[en] Classical mechanisms of volcanic eruptions mostly involve pressure buildup and magma ascent towards the surface1. Such processes produce geophysical and geochemical signals that may be detected and interpreted as eruption precursors1-3. On 22 May 2021, Mount Nyiragongo (Democratic Republic of the Congo), an open-vent volcano with a persistent lava lake perched within its summit crater, shook up this interpretation by producing an approximately six-hour-long flank eruption without apparent precursors, followed-rather than preceded-by lateral magma motion into the crust. Here we show that this reversed sequence was most likely initiated by a rupture of the edifice, producing deadly lava flows and triggering a voluminous 25-km-long dyke intrusion. The dyke propagated southwards at very shallow depth (less than 500 m) underneath the cities of Goma (Democratic Republic of the Congo) and Gisenyi (Rwanda), as well as Lake Kivu. This volcanic crisis raises new questions about the mechanisms controlling such eruptions and the possibility of facing substantially more hazardous events, such as effusions within densely urbanized areas, phreato-magmatism or a limnic eruption from the gas-rich Lake Kivu. It also more generally highlights the challenges faced with open-vent volcanoes for monitoring, early detection and risk management when a significant volume of magma is stored close to the surface.
Research Center/Unit :
CSL - Centre Spatial de Liège - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Smittarello, D ; European Center for Geodynamics and Seismology, Walferdange, Grand Duchy of Luxembourg. delphine.smittarello@ecgs.lu
Smets, B ; Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium ; Department of Geography, Vrije Universiteit Brussel, Brussels, Belgium
Barrière, J; European Center for Geodynamics and Seismology, Walferdange, Grand Duchy of Luxembourg
Michellier, C; Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium
Oth, A ; European Center for Geodynamics and Seismology, Walferdange, Grand Duchy of Luxembourg
Shreve, T; Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
Grandin, R ; Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris, France
Theys, N; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Brenot, H; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Cayol, V ; Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, Clermont-Ferrand, France
Allard, P ; Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris, France
Caudron, C; Laboratoire G-Time, Department of Geoscience, Environment and Society, Université libre de Bruxelles, Brussels, Belgium
Chevrel, O ; Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, Clermont-Ferrand, France
de Buyl, P ; Royal Meteorological Institute of Belgium, Brussels, Belgium
Delhaye, L; Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium ; Department of Geography, Vrije Universiteit Brussel, Brussels, Belgium
De Rauw, Dominique ; Université de Liège - ULiège > Centres généraux > CSL (Centre Spatial de Liège) ; Universidad Nacional de Río Negro, Instituto de Investigación en Paleobiología y Geología de Río Negro-CONICET, General Roca, Argentina
Ganci, G; Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Catania, Italy
Geirsson, H ; Institute of Earth Sciences, University of Iceland, Reykjavík, Iceland
Kamate Kaleghetso, E; Department of Earth and Planetary Sciences, KU Leuven University, Heverlee, Belgium ; Goma Volcano Observatory, Goma, Democratic Republic of the Congo ; Département de Géologie, Université de Goma, Goma, Democratic Republic of the Congo
Kambale Makundi, J; Protection civile au Nord Kivu, Goma, Democratic Republic of the Congo
Kambale Nguomoja, I; Protection civile de Goma, Goma, Democratic Republic of the Congo
Kasereka Mahinda, C; Goma Volcano Observatory, Goma, Democratic Republic of the Congo
Kervyn, M; Department of Geography, Vrije Universiteit Brussel, Brussels, Belgium
Kimanuka Ruriho, C; Institut National de la Statistique Nord-Kivu, Goma, Democratic Republic of the Congo
Le Mével, H; Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
Molendijk, Sander ; Université de Liège - ULiège > Département de géologie > Pétrologie, géochimie endogènes et pétrophysique ; Department of Earth and Planetary Sciences, KU Leuven University, Heverlee, Belgium
Namur, Olivier ; Université de Liège - ULiège > Département de géologie > Pétrologie, géochimie endogènes et pétrophysique ; Department of Earth and Planetary Sciences, KU Leuven University, Heverlee, Belgium
Poppe, S; Laboratoire G-Time, Department of Geoscience, Environment and Society, Université libre de Bruxelles, Brussels, Belgium ; Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN), Warszawa, Poland
Schmid, M ; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Surface Waters-Research and Management, Kastanienbaum, Switzerland
Subira, J; European Center for Geodynamics and Seismology, Walferdange, Grand Duchy of Luxembourg ; Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium ; Goma Volcano Observatory, Goma, Democratic Republic of the Congo ; Department of Geography, Université de Liège, Liège, Belgium
Wauthier, C; Department of Geosciences,The Pennsylvania State University, University Park, PA, USA ; Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA, USA
Yalire, M; Goma Volcano Observatory, Goma, Democratic Republic of the Congo
d'Oreye, N; European Center for Geodynamics and Seismology, Walferdange, Grand Duchy of Luxembourg ; Department of Geophysics/Astrophysics, National Museum of Natural History, Walferdange, Grand Duchy of Luxembourg
Kervyn, F; Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium
Syavulisembo Muhindo, A; Goma Volcano Observatory, Goma, Democratic Republic of the Congo
Caricchi, L., Townsend, M., Rivalta, E. & Namiki, A. The build-up and triggers of volcanic eruptions. Nat. Rev. Earth Environ. 2, 458–476 (2021).
Scarpa, R. Predicting volcanic eruptions. Science 293, 615–616 (2001).
Sparks, R. S. J. Forecasting volcanic eruptions. Earth Planet. Sci. Lett. 210, 1–15 (2003).
Chaussard, E., Amelung, F. & Aoki, Y. Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series. J. Geophys. Res. Solid Earth 118, 3957–3969 (2013).
Reath, K. et al. Using conceptual models to relate multiparameter satellite data to subsurface volcanic processes in Latin America. Geochem. Geophys. Geosyst. 21, e2019GC008494 (2020).
Valade, S. et al. Tracking dynamics of magma migration in open-conduit systems. Bull. Volcanol. 78, 78 (2016).
Wright, R., Blackett, M. & Hill‐Butler, C. Some observations regarding the thermal flux from Earth's erupting volcanoes for the period of 2000 to 2014. Geophys. Res. Lett. 42, 282–289 (2015).
Sahama, T.G. & Meyer, A. Study of the volcano Nyiragongo, a progress report. Exploration du Parc National Albert, Mission d'études vulcanologiques Fascile 2 (Institut des Parcs Nationaux du Congo Belge, 1958).
Tazieff, H. An exceptional eruption: Mt. Nyiragongo, January 10th, 1977. Bull. Volcanol. 40, 189–200 (1977).
Barrière, J. et al. Seismicity and outgassing dynamics of Nyiragongo volcano. Earth Planet. Sci. Lett. 528, 115821 (2019).
Morrison, A. A., Whittington, A., Smets, B., Kervyn, M. & Sehlke, A. The rheology of crystallizing basaltic lavas from Nyiragongo and Nyamuragira volcanoes, DRC. Volcanica 3, 1–28 (2020).
Syavulisembo Muhindo, A., Kervyn, F., Lennert, M., Wolff, E. & Michellier, C. Spatio-temporal location of population: strengthening the capacities of sudden hazards risk management in Goma, DRC. Int. J. Disaster Risk Reduct. 66, 102565 (2021).
Pottier, Y. Première éruption historique du Nyiragongo et manifestations adventives simultanées du Volcan Nyamulagira (Chaîne des Virunga-Kivu-Zaire: Décembre 76-Juin 77) Rapport Annuel du Département de Géologie et de Minéralogie (1977) 157–175 (Musée Royal de l'Afrique Centrale, Tervuren, Belgium, 1978).
Komorowski, J.-C. et al. The January 2002 flank eruption of Nyiragongo volcano (Democratic Republic of Congo): chronology, evidence for a tectonic trigger, and impact of lava flows on the city of Goma. Acta Vulcanol. 14–15, 27–62 (2002). /2003.
Wauthier, C., Cayol, V., Kervyn, F. & d'Oreye, N. Magma sources involved in the 2002 Nyiragongo eruption, as inferred from an InSAR analysis. J. Geophys. Res. Solid Earth 117, B05411 (2012).
Durieux, J. Volcano Nyiragongo (DR Congo): evolution of the crater and lava lakes from the discovery to the present. Acta Vulcanol. 14–15, 137–144 (2002). /2003.
Smets, B. & Poppe, S. Volcanological map of Nyamulagira and Nyiragongo, Virunga Volcanic Province, North Kivu, Democratic Republic of Congo (Royal Museum for Central Africa (Tervuren, Belgium), 2016).
Oth, A. et al. KivuSNet: the first dense broadband seismic network for the Kivu Rift region (western branch of East African Rift). Seismol. Res. Lett. 88, 49–60 (2017).
Barrière, J. et al. Single-station seismo-acoustic monitoring of Nyiragongo's lava lake activity (DR Congo). Front. Earth Sci. 6, 82 (2018).
Pollard, D. D., Delaney, P. T., Duffield, W. A., Endo, E. T. & Okamura, A. T. Surface deformation in volcanic rift zones. In Developments in Geotectonics Vol. 19 (eds Morgan, P. & Baker, B. H.) 541–584 (Elsevier, 1983).
Cayol, V. & Cornet, F. H. 3D mixed boundary elements for elastostatic deformation field analysis. Int. J. Rock Mech. Min. Sci. 34, 275–287 (1997).
Cayol, V. & Cornet, F. H. Effects of topography on the interpretation of the deformation field of prominent volcanoes—application to Etna. Geophys. Res. Lett. 25, 1979–1982 (1998).
Rubin, A. M. Dike‐induced faulting and graben subsidence in volcanic rift zones. J. Geophys. Res. Solid Earth 97, 1839–1858 (1992).
Rubin, A. M. & Pollard, D. D. Dike-induced faulting in rift zones of Iceland and Afar. Geology 16, 413–417 (1988).
Geirsson, H. et al. Volcano-tectonic deformation in the Kivu Region, Central Africa: results from six years of continuous GNSS observations of the Kivu Geodetic Network (KivuGNet). J. Afr. Earth. Sci. 134, 809–823 (2017).
Ágústsdóttir, T. et al. Intense seismicity during the 2014–2015 Bárðarbunga‐Holuhraun rifting event, Iceland, reveals the nature of dike‐induced earthquakes and caldera collapse mechanisms. J. Geophys. Res. Solid Earth 124, 8331–8357 (2019).
Burgi, P. Y., Boudoire, G., Rufino, F., Karume, K. & Tedesco, D. Recent activity of Nyiragongo (Democratic Republic of Congo): new insights from field observations and numerical modeling. Geophys. Res. Lett. 47, e2020GL088484 (2020).
Barrière, J. et al. Intra-crater eruption dynamics at Nyiragongo (DR Congo), 2002-2021. J. Geophys. Res. Solid Earth 127, e2021JB023858 (2022).
Rivalta, E., Taisne, B., Bunger, A. P. & Katz, R. F. A review of mechanical models of dike propagation: schools of thought, results and future directions. Tectonophysics 638, 1–42 (2015).
Patrick, M. R. et al. The cascading origin of the 2018 Kīlauea eruption and implications for future forecasting. Nat. Commun. 11, 5646 (2020).
Neal, C. A. et al. The 2018 rift eruption and summit collapse of Kīlauea Volcano. Science 363, 367–374 (2019).
Shreve, T. et al. From prodigious volcanic degassing to caldera subsidence and quiescence at Ambrym (Vanuatu): the influence of regional tectonics. Sci. Rep. 9, 18868 (2019).
Sigmundsson, F. et al. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature 517, 191–195 (2015).
Michon, L., Staudacher, T., Ferrazzini, V., Bachèlery, P. & Marti, J. April 2007 collapse of Piton de la Fournaise: a new example of caldera formation. Geophys. Res. Lett. 34, L21301 (2007).
Poppe, S. et al. Holocene phreatomagmatic eruptions alongside the densely populated northern shoreline of Lake Kivu, East African Rift: timing and hazard implications. Bull. Volcanol. 78, 82 (2016).
Bärenbold, F., Kipfer, R. & Schmid, M. Dynamic modelling provides new insights into development and maintenance of Lake Kivu's density stratification. Environ. Modelling Softw. 147, 105251 (2022).
Sturkell, E. et al. Volcano geodesy and magma dynamics in Iceland. J. Volcanol. Geotherm. Res. 150, 14–34 (2006).
Wright, T. J. et al. Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode. Nature 442, 291–294 (2006).
Buck, W. R., Einarsson, P. & Brandsdóttir, B. Tectonic stress and magma chamber size as controls on dike propagation: constraints from the 1975–1984 Krafla rifting episode. J. Geophysi. Res. Solid Earth 111, B12404 (2006).
Urbani, S., Acocella, V., Rivalta, E. & Corbi, F. Propagation and arrest of dikes under topography: models applied to the 2014 Bardarbunga (Iceland) rifting event. Geophys. Res. Lett. 44, 6692–6701 (2017).
Maccaferri, F., Rivalta, E., Passarelli, L. & Aoki, Y. On the mechanisms governing dike arrest: insight from the 2000 Miyakejima dike injection. Earth Planet. Sci. Lett. 434, 64–74 (2016).
Schmid, M. et al. A. How hazardous is the gas accumulation in Lake Kivu? Arguments for a risk assessment in light of the Nyiragongo Volcano eruption of 2002. Acta Vulcanol. 14–15, 115–122 (2002). /2003.
Büscher, K. & Mathys, G. War, displacement and rural–urban transformation: Kivu’s boomtowns, eastern DR Congo. Eur. J. Dev. Res. 31, 53–71 (2019).
Michellier, C. et al. Evaluating population vulnerability to volcanic risk in a data scarcity context: the case of Goma city, Virunga volcanic province (DRCongo). Int. J. Disaster Risk Reduct. 45, 101460 (2020).
Wood, D. A., Zal, H. J., Scholz, C. A., Ebinger, C. J. & Nizere, I. Evolution of the Kivu Rift, East Africa: interplay among tectonics, sedimentation and magmatism. Basin Res. 29, 175–188 (2017).
Planet Application Program Interface: In Space for Life on Earth (Planet Team, 2017); https://api.planet.com
Poiata, N., Satriano, C., Vilotte, J. P., Bernard, P. & Obara, K. Multiband array detection and location of seismic sources recorded by dense seismic networks. Geophys. J. Int. 205, 1548–1573 (2016).
Mavonga, T., Zana, N. & Durrheim, R. J. Studies of crustal structure, seismic precursors to volcanic eruptions and earthquake hazard in the eastern provinces of the Democratic Republic of Congo. J. Afr. Earth. Sci. 58, 623–633 (2010).
Gal, M. et al. CCLoc—an improved interferometric seismic event location algorithm applied to induced seismicity. Seismol. Res. Lett. 92, 3492–3503 (2021).
Dach, R., Hugentobler, U., Fridez P. & Meindl M. User Manual of the Bernese GPS Software Version 5.0 (Astronomical Institute, University of Bern, 2007).
Lyard, F., Lefevre, F., Letellier, T. & Francis, O. Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn. 56, 394–415 (2006).
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M. & Webb, F. H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Solid Earth 102, 5005–5017 (1997).
Derauw, D., Jaspard, M., Caselli, A. & Samsonov, S. Ongoing automated ground deformation monitoring of Domuyo-Laguna del Maule area (Argentina) using Sentinel-1 MSBAS time series: methodology description and first observations for the period 2015–2020. J. South Amer. Earth Sci. 104, 102850 (2020).
d'Oreye, N., Derauw, D., Samsonov, S., Jaspard, M. & Smittarello, D. MasTer: a full automatic multi-satellite InSAR mass processing tool for rapid incremental 2D ground deformation time series. In Proc. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS 1899–1902 (IEEE, 2021).
Chen, C. W. & Zebker, H. A. Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models. IEEE Trans. Geosci. Remote Sens. 40, 1709–1719 (2002).
Rosen, P. A., Gurrola, E., Sacco, G. F. & Zebker, H. The InSAR scientific computing environment. In Proc. European Conference on Synthetic Aperture Radar, EUSAR 730–733 (VDS, 2012).
Liang, C. & Fielding, E. J. Measuring azimuth deformation with L-band ALOS-2 ScanSAR interferometry. IEEE Trans. Geosci. Remote Sens. 55, 2725–2738 (2017).
Grandin, R. et al. Long-term growth of the Himalaya inferred from interseismic InSAR measurement. Geology 40, 1059–1062 (2012).
Shreve, T. et al. What Triggers caldera ring‐fault subsidence at Ambrym volcano? Insights from the 2015 dike intrusion and eruption. J. Geophys. Res. Solid Earth 126, e2020JB020277 (2021).
Theys, N. et al. Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 precursor: algorithm theoretical basis. Atmos. Meas. Tech. 10, 119–153 (2017).
Theys, N. et al. Global monitoring of volcanic SO2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 precursor. Sci. Rep. 9, 2643 (2019).
Brenot, H. et al. Support to Aviation Control Service (SACS): an online service for near-real-time satellite monitoring of volcanic plumes. Nat. Hazards Earth Syst. Sci. 14, 1099–1123 (2014).
Clarisse, L. et al. A unified approach to infrared aerosol remote sensing and type specification. Atmos. Chem. Phys. 13, 2195–2221 (2013).
Fukushima, Y., Cayol, V. & Durand, P. Finding realistic dike models from interferometric synthetic aperture radar data: the February 2000 eruption at Piton de la Fournaise. J. Geophys. Res. Solid Earth 110, B03206 (2005).
Farr, T. G. et al. The Shuttle Radar Topography Mission. Rev. Geophys. 45, RG2004–33 (2007).
Lahmeyer, O. S. A. E. Bathymetric Survey of Lake Kivu Final Report (Ministry of Public Work, Direction of Energy and Hydrocarbons, Kigali, Rwanda, 1998).
Tridon, M., Cayol, V., Froger, J. L., Augier, A. & Bachèlery, P. Inversion of coeval shear and normal stress of Piton de la Fournaise flank displacement. J. Geophys. Res. Solid Earth 121, 7846–7866 (2016).
Sambridge, M. Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophys. J. Int. 138, 479–494 (1999).
Sambridge, M. Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble. Geophys. J. Int. 138, 727–746 (1999).
Ganci, G., Vicari, A., Cappello, A. & Del Negro, C. An emergent strategy for volcano hazard assessment: from thermal satellite monitoring to lava flow modeling. Remote Sens. Environ. 119, 197–207 (2012).
Ganci, G., Cappello, A., Bilotta, G. & Del Negro, C. How the variety of satellite remote sensing data over volcanoes can assist hazard monitoring efforts: the 2011 eruption of Nabro volcano. Remote Sens. Environ. 236, 111426 (2020).
Spampinato, L. et al. Thermal insights into the dynamics of Nyiragongo lava lake from ground and satellite measurements. J. Geophys. Res. Solid Earth 118, 5771–5784 (2013).
Platz, T. Nyiragongo volcano, DR Congo – Mineral Chemistry and Petrology. Doctoral dissertation, PhD thesis, Univ. of Greifswald, Institute of Geological Sciences (2002).