Biochemical Markers of Musculoskeletal Health and Aging to be Assessed in Clinical Trials of Drugs Aiming at the Treatment of Sarcopenia: Consensus Paper from an Expert Group Meeting Organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the Centre Académique de Recherche et d'Expérimentation en Santé (CARES SPRL), Under the Auspices of the World Health Organization Collaborating Center for the Epidemiology of Musculoskeletal Conditions and Aging.
Biochemical markers; Biomarkers; Clinical trial; Pharmacological drugs; Recommendations; Sarcopenia; Endocrinology; Orthopedics and Sports Medicine; Endocrinology, Diabetes and Metabolism
Abstract :
[en] In clinical trials, biochemical markers provide useful information on the drug's mode of action, therapeutic response and side effect monitoring and can act as surrogate endpoints. In pharmacological intervention development for sarcopenia management, there is an urgent need to identify biomarkers to measure in clinical trials and that could be used in the future in clinical practice. The objective of the current consensus paper is to provide a clear list of biochemical markers of musculoskeletal health and aging that can be recommended to be measured in Phase II and Phase III clinical trials evaluating new chemical entities for sarcopenia treatment. A working group of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) proposed classifying biochemical markers into 2 series: biochemical markers evaluating musculoskeletal status and biochemical markers evaluating causal factors. For series 1, the group agreed on 4 biochemical markers that should be assessed in Phase II or Phase III trials (i.e., Myostatin-Follistatin, Brain Derived Neurotrophic Factor, N-terminal Type III Procollagen and Serum Creatinine to Serum Cystatin C Ratio - or the Sarcopenia Index). For series 2, the group agreed on 6 biochemical markers that should be assessed in Phase II trials (i.e., the hormones insulin-like growth factor-1 (IGF-I), dehydroepiandrosterone sulphate, and cortisol, and the inflammatory markers C-reactive protein (CRP), interleukin-6 and tumor necrosis factor-α), and 2 in Phase III trials (i.e., IGF-I and CRP). The group also proposed optional biochemical markers that may provide insights into the mode of action of pharmacological therapies. Further research and development of new methods for biochemical marker assays may lead to the evolution of these recommendations.
Disciplines :
Public health, health care sciences & services Laboratory medicine & medical technology
Author, co-author :
Ladang, Aurélie ; Centre Hospitalier Universitaire de Liège - CHU > > Service de chimie clinique
Beaudart, Charlotte ; Centre Hospitalier Universitaire de Liège - CHU > > Service de médecine de l'appareil locomoteur
Reginster, Jean-Yves ; Université de Liège - ULiège > Département des sciences de la santé publique ; Biochemistry Department, College of Science, Chair for Biomarkers of Chronic Diseases, King Saud University, Riyadh, 11451, Saudi Arabia
Al-Daghri, Nasser; Biochemistry Department, College of Science, Chair for Biomarkers of Chronic Diseases, King Saud University, Riyadh, 11451, Saudi Arabia
Bruyère, Olivier ; Centre Hospitalier Universitaire de Liège - CHU > > Service de médecine de l'appareil locomoteur
Burlet, Nansa ; Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique, Epidémiologie et Economie de la santé
Cesari, Matteo; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy ; Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
Mobasheri, Ali; Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Center for Public Health Aspects of Musculo-Skeletal Health and Ageing,, University of Liège, Liège, Belgium ; State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania ; Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland ; Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
Ormarsdottir, Sif; Landspitali, University Hospital of Iceland, Reykjavik, Iceland
Radermecker, Régis ; Centre Hospitalier Universitaire de Liège - CHU > > Service de diabétologie, nutrition, maladies métaboliques
Visser, Marjolein; Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Yerro, Maria Concepcion Prieto; Agencia Española de Medicamentos Y Productos Sanitarios, Madrid, Spain
Rizzoli, René; Faculty of Medicine, Service of Bone Diseases, Geneva University Hospitals, Geneva, Switzerland
Cavalier, Etienne ; Centre Hospitalier Universitaire de Liège - CHU > > Service de chimie clinique
Biochemical Markers of Musculoskeletal Health and Aging to be Assessed in Clinical Trials of Drugs Aiming at the Treatment of Sarcopenia: Consensus Paper from an Expert Group Meeting Organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the Centre Académique de Recherche et d'Expérimentation en Santé (CARES SPRL), Under the Auspices of the World Health Organization Collaborating Center for the Epidemiology of Musculoskeletal Conditions and Aging.
Publication date :
12 January 2023
Journal title :
Calcified Tissue International
ISSN :
0171-967X
eISSN :
1432-0827
Publisher :
Springer Science and Business Media LLC, United States
Cruz-Jentoft AJ, Bahat G, Bauer J et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48:16–31. 10.1093/ageing/afy169 DOI: 10.1093/ageing/afy169
Bruyère O, Beaudart C, Ethgen O et al (2019) The health economics burden of sarcopenia: a systematic review. Maturitas 119:61–69. 10.1016/j.maturitas.2018.11.003 DOI: 10.1016/j.maturitas.2018.11.003
Beaudart C, Zaaria M, Pasleau F et al (2017) Health outcomes of sarcopenia: a systematic review and meta-analysis. PLoS ONE. 10.1371/journal.pone.0169548 DOI: 10.1371/journal.pone.0169548
Veronese N, Demurtas J, Soysal P et al (2019) Sarcopenia and health-related outcomes: an umbrella review of observational studies. Eur Geriatr Med 10:853–862. 10.1007/s41999-019-00233-w DOI: 10.1007/s41999-019-00233-w
Fernandes LV, Paiva AEG, Silva ACB et al (2022) Prevalence of sarcopenia according to EWGSOP1 and EWGSOP2 in older adults and their associations with unfavorable health outcomes: a systematic review. Aging Clin Exp Res 34:505–514. 10.1007/s40520-021-01951-7 DOI: 10.1007/s40520-021-01951-7
Beaudart C, Reginster J, Bruyère O, Geerinck A (2021) Quality of Life and Sarcopenia. In: Cruz-Jentoft AJ, Morley JE (eds) Sarcopenia. Wiley, New York, pp 279–304 DOI: 10.1002/9781119597896.ch21
Reginster JY, Beaudart C, Al-Daghri N et al (2021) Update on the ESCEO recommendation for the conduct of clinical trials for drugs aiming at the treatment of sarcopenia in older adults. Aging Clin Exp Res 33:3–17. 10.1007/s40520-020-01663-4 DOI: 10.1007/s40520-020-01663-4
Feike Y, Zhijie L, Wei C (2021) Advances in research on pharmacotherapy of sarcopenia. Aging Med 4:221–233. 10.1002/agm2.12168 DOI: 10.1002/agm2.12168
Atkinson AJ, Colburn WA, DeGruttola VG et al (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95. 10.1067/mcp.2001.113989 DOI: 10.1067/mcp.2001.113989
Selleck MJ, Senthil M, Wall NR (2017) Making meaningful clinical use of biomarkers. Biomark Insights 12:1177271917715236. 10.1177/1177271917715236 DOI: 10.1177/1177271917715236
Honvo G, Bannuru RR, Bruyère O et al (2019) Recommendations for the reporting of harms in manuscripts on clinical trials assessing Osteoarthritis drugs: a consensus statement from the European society for clinical and economic aspects of Osteoporosis, Osteoarthritis and musculoskeletal diseases (ESCEO). Drugs Aging 36:145–159. 10.1007/s40266-019-00667-8 DOI: 10.1007/s40266-019-00667-8
Diez-Perez A, Brandi ML, Al-Daghri N et al (2019) Radiofrequency echographic multi-spectrometry for the in-vivo assessment of bone strength: state of the art—outcomes of an expert consensus meeting organized by the European society for clinical and economic aspects of Osteoporosis, Osteoarthritis and Mus. Aging Clin Exp Res 31:1375–1389. 10.1007/s40520-019-01294-4 DOI: 10.1007/s40520-019-01294-4
Beaudart C, Rolland Y, Cruz-Jentoft AJ et al (2019) Assessment of muscle function and physical performance in daily clinical practice: a position paper endorsed by the European society for clinical and economic aspects of Osteoporosis, Osteoarthritis and Musculoskeletal diseases (ESCEO). Calcif Tissue Int 105(1):1–14 DOI: 10.1007/s00223-019-00545-w
Buckinx F, Landi F, Cesari M et al (2018) Pitfalls in the measurement of muscle mass: a need for a reference standard. J Cachexia Sarcopenia Muscle 9:269–272. 10.1002/jcsm.12268 DOI: 10.1002/jcsm.12268
Evans WJ, Hellerstein M, Orwoll E et al (2019) D 3 -Creatine dilution and the importance of accuracy in the assessment of skeletal muscle mass. J Cachexia Sarcopenia Muscle 10:14–21. 10.1002/jcsm.12390 DOI: 10.1002/jcsm.12390
Buehring B, Siglinsky E, Krueger D et al (2018) Comparison of muscle/lean mass measurement methods: correlation with functional and biochemical testing. Osteoporos Int 29:675–683. 10.1007/s00198-017-4315-6 DOI: 10.1007/s00198-017-4315-6
Shankaran M, Czerwieniec G, Fessler C et al (2018) Dilution of oral D 3 -Creatine to measure creatine pool size and estimate skeletal muscle mass: development of a correction algorithm. J Cachexia Sarcopenia Muscle 9:540–546. 10.1002/jcsm.12278 DOI: 10.1002/jcsm.12278
Zanker J, Patel S, Blackwell T et al (2020) Walking speed and muscle mass estimated by the D3-creatine dilution method are important components of sarcopenia associated with incident mobility disability in older men: a classification and regression tree analysis. J Am Med Dir Assoc 21:1997–2002. 10.1016/j.jamda.2020.03.017 DOI: 10.1016/j.jamda.2020.03.017
Cawthon PM, Blackwell T, Cummings SR et al (2020) Muscle mass assessed by the D3-creatine dilution method and incident self-reported disability and mortality in a prospective observational study of community-dwelling older men. J Gerontol Ser A Biol Sci Med Sci 76:123–130. 10.1093/GERONA/GLAA111 DOI: 10.1093/GERONA/GLAA111
Cawthon PM, Peters KE, Cummings SR et al (2022) Association between muscle mass determined by D3-creatine dilution and incident fractures in a prospective cohort study of older men. J Bone Miner Res 37:1213–1220. 10.1002/jbmr.4505 DOI: 10.1002/jbmr.4505
Zhu K, Wactawski-Wende J, Ochs-Balcom HM et al (2021) The association of muscle mass measured by D3-Creatine dilution method with dual-energy x-ray absorptiometry and Physical function in postmenopausal women. J Gerontol Ser A Biol Sci Med Sci 76:1591–1599. 10.1093/gerona/glab020 DOI: 10.1093/gerona/glab020
Mancinelli R, Checcaglini F, Coscia F et al (2021) Biological aspects of selected myokines in skeletal muscle: focus on aging. Int J Mol Sci 22:8520. 10.3390/ijms22168520 DOI: 10.3390/ijms22168520
Paris MT, Bell KE, Mourtzakis M (2020) Myokines and adipokines in sarcopenia: understanding cross-talk between skeletal muscle and adipose tissue and the role of exercise. Curr Opin Pharmacol 52:61–66. 10.1016/j.coph.2020.06.003 DOI: 10.1016/j.coph.2020.06.003
White TA, Lebrasseur NK (2014) Myostatin and sarcopenia: opportunities and challenges - a mini-review. Gerontology 60:289–293. 10.1159/000356740 DOI: 10.1159/000356740
Baczek J, Silkiewicz M, Wojszel ZB (2020) Myostatin as a biomarker of muscle wasting and other pathologies-state of the art and knowledge gaps. Nutrients 12:2401. 10.3390/nu12082401 DOI: 10.3390/nu12082401
Delanaye P, Bataille S, Quinonez K et al (2019) Myostatin and insulin-like growth factor 1 are biomarkers of muscle strength, muscle mass, and mortality in patients on Hemodialysis. J Ren Nutr 29:511–520. 10.1053/j.jrn.2018.11.010 DOI: 10.1053/j.jrn.2018.11.010
Bergen HR, Farr JN, Vanderboom PM et al (2015) Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: insights using a new mass spectrometry-based assay. Skelet Muscle 5:21. 10.1186/s13395-015-0047-5 DOI: 10.1186/s13395-015-0047-5
Fife E, Kostka J, Kroc Ł et al (2018) Relationship of muscle function to circulating myostatin, follistatin and GDF11 in older women and men. BMC Geriatr 18:200. 10.1186/s12877-018-0888-y DOI: 10.1186/s12877-018-0888-y
Schafer MJ, Atkinson EJ, Vanderboom PM et al (2016) Quantification of GDF11 and myostatin in human aging and cardiovascular disease. Cell Metab 23:1207–1215. 10.1016/j.cmet.2016.05.023 DOI: 10.1016/j.cmet.2016.05.023
Moriwaki K, Matsumoto H, Tanishima S et al (2019) Association of serum bone- and muscle-derived factors with age, sex, body composition, and physical function in community-dwelling middle-aged and elderly adults: a cross-sectional study. BMC Musculoskelet Disord 20:276. 10.1186/s12891-019-2650-9 DOI: 10.1186/s12891-019-2650-9
Du Y, Xu C, Shi H et al (2021) Serum concentrations of oxytocin, DHEA and follistatin are associated with osteoporosis or sarcopenia in community-dwelling postmenopausal women. BMC Geriatr 21(1):1–10. 10.1186/s12877-021-02481-7 DOI: 10.1186/s12877-021-02481-7
Hofmann M, Schober-Halper B, Oesen S et al (2016) Effects of elastic band resistance training and nutritional supplementation on muscle quality and circulating muscle growth and degradation factors of institutionalized elderly women: the Vienna Active Ageing Study (VAAS). Eur J Appl Physiol 116:885–897. 10.1007/s00421-016-3344-8 DOI: 10.1007/s00421-016-3344-8
Bagheri R, Moghadam BH, Church DD et al (2020) The effects of concurrent training order on body composition and serum concentrations of follistatin, myostatin and GDF11 in sarcopenic elderly men. Exp Gerontol 133:110869. 10.1016/j.exger.2020.110869 DOI: 10.1016/j.exger.2020.110869
Mafi F, Biglari S, Afousi AG, Gaeini AA (2019) Improvement in skeletal muscle strength and plasma levels of follistatin and myostatin induced by an 8-week resistance training and epicatechin supplementation in sarcopenic older adults. J Aging Phys Act 27:384–391. 10.1123/japa.2017-0389 DOI: 10.1123/japa.2017-0389
Seo MW, Jung SW, Kim SW et al (2021) Effects of 16 weeks of resistance training on muscle quality and muscle growth factors in older adult women with sarcopenia: a randomized controlled trial. Int J Environ Res Public Health 18:6762. 10.3390/ijerph18136762 DOI: 10.3390/ijerph18136762
Evans LW, Muttukrishna S, Groome NP (1998) Development, validation and application of an ultra-sensitive two-site enzyme immunoassay for human follistatin. J Endocrinol 156:275–282. 10.1677/joe.0.1560275 DOI: 10.1677/joe.0.1560275
Skrzypczak D, Skrzypczak-Zielińska M, Ratajczak AE et al (2021) Myostatin and follistatin—new kids on the block in the diagnosis of sarcopenia in IBD and possible therapeutic implications. Biomedicines 9:1301. 10.3390/biomedicines9101301 DOI: 10.3390/biomedicines9101301
He Z, Tian Y, Valenzuela PL et al (2018) Myokine response to high-intensity interval vs resistance exercise: an individual approach. Front Physiol 9:1735. 10.3389/fphys.2018.01735 DOI: 10.3389/fphys.2018.01735
Johann K, Kleinert M, Klaus S (2021) The role of gdf15 as a myomitokine. Cells 10:2990. 10.3390/cells10112990 DOI: 10.3390/cells10112990
Kim M, Walston JD, Won CW (2022) Associations between elevated growth differentiation factor-15 and sarcopenia among community-dwelling older adults. J Gerontol Ser A 77:770–780. 10.1093/gerona/glab201 DOI: 10.1093/gerona/glab201
Patel MS, Lee J, Baz M et al (2016) Growth differentiation factor-15 is associated with muscle mass in chronic obstructive pulmonary disease and promotes muscle wasting in vivo. J Cachexia Sarcopenia Muscle 7:436–448. 10.1002/jcsm.12096 DOI: 10.1002/jcsm.12096
Yamamoto H, Takeshima F, Haraguchi M et al (2022) High serum concentrations of growth differentiation factor-15 and their association with Crohn’s disease and a low skeletal muscle index. Sci Rep 12:6591. 10.1038/s41598-022-10587-0 DOI: 10.1038/s41598-022-10587-0
Oba K, Ishikawa J, Tamura Y et al (2020) Serum growth differentiation factor 15 level is associated with muscle strength and lower extremity function in older patients with cardiometabolic disease. Geriatr Gerontol Int 20:980–987. 10.1111/ggi.14021 DOI: 10.1111/ggi.14021
Nishikawa R, Fukuda T, Haruyama A et al (2022) Association between serum GDF-15, myostatin, and sarcopenia in cardiovascular surgery patients. IJC Hear Vasc 42:101114. 10.1016/j.ijcha.2022.101114 DOI: 10.1016/j.ijcha.2022.101114
Semba RD, Gonzalez-Freire M, Tanaka T et al (2020) Elevated plasma growth and differentiation factor 15 is associated with slower gait speed and lower physical performance in healthy community-dwelling adults. J Gerontol Ser A Biol Sci Med Sci 75:175–180. 10.1093/gerona/glz071 DOI: 10.1093/gerona/glz071
Alcazar J, Frandsen U, Prokhorova T et al (2021) Changes in systemic GDF15 across the adult lifespan and their impact on maximal muscle power: the Copenhagen Sarcopenia study. J Cachexia Sarcopenia Muscle 12:1418–1427. 10.1002/jcsm.12823 DOI: 10.1002/jcsm.12823
Klein AB, Nicolaisen TS, Ørtenblad N et al (2021) Pharmacological but not physiological GDF15 suppresses feeding and the motivation to exercise. Nat Commun 12:1041. 10.1038/s41467-021-21309-x DOI: 10.1038/s41467-021-21309-x
Sanchez-Sánchez JL, He L, Virecoulon Giudici K et al (2022) Circulating levels of Apelin, GDF-15 and Sarcopenia: lack of association in the MAPT Study. J Nutr Heal Aging 26:564–570. 10.1007/s12603-022-1800-1 DOI: 10.1007/s12603-022-1800-1
Yazawa H, Fukuda T, Kaneda H et al (2020) Association of serum growth differentiation factor-15 with eGFR and hemoglobin in healthy older females. IJC Hear Vasc 31:100651. 10.1016/j.ijcha.2020.100651 DOI: 10.1016/j.ijcha.2020.100651
Shan T, Liang X, Bi P, Kuang S (2013) Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1-Fndc5 pathway in muscle. FASEB J 27:1981–1989. 10.1096/fj.12-225755 DOI: 10.1096/fj.12-225755
Reza MM, Subramaniyam N, Sim CM et al (2017) Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nat Commun 8:1104. 10.1038/s41467-017-01131-0 DOI: 10.1038/s41467-017-01131-0
Zhao M, Zhou X, Yuan C et al (2020) Association between serum irisin concentrations and sarcopenia in patients with liver cirrhosis: a cross-sectional study. Sci Rep 10:16093. 10.1038/s41598-020-73176-z DOI: 10.1038/s41598-020-73176-z
Qaisar R, Karim A, Muhammad T et al (2021) Prediction of sarcopenia using a battery of circulating biomarkers. Sci Rep 11:8632. 10.1038/s41598-021-87974-6 DOI: 10.1038/s41598-021-87974-6
Alsaawi TA, Aldisi D, Abulmeaty MMA et al (2022) Screening for Sarcopenia among elderly Arab females: influence of body composition, lifestyle, irisin, and vitamin D. Nutrients 14:1855. 10.3390/nu14091855 DOI: 10.3390/nu14091855
Chang JS, Kim TH, Nguyen TT et al (2017) Circulating irisin levels as a predictive biomarker for sarcopenia: a cross-sectional community-based study. Geriatr Gerontol Int 17:2266–2273. 10.1111/ggi.13030 DOI: 10.1111/ggi.13030
Park HS, Kim HC, Zhang D et al (2019) The novel myokine irisin: clinical implications and potential role as a biomarker for sarcopenia in postmenopausal women. Endocrine 64:341–348. 10.1007/s12020-018-1814-y DOI: 10.1007/s12020-018-1814-y
Cavalier E, Beaudart C, Buckinx F et al (2016) Critical analytical evaluation of promising markers for sarcopenia. Eur Geriatr Med 7:239–242. 10.1016/j.eurger.2015.11.002 DOI: 10.1016/j.eurger.2015.11.002
Pratt J, De Vito G, Narici M et al (2021) Plasma C-terminal agrin fragment as an early biomarker for sarcopenia: results from the GenoFit study. J Gerontol - Ser A Biol Sci Med Sci 76:2090–2096. 10.1093/gerona/glab139 DOI: 10.1093/gerona/glab139
Landi F, Calvani R, Lorenzi M et al (2016) Serum levels of C-terminal agrin fragment (CAF) are associated with sarcopenia in older multimorbid community-dwellers: Results from the ilSIRENTE study. Exp Gerontol 79:31–36. 10.1016/j.exger.2016.03.012 DOI: 10.1016/j.exger.2016.03.012
Marzetti E, Calvani R, Lorenzi M et al (2014) Serum levels of C-terminal agrin fragment (CAF) are associated with sarcopenia in older hip fractured patients. Exp Gerontol 60:79–82. 10.1016/j.exger.2014.10.003 DOI: 10.1016/j.exger.2014.10.003
Drey M, Sieber CC, Bauer JM et al (2013) C-terminal Agrin Fragment as a potential marker for sarcopenia caused by degeneration of the neuromuscular junction. Exp Gerontol 48:76–80. 10.1016/j.exger.2012.05.021 DOI: 10.1016/j.exger.2012.05.021
Steinbeck L, Ebner N, Valentova M et al (2015) Detection of muscle wasting in patients with chronic heart failure using C -terminal agrin fragment: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur J Heart Fail 17:1283–1293. 10.1002/ejhf.400 DOI: 10.1002/ejhf.400
Marcolin G, Franchi MV, Monti E et al (2021) Active older dancers have lower C-terminal Agrin fragment concentration, better balance and gait performance than sedentary peers. Exp Gerontol 153:111469. 10.1016/j.exger.2021.111469 DOI: 10.1016/j.exger.2021.111469
Pratt J, De Vito G, Narici M, Boreham C (2021) Neuromuscular junction aging: a role for biomarkers and exercise. J Gerontol Ser A Biol Sci Med Sci 76:576–585 DOI: 10.1093/gerona/glaa207
Boyd JG, Gordon T (2003) Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Exp Neurol 183:610–619. 10.1016/S0014-4886(03)00183-3 DOI: 10.1016/S0014-4886(03)00183-3
Miyazaki S, Iino N, Koda R et al (2021) Brain-derived neurotrophic factor is associated with sarcopenia and frailty in Japanese hemodialysis patients. Geriatr Gerontol Int 21:27–33. 10.1111/ggi.14089 DOI: 10.1111/ggi.14089
Koito Y, Yanishi M, Kimura Y et al (2021) Serum brain-derived neurotrophic factor and myostatin levels are associated With skeletal muscle mass in kidney transplant recipients. Transplant Proc 53:1939–1944. 10.1016/j.transproceed.2021.04.021 DOI: 10.1016/j.transproceed.2021.04.021
Karim A, Muhammad T, Qaisar R (2021) Prediction of sarcopenia using multiple biomarkers of neuromuscular junction degeneration in chronic obstructive pulmonary disease. J Pers Med 11:919. 10.3390/jpm11090919 DOI: 10.3390/jpm11090919
Karim A, Iqbal MS, Muhammad T, Qaisar R (2022) Evaluation of Sarcopenia using biomarkers of the neuromuscular junction in Parkinson’s disease. J Mol Neurosci 72:820–829. 10.1007/s12031-022-01970-7 DOI: 10.1007/s12031-022-01970-7
Wei Y-C, Wang S-R, Xu X-H (2017) Sex differences in brain-derived neurotrophic factor signaling: functions and implications. J Neurosci Res 95:336–344. 10.1002/jnr.23897 DOI: 10.1002/jnr.23897
Lima Giacobbo B, Doorduin J, Klein HC et al (2019) Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol 56:3295–3312. 10.1007/s12035-018-1283-6 DOI: 10.1007/s12035-018-1283-6
Håkansson K, Ledreux A, Daffner K et al (2017) BDNF responses in Healthy older persons to 35 minutes of physical exercise, cognitive training, and mindfulness: associations with working memory function. J Alzheimer’s Dis 55:645–657. 10.3233/JAD-160593 DOI: 10.3233/JAD-160593
Heyman E, Gamelin FX, Goekint M et al (2012) Intense exercise increases circulating endocannabinoid and BDNF levels in humans-possible implications for reward and depression. Psychoneuroendocrinology 37:844–851. 10.1016/j.psyneuen.2011.09.017 DOI: 10.1016/j.psyneuen.2011.09.017
Kuivaniemi H, Tromp G (2019) Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases. Gene 707:151–171. 10.1016/j.gene.2019.05.003 DOI: 10.1016/j.gene.2019.05.003
Mackey AL, Donnelly AE, Roper HP (2005) Muscle connective tissue content of endurance-trained and inactive individuals. Scand J Med Sci Sport 15:402–408. 10.1111/j.1600-0838.2005.00449.x DOI: 10.1111/j.1600-0838.2005.00449.x
Chen YY, Chiu YL, Kao TW et al (2021) Cross-sectional associations among P3NP, HtrA, Hsp70, Apelin and sarcopenia in Taiwanese population. BMC Geriatr 21:192. 10.1186/s12877-021-02146-5 DOI: 10.1186/s12877-021-02146-5
Shin HE, Kim M, Won CW (2021) Association between plasma procollagen type III N-terminal peptide (P3NP) levels and physical performance in elderly men: The Korean Frailty and Aging Cohort Study (KFACS). Exp Gerontol 154:111523. 10.1016/j.exger.2021.111523 DOI: 10.1016/j.exger.2021.111523
Berry SD, Ramachandran VS, Cawthon PM et al (2013) Procollagen type III N-terminal peptide (P3NP) and lean mass: a cross-sectional study. J Frailty Aging 2:129–134. 10.14283/jfa.2013.19 DOI: 10.14283/jfa.2013.19
Santanasto AJ, Cvejkus RK, Wojczynski MK et al (2021) Circulating procollagen type III N-terminal peptide and physical Function in adults from the long life family study. J Gerontol A Biol Sci Med Sci 76:1273–1279. 10.1093/gerona/glaa197 DOI: 10.1093/gerona/glaa197
Curcio F, Ferro G, Basile C et al (2016) Biomarkers in sarcopenia: a multifactorial approach. Exp Gerontol 85:1–8. 10.1016/j.exger.2016.09.007 DOI: 10.1016/j.exger.2016.09.007
Bhasin S, He EJ, Kawakubo M et al (2009) N-terminal propeptide of type III procollagen as a biomarker of anabolic response to recombinant human GH and testosterone. J Clin Endocrinol Metab 94:4224–4233. 10.1210/jc.2009-1434 DOI: 10.1210/jc.2009-1434
Chen F, Lam R, Shaywitz D et al (2011) Evaluation of early biomarkers of muscle anabolic response to testosterone. J Cachexia Sarcopenia Muscle 2:45–56. 10.1007/s13539-011-0021-y DOI: 10.1007/s13539-011-0021-y
Fragala MS, Jajtner AR, Beyer KS et al (2014) Biomarkers of muscle quality: N-terminal propeptide of type III procollagen and C-terminal agrin fragment responses to resistance exercise training in older adults. J Cachexia Sarcopenia Muscle 5:139–148. 10.1007/s13539-013-0120-z DOI: 10.1007/s13539-013-0120-z
Kargaran A, Abedinpour A, Saadatmehr Z et al (2021) Effects of dual-task training with blood flow restriction on cognitive functions, muscle quality, and circulatory biomarkers in elderly women. Physiol Behav 239:113500. 10.1016/j.physbeh.2021.113500 DOI: 10.1016/j.physbeh.2021.113500
Kashani KB, Frazee EN, Kukrálová L et al (2017) Evaluating muscle mass by using markers of kidney function: development of the sarcopenia index. Crit Care Med 45:e23–e29. 10.1097/CCM.0000000000002013 DOI: 10.1097/CCM.0000000000002013
Tang T, Zhuo Y, Xie L et al (2020) Sarcopenia index based on serum creatinine and cystatin C is associated with 3-year mortality in hospitalized older patients. Sci Rep 10:1260. 10.1038/s41598-020-58304-z DOI: 10.1038/s41598-020-58304-z
Ren C, Su H, Tao J et al (2022) Sarcopenia Index based on serum creatinine and cystatin C is associated with mortality, nutritional risk/malnutrition and sarcopenia in older patients. Clin Interv Aging 17:211–221. 10.2147/CIA.S351068 DOI: 10.2147/CIA.S351068
He Q, Jiang J, Xie L et al (2018) A sarcopenia index based on serum creatinine and cystatin C cannot accurately detect either low muscle mass or sarcopenia in urban community-dwelling older people. Sci Rep 8:11534. 10.1038/s41598-018-29808-6 DOI: 10.1038/s41598-018-29808-6
Barreto EF, Kanderi T, DiCecco SR et al (2019) Sarcopenia index is a simple objective screening tool for malnutrition in the critically Ill. J Parenter Enter Nutr 43:780–788. 10.1002/jpen.1492 DOI: 10.1002/jpen.1492
Wu YK, Li M, Zhang YC et al (2022) The sarcopenia index is an effective predictor for malnutrition in patients with liver cirrhosis. Nutr Diet. 10.1111/1747-0080.12738 DOI: 10.1111/1747-0080.12738
Lee HS, Park KW, Kang J et al (2020) Sarcopenia index as a predictor of clinical outcomes in older patients with coronary artery disease. J Clin Med 9:3121. 10.3390/jcm9103121 DOI: 10.3390/jcm9103121
Romeo FJ, Chiabrando JG, Seropian IM et al (2021) Sarcopenia index as a predictor of clinical outcomes in older patients undergoing transcatheter aortic valve replacement. Catheter Cardiovasc Interv 98:E889–E896. 10.1002/ccd.29799 DOI: 10.1002/ccd.29799
Chen X, Hou L, Shen Y et al (2021) The role of baseline Sarcopenia index in predicting chemotherapy-induced undesirable effects and mortality in older people with stage III or IV non-small cell lung cancer. J Nutr Heal Aging 25:878–882. 10.1007/s12603-021-1633-3 DOI: 10.1007/s12603-021-1633-3
Zheng C, Wang E, Li JS et al (2022) Serum creatinine/cystatin C ratio as a screening tool for sarcopenia and prognostic indicator for patients with esophageal cancer. BMC Geriatr 22:207. 10.1186/s12877-022-02925-8 DOI: 10.1186/s12877-022-02925-8
Delanaye P, Cavalier E, Pottel H (2017) Serum creatinine: not so simple! Nephron 136:302–308. 10.1159/000469669 DOI: 10.1159/000469669
Yang J, Zhang T, Feng D et al (2019) A new diagnostic index for sarcopenia and its association with short-term postoperative complications in patients undergoing surgery for colorectal cancer. Color Dis 21:538–547. 10.1111/codi.14558 DOI: 10.1111/codi.14558
Fu X, Tian Z, Wen S et al (2021) A new index based on serum creatinine and cystatin C is useful for assessing sarcopenia in patients with advanced cancer. Nutrition 82:111032. 10.1016/j.nut.2020.111032 DOI: 10.1016/j.nut.2020.111032
Inker LA, Schmid CH, Tighiouart H et al (2012) Estimating Glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 367:20–29. 10.1056/nejmoa1114248 DOI: 10.1056/nejmoa1114248
VanSaun MN (2013) Molecular pathways: adiponectin and leptin signaling in cancer. Clin Cancer Res 19:1926–1932. 10.1158/1078-0432.CCR-12-0930 DOI: 10.1158/1078-0432.CCR-12-0930
Hajri T, Tao H, Wattacheril J et al (2011) Regulation of adiponectin production by insulin: Interactions with tumor necrosis factor-α and interleukin-6. Am J Physiol - Endocrinol Metab 300:239–242. 10.1152/ajpendo.00307.2010 DOI: 10.1152/ajpendo.00307.2010
Mao X, Kikani CK, Riojas RA et al (2006) APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol 8:516–523. 10.1038/ncb1404 DOI: 10.1038/ncb1404
Tanaka Y, Kita S, Nishizawa H et al (2019) Adiponectin promotes muscle regeneration through binding to T-cadherin. Sci Rep 9:1–12. 10.1038/s41598-018-37115-3 DOI: 10.1038/s41598-018-37115-3
Rossi FE, Lira FS, Silva BSA et al (2019) Influence of skeletal muscle mass and fat mass on the metabolic and inflammatory profile in sarcopenic and non-sarcopenic overfat elderly. Aging Clin Exp Res 31:629–635. 10.1007/s40520-018-1029-3 DOI: 10.1007/s40520-018-1029-3
Baker JF, Newman AB, Kanaya A et al (2019) The Adiponectin Paradox in the elderly: associations with body composition, Physical functioning, and mortality. J Gerontol Ser A Biol Sci Med Sci 74:247–253. 10.1093/gerona/gly017 DOI: 10.1093/gerona/gly017
Harada H, Kai H, Shibata R et al (2017) New diagnostic index for sarcopenia in patients with cardiovascular diseases. PLoS ONE 12:e0178123. 10.1371/journal.pone.0178123 DOI: 10.1371/journal.pone.0178123
Li C, wei, Yu K, Shyh-Chang N, et al (2019) Circulating factors associated with sarcopenia during ageing and after intensive lifestyle intervention. J Cachexia Sarcopenia Muscle 10:586–600. 10.1002/jcsm.12417 DOI: 10.1002/jcsm.12417
Komici K, Dello Iacono A, De Luca A et al (2021) Adiponectin and Sarcopenia: a systematic review with meta-analysis. Front Endocrinol 12:329. 10.3389/fendo.2021.576619 DOI: 10.3389/fendo.2021.576619
Bik W, Baranowska-Bik A, Wolinska-Witort E et al (2013) Assessment of adiponectin and its isoforms in polish centenarians. Exp Gerontol 48:401–407. 10.1016/j.exger.2013.01.015 DOI: 10.1016/j.exger.2013.01.015
Atzmon G, Pollin TI, Crandall J et al (2008) Adiponectin levels and genotype: a potential regulator of life span in humans. J Gerontol Ser A Biol Sci Med Sci 63:447–453. 10.1093/gerona/63.5.447 DOI: 10.1093/gerona/63.5.447
Menzaghi C, Trischitta V (2018) The adiponectin paradox for all-cause and cardiovascular mortality. Diabetes 67:12–22. 10.2337/dbi17-0016 DOI: 10.2337/dbi17-0016
Kistorp C, Faber J, Galatius S et al (2005) Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation 112:1756–1762. 10.1161/CIRCULATIONAHA.104.530972 DOI: 10.1161/CIRCULATIONAHA.104.530972
Inoue A, Cheng XW, Huang Z et al (2017) Exercise restores muscle stem cell mobilization, regenerative capacity and muscle metabolic alterations via adiponectin/AdipoR1 activation in SAMP10 mice. J Cachexia Sarcopenia Muscle 8:370–385. 10.1002/jcsm.12166 DOI: 10.1002/jcsm.12166
Cnop M, Havel PJ, Utzschneider KM et al (2003) Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 46:459–469. 10.1007/s00125-003-1074-z DOI: 10.1007/s00125-003-1074-z
Santoro A, Guidarelli G, Ostan R et al (2019) Gender-specific association of body composition with inflammatory and adipose-related markers in healthy elderly Europeans from the NU-AGE study. Eur Radiol 29:4968–4979. 10.1007/s00330-018-5973-2 DOI: 10.1007/s00330-018-5973-2
Waters DL, Qualls CR, Dorin RI et al (2008) Altered growth hormone, cortisol, and leptin secretion in healthy elderly persons with sarcopenia and mixed body composition phenotypes. J Gerontol Ser A Biol Sci Med Sci 63:536–541. 10.1093/gerona/63.5.536 DOI: 10.1093/gerona/63.5.536
Kim H, Kim M, Kojima N et al (2016) Exercise and nutritional supplementation on community-dwelling elderly Japanese women with sarcopenic obesity: a randomized controlled trial. J Am Med Dir Assoc 17:1011–1019. 10.1016/j.jamda.2016.06.016 DOI: 10.1016/j.jamda.2016.06.016
Ostlund RE, Yang JW, Klein S, Gingerich R (1996) Relation between plasma leptin concentration and body fat, gender, diet, age, and metabolic covariates. J Clin Endocrinol Metab 81:3909–3913. 10.1210/jcem.81.11.8923837 DOI: 10.1210/jcem.81.11.8923837
Havel PJ, Kasim-Karakas S, Mueller W et al (1996) Relationship of plasma leptin to plasma insulin and adiposity in normal weight and overweight women: effects of dietary fat content and sustained weight loss. J Clin Endocrinol Metab 81:4406–4413. 10.1210/jcem.81.12.8954050 DOI: 10.1210/jcem.81.12.8954050
Beberashvili I, Azar A, Khatib A et al (2022) Sarcopenic obesity versus nonobese Sarcopenia in hemodialysis patients: differences in nutritional status, quality of life, and clinical outcomes. J Ren Nutr S1051–2276:00089–00099. 10.1053/j.jrn.2022.05.003 DOI: 10.1053/j.jrn.2022.05.003
Frystyk J (2010) Exercise and the growth hormone-insulin-like growth factor axis. Med Sci Sports Exerc 42:58–66. 10.1249/MSS.0b013e3181b07d2d DOI: 10.1249/MSS.0b013e3181b07d2d
Giovannini S, Marzetti E, Borst SE, Leeuwenburgh C (2008) Modulation of GH/IGF-1 axis: Potential strategies to counteract sarcopenia in older adults. Mech Ageing Dev 129:593–601. 10.1016/j.mad.2008.08.001 DOI: 10.1016/j.mad.2008.08.001
Kwak JY, Hwang H, Kim SK et al (2018) Prediction of sarcopenia using a combination of multiple serum biomarkers. Sci Rep 8:8574. 10.1038/s41598-018-26617-9 DOI: 10.1038/s41598-018-26617-9
Xu B, Guo Z, Jiang B et al (2022) Factors affecting sarcopenia in older patients with chronic diseases. Ann Palliat Med. 11:972–983. 10.21037/apm-22-201 DOI: 10.21037/apm-22-201
Jiang J, jin, Chen S min, Chen J, et al (2022) Serum IGF-1 levels are associated with sarcopenia in elderly men but not in elderly women. Aging Clin Exp Res. 10.1007/s40520-022-02180-2 DOI: 10.1007/s40520-022-02180-2
Hofmann M, Halper B, Oesen S et al (2015) Serum concentrations of insulin-like growth factor-1, members of the TGF-beta superfamily and follistatin do not reflect different stages of dynapenia and sarcopenia in elderly women. Exp Gerontol 64:35–45. 10.1016/j.exger.2015.02.008 DOI: 10.1016/j.exger.2015.02.008
Amiri N, Fathei M, Mosaferi Ziaaldini M (2021) Effects of resistance training on muscle strength, insulin-like growth factor-1, and insulin-like growth factor–binding protein-3 in healthy elderly subjects: a systematic review and meta-analysis of randomized controlled trials. Hormones 20:247–257. 10.1007/s42000-020-00250-6 DOI: 10.1007/s42000-020-00250-6
Veldhuis JD, Bowers CY (2003) Human GH pulsatility: an ensemble property regulated by age and gender. J Endocrinol Invest 26:799–813. 10.1007/BF03345229 DOI: 10.1007/BF03345229
Maggio M, Cattabiani C, Lauretani F et al (2010) The concept of multiple hormonal dysregulation. Acta Biomed 81:19–29
Varadhan R, Walston J, Cappola AR et al (2008) Higher levels and blunted diurnal variation of cortisol in frail older women. J Gerontol Ser A Biol Sci Med Sci 63:190–195. 10.1093/gerona/63.2.190 DOI: 10.1093/gerona/63.2.190
Gonzalez Rodriguez E, Marques-Vidal P, Aubry-Rozier B et al (2021) Diurnal salivary cortisol in sarcopenic postmenopausal women: the OsteoLaus cohort. Calcif Tissue Int 109:499–509. 10.1007/s00223-021-00863-y DOI: 10.1007/s00223-021-00863-y
Yanagita I, Fujihara Y, Kitajima Y et al (2019) A high serum Cortisol/DHEA-S ratio is a risk factor for sarcopenia in elderly diabetic patients. J Endocr Soc 3:801–813. 10.1210/js.2018-00271 DOI: 10.1210/js.2018-00271
Du Y, Xu C, Shi H et al (2021) Serum concentrations of oxytocin, DHEA and follistatin are associated with osteoporosis or sarcopenia in community-dwelling postmenopausal women. BMC Geriatr 21:542. 10.1186/s12877-021-02481-7 DOI: 10.1186/s12877-021-02481-7
Yamada M, Nishiguchi S, Fukutani N et al (2015) Mail-based intervention for sarcopenia prevention increased anabolic hormone and skeletal muscle mass in community-dwelling Japanese older adults: the INE (Intervention by Nutrition and Exercise) Study. J Am Med Dir Assoc 16:654–660. 10.1016/j.jamda.2015.02.017 DOI: 10.1016/j.jamda.2015.02.017
Maggio M, Lauretani F, Ceda GP (2013) Sex hormones and sarcopenia in older persons. Curr Opin Clin Nutr Metab Care 16:3–13. 10.1097/MCO.0b013e32835b6044 DOI: 10.1097/MCO.0b013e32835b6044
Lu Y, Niti M, Yap KB et al (2021) Effects of multi-domain lifestyle interventions on sarcopenia measures and blood biomarkers: secondary analysis of a randomized controlled trial of community-dwelling pre-frail and frail older adults. Aging 13:9330–9347. 10.18632/aging.202705 DOI: 10.18632/aging.202705
Chan S, Debono M (2010) Review: replication of cortisol circadian rhythm: new advances in hydrocortisone replacement therapy. Ther Adv Endocrinol Metab 1:129–138. 10.1177/2042018810380214 DOI: 10.1177/2042018810380214
Tournadre A, Vial G, Capel F et al (2019) Sarcopenia. Jt bone Spine 86:309–314. 10.1016/j.jbspin.2018.08.001 DOI: 10.1016/j.jbspin.2018.08.001
Marzetti E, Picca A, Marini F et al (2019) Inflammatory signatures in older persons with physical frailty and sarcopenia: the frailty “cytokinome” at its core. Exp Gerontol 122:129–138. 10.1016/j.exger.2019.04.019 DOI: 10.1016/j.exger.2019.04.019
Tuttle CSL, Thang LAN, Maier AB (2020) Markers of inflammation and their association with muscle strength and mass: a systematic review and meta-analysis. Ageing Res Rev 64:101185 DOI: 10.1016/j.arr.2020.101185
Bano G, Trevisan C, Carraro S et al (2017) Inflammation and sarcopenia: a systematic review and meta-analysis. Maturitas 96:10–15. 10.1016/j.maturitas.2016.11.006 DOI: 10.1016/j.maturitas.2016.11.006
Schaap LA, Pluijm SMF, Deeg DJH, Visser M (2006) Inflammatory markers and loss of muscle mass (Sarcopenia) and strength. Am J Med. 10.1016/j.amjmed.2005.10.049 DOI: 10.1016/j.amjmed.2005.10.049
Kumar P, Liu C, Hsu JW et al (2021) Glycine and N-acetylcysteine (GlyNAC) supplementation in older adults improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, insulin resistance, endothelial dysfunction, genotoxicity, muscle strength, and cognition: Re. Clin Transl Med 11:e372. 10.1002/ctm2.372 DOI: 10.1002/ctm2.372
Custodero C, Mankowski RT, Lee SA et al (2018) Evidence-based nutritional and pharmacological interventions targeting chronic low-grade inflammation in middle-age and older adults: a systematic review and meta-analysis. Ageing Res Rev 46:42–59. 10.1016/j.arr.2018.05.004 DOI: 10.1016/j.arr.2018.05.004
Sardeli AV, Tomeleri CM, Cyrino ES et al (2018) Effect of resistance training on inflammatory markers of older adults: a meta-analysis. Exp Gerontol 111:188–196. 10.1016/j.exger.2018.07.021 DOI: 10.1016/j.exger.2018.07.021
Le Goff C, Laurent T, Kaux JFCJ (2012) Intense physical exercise related to the emergent generation of cardio-vascular risk markers: a review. Biol Sport 29:11–16 DOI: 10.5604/20831862.979290
Delrieu L, Martin A, Touillaud M et al (2021) Sarcopenia and serum biomarkers of oxidative stress after a 6-month physical activity intervention in women with metastatic breast cancer: results from the ABLE feasibility trial. Breast Cancer Res Treat 188:601–613. 10.1007/s10549-021-06238-z DOI: 10.1007/s10549-021-06238-z
da Lage VK, S, de Paula FA, dos Santos JM, et al (2022) Are oxidative stress biomarkers and respiratory muscles strength associated with COPD-related sarcopenia in older adults? Exp Gerontol 157:111630. 10.1016/j.exger.2021.111630 DOI: 10.1016/j.exger.2021.111630
Jones RL, Paul L, Steultjens MPM, Smith SL (2022) Biomarkers associated with lower limb muscle function in individuals with sarcopenia: a systematic review. J Cachexia Sarcopenia Muscle. 10.1002/jcsm.13064 DOI: 10.1002/jcsm.13064
Bae JH, Kwak SE, Lee JH et al (2019) Does exercise-induced apelin affect sarcopenia? a systematic review and meta-analysis. Hormones 18:383–393. 10.1007/s42000-019-00157-x DOI: 10.1007/s42000-019-00157-x
Jung HW, Park JH, Kim DA et al (2021) Association between serum FGF21 level and sarcopenia in older adults. Bone 145:115877. 10.1016/j.bone.2021.115877 DOI: 10.1016/j.bone.2021.115877
Pratt J, De Vito G, Segurado R et al (2022) Plasma neurofilament light levels associate with muscle mass and strength in middle-aged and older adults: findings from GenoFit. J Cachexia Sarcopenia Muscle 13:1811–1820. 10.1002/jcsm.12979 DOI: 10.1002/jcsm.12979
Javanmardifard Z, Shahrbanian S, Mowla SJ (2021) MicroRNAs associated with signaling pathways and exercise adaptation in sarcopenia. Life Sci 285:119926. 10.1016/j.lfs.2021.119926 DOI: 10.1016/j.lfs.2021.119926
Yamamoto K, Ishizu Y, Honda T et al (2022) Patients with low muscle mass have characteristic microbiome with low potential for amino acid synthesis in chronic liver disease. Sci Rep 12:3674. 10.1038/s41598-022-07810-3 DOI: 10.1038/s41598-022-07810-3
Ticinesi A, Nouvenne A, Cerundolo N et al (2019) Gut microbiota, muscle mass and function in aging: a focus on physical frailty and sarcopenia. Nutrients 11:1633. 10.3390/nu11071633 DOI: 10.3390/nu11071633
Rodriguez-Mañas L, Araujo de Carvalho I, Bhasin S et al (2020) ICFSR task force perspective on biomarkers for sarcopenia and frailty. J Frailty Aging 9:4–8. 10.14283/jfa.2019.32 DOI: 10.14283/jfa.2019.32
Cawthon PM, Orwoll ES, Peters KE et al (2019) Strong relation between muscle mass determined by d3-creatine dilution, physical performance, and incidence of falls and mobility limitations in a prospective cohort of older men. J Gerontol Ser A Biol Sci Med Sci 74:844–852. 10.1093/gerona/gly129 DOI: 10.1093/gerona/gly129
Calvani R, Marini F, Cesari M et al (2017) Biomarkers for physical frailty and sarcopenia. Aging Clin Exp Res 29:29–34. 10.1007/s40520-016-0708-1 DOI: 10.1007/s40520-016-0708-1
Yamada S, Tsuruya K, Yoshida H et al (2016) Factors associated with the serum myostatin level in patients undergoing peritoneal dialysis: potential effects of skeletal muscle mass and vitamin D receptor activator use. Calcif Tissue Int 99:13–22. 10.1007/s00223-016-0118-6 DOI: 10.1007/s00223-016-0118-6
Zhou Y, Hellberg M, Hellmark T et al (2021) Muscle mass and plasma myostatin after exercise training: a substudy of renal exercise (RENEXC) — a randomized controlled trial. Nephrol Dial Transplant 36:95–103. 10.1093/NDT/GFZ210 DOI: 10.1093/NDT/GFZ210
Skladany L, Koller T, Molcan P et al (2019) Prognostic usefulness of serum myostatin in advanced chronic liver disease: Its relation to gender and correlation with inflammatory status. J Physiol Pharmacol 70:357–368. 10.26402/jpp.2019.3.03 DOI: 10.26402/jpp.2019.3.03
Han DS, Chang KV, Li CM et al (2016) Skeletal muscle mass adjusted by height correlated better with muscular functions than that adjusted by body weight in defining sarcopenia. Sci Rep 6:1–8. 10.1038/srep19457 DOI: 10.1038/srep19457
Kalinkovich A, Livshits G (2015) Sarcopenia—the search for emerging biomarkers. Ageing Res Rev 22:58–71. 10.1016/j.arr.2015.05.001 DOI: 10.1016/j.arr.2015.05.001
Chang J (2017) Circulating irisin levels as a predictiv biomarker for sarcopenia: a cross-sectional community-based study. Geriatr Gerontol Int 17:2266–2273 DOI: 10.1111/ggi.13030
Willoughby DS, Beretich KN, Chen M, Funderburk LLK (2020) Decreased serum levels of C-terminal agrin in postmenopausal women following resistance training. J Aging Phys Act 28:73–80. 10.1123/japa.2019-0066 DOI: 10.1123/japa.2019-0066
Lopez-Ruiz A, Kashani K (2020) Assessment of muscle mass in critically ill patients: role of the sarcopenia index and images studies. Curr Opin Clin Nutr Metab Care 23:302–311. 10.1097/MCO.0000000000000673 DOI: 10.1097/MCO.0000000000000673
Huang C, Tomata Y, Kakizaki M et al (2015) High circulating adiponectin levels predict decreased muscle strength among older adults aged 70 years and over: a prospective cohort study. Nutr Metab Cardiovasc Dis 25:594–601. 10.1016/j.numecd.2015.03.010 DOI: 10.1016/j.numecd.2015.03.010
Hui X, Lam KS, Vanhoutte PM, Xu A (2012) Adiponectin and cardiovascular health: an update. Br J Pharmacol 165:574–590. 10.1111/j.1476-5381.2011.01395.x DOI: 10.1111/j.1476-5381.2011.01395.x
Galbreath M, Campbell B, Labounty P et al (2018) Effects of adherence to a higher protein diet on weight loss, markers of health, and functional capacity in older women participating in a resistance-based exercise program. Nutrients. 10.3390/nu10081070 DOI: 10.3390/nu10081070
Adamek A, Kasprzak A (2018) Insulin-like growth factor (IGF) system in liver diseases. Int J Mol Sci 19:1308. 10.3390/ijms19051308 DOI: 10.3390/ijms19051308
Vitale G, Cesari M, Mari D (2016) Aging of the endocrine system and its potential impact on sarcopenia. Eur J Intern Med 35:10–15. 10.1016/j.ejim.2016.07.017 DOI: 10.1016/j.ejim.2016.07.017
Westbury LD, Fuggle NR, Syddall HE et al (2018) Relationships between markers of inflammation and muscle mass, strength and function: findings from the Hertfordshire cohort study. Calcif Tissue Int 102:287–295. 10.1007/s00223-017-0354-4 DOI: 10.1007/s00223-017-0354-4