.1111/j.1651-2227.2000.tb00329.x
Rauch F, Middelmann B, Cagnoli M et al (1997) Comparison of total alkaline phosphatase and three assays for bone- specific alkaline phosphatase in childhood and adolescence. Acta Paediatr Int J Paediatr. 10.1111/j.1651-2227.1997.tb08938.x DOI: 10.1111/j.1651-2227.1997.tb08938.x
de Castro MJ, de Lamas C, Sánchez-Pintos P, et al (2020) Bone status in patients with phenylketonuria: a systematic review. Nutrients 12
Kryskiewicz E, Pawlowska J, Pludowski P et al (2012) Bone metabolism in cholestatic children before and after living-related liver transplantation-a long-term prospective study. J Clin Densitom. 10.1016/j.jocd.2011.09.007 DOI: 10.1016/j.jocd.2011.09.007
Branca F, Ferro-Luzzi A, Robins SP, Golden MHN (1992) Bone turnover in malnourished children. Lancet. 10.1016/0140-6736(92)92754-4 DOI: 10.1016/0140-6736(92)92754-4
Klein GL, Herndon DN, Goodman WG et al (1995) Histomorphometric and biochemical characterization of bone following acute severe burns in children. Bone. 10.1016/8756-3282(95)00279-1 DOI: 10.1016/8756-3282(95)00279-1
Pepmueller PH, Cassidy JT, Allen SH, Hillman LS (1996) Bone mineralization and bone mineral metabolism in children with juvenile rheumatoid arthritis. Arthritis Rheum. 10.1002/art.1780390506 DOI: 10.1002/art.1780390506
Halton JM, Atkinson SA, Fraher L et al (1996) Altered mineral metabolism and bone mass in children during treatment for acute lymphoblastic leukemia. J Bone Miner Res. 10.1002/jbmr.5650111122 DOI: 10.1002/jbmr.5650111122
Crofton PM, Ahmed SF, Wade JC et al (1998) Effects of intensive chemotherapy on bone and collagen turnover and the growth hormone axis in children with acute lymphoblastic leukemia. J Clin Endocrinol Metab. 10.1210/jc.83.9.3121 DOI: 10.1210/jc.83.9.3121
Daly A, Högler W, Crabtree N et al (2021) A three-year longitudinal study comparing bone mass, density, and geometry measured by dxa, pqct, and bone turnover markers in children with pku taking l-amino acid or glycomacropeptide protein substitutes. Nutrients. 10.3390/nu13062075 DOI: 10.3390/nu13062075
Shen Y, Shiau S, Strehlau R et al (2021) Persistently lower bone mass and bone turnover among South African children living with well controlled HIV. AIDS. 10.1097/qad.0000000000002990 DOI: 10.1097/qad.0000000000002990
Steell L, Gray SR, Russell RK et al (2021) Pathogenesis of musculoskeletal deficits in children and adults with inflammatory bowel disease. Nutrients. 10.3390/nu13082899 DOI: 10.3390/nu13082899
Ward LM, Rauch F, Matzinger MA et al (2010) Iliac bone histomorphometry in children with newly diagnosed inflammatory bowel disease. Osteoporos Int. 10.1007/s00198-009-0969-z DOI: 10.1007/s00198-009-0969-z
Ward LM, Ma J, Rauch F et al (2017) Musculoskeletal health in newly diagnosed children with Crohn’s disease. Osteoporos Int. 10.1007/s00198-017-4159-0 DOI: 10.1007/s00198-017-4159-0
Thayu M, Leonard MB, Hyams JS et al (2008) Improvement in biomarkers of bone formation during infliximab therapy in pediatric crohn’s disease: results of the REACH study. Clin Gastroenterol Hepatol. 10.1016/j.cgh.2008.07.010 DOI: 10.1016/j.cgh.2008.07.010
Sorva R, Kivivuori SM, Turpeinen M et al (1997) Very low rate of type I collagen synthesis and degradation in newly diagnosed children with acute lymphoblastic leukemia. Bone. 10.1016/S8756-3282(96)00343-2 DOI: 10.1016/S8756-3282(96)00343-2
Crofton PM, Ahmed SF, Wade JC et al (2000) Bone turnover and growth during and after continuing chemotherapy in children with acute lymphoblastic leukemia. Pediatr Res. 10.1203/00006450-200010000-00012 DOI: 10.1203/00006450-200010000-00012
Crofton PM, Ahmed SF, Wade JC et al (1999) Effects of a third intensification block of chemotherapy on bone and collagen turnover, insulin-like growth factor I, its binding proteins and short-term growth in children with acute lymphoblastic leukaemia. Eur J Cancer. 10.1016/S0959-8049(99)00060-X DOI: 10.1016/S0959-8049(99)00060-X
Delvin E, Alos N, Rauch F et al (2019) Vitamin D nutritional status and bone turnover markers in childhood acute lymphoblastic leukemia survivors: a PETALE study. Clin Nutr. 10.1016/j.clnu.2018.02.006 DOI: 10.1016/j.clnu.2018.02.006
Santos F, Díaz-Anadón L, Ordóñez FA, Haffner D (2021) Bone Disease in CKD in Children. Calcif Tissue Int 108
Swolin-Eide D, Hansson S, Magnusson P (2009) Children with chronic kidney disease: a 3-year prospective study of growth, bone mass and bone turnover. Acta Paediatr Int J Paediatr. 10.1111/j.1651-2227.2008.01073.x DOI: 10.1111/j.1651-2227.2008.01073.x
Meza K, Biswas S, Zhu YS et al (2021) Tumor necrosis factor-alpha is associated with mineral bone disorder and growth impairment in children with chronic kidney disease. Pediatr Nephrol. 10.1007/s00467-020-04846-3 DOI: 10.1007/s00467-020-04846-3
Swolin-Eide D, Hansson S, Magnusson P (2013) Skeletal effects and growth in children with chronic kidney disease: a 5-year prospective study. J Bone Miner Metab. 10.1007/s00774-012-0412-y DOI: 10.1007/s00774-012-0412-y
Swolin-Eide D, Hansson S, Magnusson P (2018) A 3-year longitudinal study of skeletal effects and growth in children after kidney transplantation. Pediatr Transplant. 10.1111/petr.13253 DOI: 10.1111/petr.13253
Ferrari S, Bianchi ML, Eisman JA, et al (2012) Osteoporosis in young adults: pathophysiology, diagnosis, and management. Osteoporos Int 23
Bhattoa HP, Cavalier E, Eastell R et al (2021) Analytical considerations and plans to standardize or harmonize assays for the reference bone turnover markers PINP and β-CTX in blood. Clin Chim Acta. 10.1016/j.cca.2020.12.023 DOI: 10.1016/j.cca.2020.12.023
Wang X, Liu L, Li P et al (2017) Reference and influential factors of serum bone markers in chinese adolescents. Sci Rep. 10.1038/s41598-017-17670-x DOI: 10.1038/s41598-017-17670-x
Paldánius PM, Ivaska KK, Mäkitie O, Viljakainen H (2021) Serum and urinary osteocalcin in healthy 7- to 19-year-old finnish children and adolescents. Front Pediatr. 10.3389/fped.2021.610227 DOI: 10.3389/fped.2021.610227
Choi JS, Park I, Lee SJ et al (2019) Serum procollagen type IN-terminal propeptide and osteocalcin levels in Korean children and adolescents. Yonsei Med J. 10.3349/ymj.2019.60.12.1174 DOI: 10.3349/ymj.2019.60.12.1174
Chailurkit LO, Suthutvoravut U, Mahachoklertwattana P et al (2005) Biochemical markers of bone formation in Thai children and adolescents. Endocr Res. 10.1080/07435800500371607 DOI: 10.1080/07435800500371607
Callegari ET, Gorelik A, Garland SM et al (2017) Bone turnover marker reference intervals in young females. Ann Clin Biochem. 10.1177/0004563216665123 DOI: 10.1177/0004563216665123
Alberti C, Chevenne D, Mercat I et al (2011) Serum concentrations of insulin-like growth factor (IGF)-1 and IGF binding protein-3 (IGFBP-3), IGF-1/IGFBP-3 ratio, and markers of bone turnover: reference values for French children and adolescents and z-score comparability with other references. Clin Chem. 10.1373/clinchem.2011.169466 DOI: 10.1373/clinchem.2011.169466