[en] Discarding practices have become a source of concern for the perennation of marine resources, prompting efforts of discard reduction around the globe. However, little is known about the fate of discards in marine environments. Discarding may provide food for various marine consumers, potentially affecting food web structure and stability. Yet, quantifying reliance upon discards is difficult because identity and frequency of discards may change according to multiple factors, and most previously used diet assessment techniques do not allow to assume consistency of feeding strategies over time. One currently untested hypothesis is that significant contribution of discards over time should reflect in increased trophic level (TL) of marine fauna, particularly in low TL consumers. Here, we explored this hypothesis by modeling the TL and assimilated diet of consumers living in fishing grounds subject to important discarding activity using stable isotope analysis. We found indications that benthic invertebrates and Chondrichthyes may depict a higher than expected TL, while other fish tend to depict similar to lower TL compared to global averages from the literature. Based on prior knowledge of discard consumption in the same area, stable isotope mixing models congruently revealed that discards may represent substantial portions of the assimilated diet of most benthic invertebrate macrofauna, cephalopods and Chondrichthyes. We highlight limitations and challenges of currently used diet assessment techniques to study discard consumption and stress that understanding their reintegration in marine food webs is crucial in the context of an ecosystem approach to fisheries management and to better understand the functioning of marine ecosystems subject to fishing.
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Lejeune, Benjamin ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Écologie et de Conservation des Amphibiens (LECA) ; Centre d'Ecologie et des Sciences de la Conservation, CNRS-MNHN-SU, Paris, France ; DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro-Agrocampus Ouest, Lorient, France
Kopp, Dorothée; DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro-Agrocampus Ouest, Lorient, France
Mehault, Sonia; DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro-Agrocampus Ouest, Lorient, France
Mouchet, Maud Aline; Centre d'Ecologie et des Sciences de la Conservation, CNRS-MNHN-SU, Paris, France
Language :
English
Title :
Assessing the diet and trophic level of marine fauna in a fishing ground subject to discarding activity using stable isotopes.
Pauly D, Palomares M. Fishing down marine food web: it is far more pervasive than we thought. Bull Mar Sci. 2005; 76: 197–211.
Post DM. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology. 2002; 83: 703–718. https://doi.org/10.2307/3071875
Cabana G, Rasmussen JB. Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature. 1994; 372: 255–257.
Möllemann C, Folke C, Edwards M, Conversi A. Marine regime shifts around the globe: theory, drivers and impacts. Philos Trans R Soc B Biol Sci. 2015; 370: 20130260. https://doi.org/10.1098/rstb.2013. 0260
Arroyo N-L, Safi G, Vouriot P, López-López L, Niquil N, Le Loc’h F, et al. Towards coherent GES assessments at sub-regional level: signs of fisheries expansion processes in the Bay of Biscay using an OSPAR food web indicator, the mean trophic level. ICES J Mar Sci. 2019; 76: 1543–1553. https://doi.org/10.1093/icesjms/fsz023
Hansson L-A, Nicolle A, Granéli W, Hallgren P, Kritzberg E, Persson A, et al. Food-chain length alters community responses to global change in aquatic systems. Nat Clim Chang. 2012; 2: 1–6. https://doi.org/10.1038/nclimate1689
Bascompte J, Melián CJ, Sala E. Interaction strength combinations and the overfishing of a marine food web. Proc Natl Acad Sci. 2005; 102: 5443–5447. https://doi.org/10.1073/pnas.0501562102 PMID: 15802468
Scheffer M, Carpenter S, de Young B. Cascading effects of overfishing marine systems. Trends Ecol Evol. 2005; 20: 579–581. https://doi.org/10.1016/j.tree.2005.08.018 PMID: 16701438
Guillen J, Holmes SJ, Carvalho N, Casey J, Dörner H, Gibin M, et al. A review of the European union landing obligation focusing on its implications for fisheries and the environment. Sustainability. 2018; 10: 900. https://doi.org/10.3390/su10040900
Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, et al. Historical overfishing and the recent collapse of coastal ecosystems. Science (80-). 2001; 293: 629–638. https://doi.org/10.1126/science.1059199 PMID: 11474098
Jennings S, Kaiser MJ. The effects of fishing on marine ecosystems. Advances in Marine Biology. Elsevier Masson SAS; 1998. https://doi.org/10.1016/S0065-2881(08)60212-6
Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F Jr. Fishing down marine food webs. Science (80-). 1998; 279: 860–863. https://doi.org/10.1126/science.279.5352.860 PMID: 9452385
Shephard S, Minto C, Zölck M, Jennings S, Brophy D, Reid D. Scavenging on trawled seabeds can modify trophic size structure of bottom- dwelling fish. ICES J Mar Sci. 2014; 71: 398–405. https://doi.org/10.1093/icesjms/fst134
Zeller D, Cashion T, Palomares M-L, Pauly D. Global marine fisheries discards: A synthesis of reconstructed data. Fish Fish. 2018; 19: 30–39. https://doi.org/10.1111/faf.12233
Groenewold S, Fonds M. Effects on benthic scavengers of discards and damaged benthos produced by the beam-trawl fishery in the southern North Sea. ICES J Mar Sci. 2000; 57: 1395–1406. https://doi.org/10.1006/jmsc.2000.0914
Jenkins SR, Mullen C, Brand AR. Predator and scavenger aggregation to discarded by-catch from dredge fisheries: importance of damage level. J Sea Res. 2004; 51: 69–76. https://doi.org/10.1016/j.seares.2003.05.002
Ramsay K, Kaiser MJ, Moore PG, Hughes RN. Consumption of fisheries discards by benthic scavengers: utilization of energy subsidies in different marine habitats. J Anim Ecol. 1997; 66: 884–896. https://doi.org/10.2307/6004
Depestele J, Feekings J, Reid DG, Cook R, Gascuel D, Girardin R, et al. The Impact of Fisheries Discards on Scavengers in the Sea. In: Uhlmann SS, Ulrich C, Kennelly SJ, editors. The European Landing Obligation: Reducing Discards in Complex, Multi-Species and Multi-Jurisdictional Fisheries. Cham: Springer International Publishing; 2019. pp. 129–162. https://doi.org/10.1007/978-3-030-03308-8_7
Catchpole T, Frid CLJ. Importance of discards from the English Nephrops norvegicus fishery in the North Sea to marine scavengers. Mar Ecol Prog Ser. 2006; 313: 215–226. https://doi.org/10.3354/ meps313215
Bluhm BA, Bechtel PJ. The potential fate and effects of seafood processing wastes dumped at sea: a review. In: Bechtel PJ, editor. Advances in Seafood Byproducts, Alaska Sea Grant College Program. Fairbanks, AK: University of Alaska; 2003. pp. 121–140. https://doi.org/10.4027/asbcp.2003
Hill BJ, Wassenberg TJ. The probable fate of discards from prawn trawlers fishing near coral reefs A study in the northern Great Barrier Reef, Australia. Fish Res. 2000; 48: 277–286. https://doi.org/10.1016/S0165-7836(00)00185-5
Olaso I, Sánchez F, Rodríguez-cabello C, Velasco F. The feeding behaviour of some demersal fish species in response to artificial discarding. Sci Mar. 2002; 66: 301–311. https://doi.org/10.3989/scimar.2002.66n3301
Olaso I, Velasco F, Pérez N. Importance of discarded blue whiting (Micromesistius poutassou) in the diet of lesser spotted dogfish (Scyliorhinus canicula) in the Cantabrian Sea. ICES J Mar Sci. 1998; 55: 331–341.
Union European. Regulation (EU) No 1380/2013 of the European parliament and of the council of 11 December 2013 on the Common Fisheries Policy amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC). Off J Eur Union. 2013; L354: 22–61. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32013R1380
Oro D, Genovart M, Tavecchia G, Fowler MS, Martínez-Abraín A. Ecological and evolutionary implications of food subsidies from humans. Ecol Lett. 2013; 16: 1501–1514. https://doi.org/10.1111/ele.12187 PMID: 24134225
González-Irusta JM, Preciado I, López-López L, Punzón A, Cartes JE, Serrano A. Trawling disturbance on the isotopic signature of a structure-building species, the sea urchin Gracilechinus acutus (Lamarck, 1816). Deep Res Part II Top Stud Oceanogr. 2014; 106: 216–224. https://doi.org/10.1016/j.dsr2.2013.09.036
de Juan S, Cartes JE, Demestre M. Effects of commercial trawling activities in the diet of the flat fish Citharus linguatula (Osteichthyes: Pleuronectiformes) and the starfish Astropecten irregularis (Echinodermata: Asteroidea). J Exp Mar Bio Ecol. 2007; 349: 152–169. https://doi.org/10.1016/j.jembe.2007.05.003
Stock BC, Jackson A, Ward EJ, Parnell AC, Phillips DL, Semmens BX. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ. 2018; 1–43. https://doi.org/10.7717/peerj. 5096 PMID: 29942712
Quezada-Romegialli C, Jackson AL, Hayden B, Kahilainen KK, Lopes C, Harrod C. tRophicPosition, an r package for the Bayesian estimation of trophic position from consumer stable isotope ratios. Methods Ecol Evol. 2018; 9: 1592–1599. https://doi.org/10.1111/2041-210X.13009
Boecklen WJ, Yarnes CT, Cook BA, James AC. On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst. 2011; 42: 411–440. https://doi.org/10.1146/annurev-ecolsys-102209-144726
Mutlu T. Seasonal variation of trace elements and stable isotope (δ13C and δ15N) values of commercial marine fish from the black sea and human health risk assessment. Spectrosc Lett. 2021; 54: 665–674. https://doi.org/10.1080/00387010.2021.1984254
Bautista-Vega AA, Letourneur Y, Harmelin-Vivien M, Salen-Picard C. Difference in diet and size-related trophic level in two sympatric fish species, the red mullets Mullus barbatus and Mullus surmuletus, in the Gulf of Lions (north-west Mediterranean Sea). J Fish Biol. 2008; 73: 2402–2420. https://doi.org/10.1111/j.1095-8649.2008.02093.x
Layman C a Araujo MS, Boucek R Hammerschlag-Peyer CM, Harrison E Jud ZR, et al. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev Camb Philos Soc. 2012; 87: 545–62. https://doi.org/10.1111/j.1469-185X.2011.00208.x PMID: 22051097
Wolf BO, Martínez del Rio C. How important are columnar cacti as sources of water and nutrients for desert consumers? A review. Isotopes Environ Health Stud. 2003; 39: 53–67. https://doi.org/10.1080/ 1025601031000102198 PMID: 12812255
Newsome SD, Martinez del Rio C, Bearhop S, Phillips DL. A niche for isotope ecology. Front Ecol Environ. 2007; 5: 429–436. https://doi.org/10.1890/060150.01
Kopp D, Robert M, Chouvelon T, Méhault S. Some expected impacts of the Common Fishery Policy on marine food webs. Mar Policy. 2016; 66: 8–14. https://doi.org/10.1016/j.marpol.2016.01.002
Sherley RB, Ladd-Jones H, Garthe S, Stevenson O, Votier SC. Scavenger communities and fisheries waste: North Sea discards support 3 million seabirds, 2 million fewer than in 1990. Fish Fish. 2019; 21: 132–145. https://doi.org/10.1111/faf.12422
Lejeune B, Mouchet MA, Mehault S, Kopp D. Gut content metabarcoding reveals potential importance of fisheries discards consumption in marine fauna. Can J Fish Aquat Sci. in press. https://doi.org/10.1139/cjfas-2021-0267
Cornou A, Quinio-scavinner M, Sagan J, Cloâtre T, Dubroca L, Billet N. Captures et rejets des métiers de pêche français. Résultats des observations à bord des navires de pêche professionnelle en 2019. Obsmer; 2021. https://doi.org/10.13155/79198
Union European. Commission delegated regulation (EU) 2019/2237 of 1 October 2019 specifying details of the landing obligation for certain demersal fisheries in South-Western waters for the period 2020–2021. Off J Eur Union. 2019; L336: 26–33. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2019.336.01.0026.01.ENG
Gauduchon T, Cornou A, Quinio-Scavinner M, Goascoz N, Dubroca L, Billet N. Captures et rejets des métiers de pêche français. Résultats des observations à bord des navires de pêche professionnelle en 2018. Obsmer; 2020. https://doi.org/10.13155/73122
Ifremer. Système d’Informations Halieutiques. Quartier maritime Noirmoutier. 2019. Activité des navires de pêche. 2020.
De Niro MJ, Epstein S. Influence of diet on the distribution of carbon isotopes in animals. Geochemica Cosmochim Acta. 1978; 42: 495–506. https://doi.org/10.1016/0016-7037(78)90199-0
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.; 2021.
Cresson P, Chouvelon T, Bustamante P, Bănaru D, Baudrier J, Le Loc’h F, et al. Primary production and depth drive different trophic structure and functioning of fish assemblages in French marine ecosystems. Prog Oceanogr. 2020; 186: 102343. https://doi.org/10.1016/j.pocean.2020.102343
Chouvelon T, Spitz J, Caurant F, Mèndez-Fernandez P, Chappuis A, Laugier F, et al. Revisiting the use of d15N in meso-scale studies of marine food webs by considering spatio-temporal variations in stable isotopic signatures–The case of an open ecosystem: The Bay of Biscay (North-East Atlantic). Prog Oceanogr. 2012; 101: 92–105. https://doi.org/10.1016/j.pocean.2012.01.004
McCutchan JHJ, Lewis WM, Kendall C, McGrath CC. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos. 2003; 102: 378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x
Nerot C, Meziane T, Schaal G, Grall J, Lorrain A, Paulet Y, et al. Spatial changes in fatty acids signatures of the great scallop Pecten maximus across the Bay of Biscay continental shelf. Cont Shelf Res. 2015; 109: 1–9. https://doi.org/10.1016/j.csr.2015.08.032
Thompson MSA, Pontalier H, Spence MA, Pinnegar JK, Greenstreet S, Moriarty M, et al. A feeding guild indicator to assess environmental change impacts on marine ecosystem structure and functioning. J Appl Ecol. 2020; 57: 1769–1781. https://doi.org/10.1111/1365-2664.13662
Froese R, Pauly D. FishBase. World Wide Web electronic publication. www.fishbase.org, version (06/ 2021). 2021.
Palomares MLD, Pauly D. SeaLifeBase. World Wide Web electronic publication. www.sealifebase.org, version (04/2021). 2021.
Pauly D, Zeller D, Palomares M-L. Sea Around Us Concepts, Design and Data (www.seaaroundus. org). 2020.
Mantel SK, Salas M, Dudgeon D. Foodweb structure in a tropical Asian forest stream. J North Am Benthol Soc. 2004; 23: 728–755. https://doi.org/10.1899/0887-3593(2004)023<0728:FSIATA>2.0. CO;2
Sokal RR, Michener CD. A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull. 1958; 38: 1409–1438.
Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K. cluster: Cluster Analysis Basics and Extensions. R Packag version 212. 2021.
Borcard D, Gillet F, Legendre P. Numerical Ecology with R. Springer, editor. New York, USA; 2011. https://doi.org/10.1007/978-1-4419-7976-6
Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model complexity and fit. J R Stat Soc Ser B Stat Methodol. 2002; 64: 583–616. https://doi.org/10.1111/1467-9868.00353
Lejeune B, Bissey L, Didaskalou EA, Sturaro N, Lepoint G, Denoël M. Progenesis as an intrinsic factor of ecological opportunity in a polyphenic amphibian. Funct Ecol. 2021; 35: 546–560. https://doi.org/10.1111/1365-2435.13708
Travers-trolet M, Coppin F, Cresson P, Cugier P, Oliveros-ramos R, Verley P. Emergence of negative trophic level-size relationships from a size-based, individual-based multispecies fish model. Ecol Mod-ell. 2019; 410: 108800. https://doi.org/10.1016/j.ecolmodel.2019.108800
Hinz H, Moranta J, Balestrini S, Sciberr M, Pantin JR, Zalewski A, et al. Stable isotopes reveal the effect of trawl fisheries on the diet of commercially exploited species. 2017; 1–12. https://doi.org/10.1038/ s41598-017-06379-6 PMID: 28740093
Badalamenti F, Anna GD, Pinnegar JK, Polunin NVC. Size-related trophodynamic changes in three target fish species recovering from intensive trawling. Mar Biol. 2002; 141: 561–570. https://doi.org/10.1007/s00227-002-0844-3
Giraldo C, Ernande B, Cresson P, Kopp D, Cachera M, Travers-Trolet M, et al. Depth gradient on the resource use of a fish community from a semi-enclosed sea. Limnol Oceanogr. 2017; 62: 2213–2226.
Kaiser MJ, Spencer BE. Fish scavenging behaviour in recently trawled areas. Mar Ecol Prog Ser. 1994; 112: 41–49.
Kelleher K. Discards in the world’s marine fisheries. An update. Rome: FAO Fisheries Technical Paper. No. 470; 2005.
Navarro J, Cardador L, Fernández ÁM, Bellido JM, Coll M. Differences in the relative roles of environment, prey availability and human activity in the spatial distribution of two marine mesopredators living in highly exploited ecosystems. J Biogeogr. 2016; 43: 440–450. https://doi.org/10.1111/jbi.12648
Moura T, Figueiredo I, Farias I, Serra-pereira B, Neves A, de Fátima Borges M, et al. Ontogenetic dietary shift and feeding strategy of Raja undulata Lacepède, 1802 (Chondrichthyes: Rajidae) on the Portuguese continental shelf. Sci Mar. 2008; 72: 311–318.
Gros P, Hamon D. Typologie biosédimentaire de la baie de Saint-Brieuc (Manche ouest), et estimation de la biomasse des catégories trophiques macrozoobenthiques. Rapport IF. 1988.
Freire J, González-Gurriarán E. Feeding ecology of the velvet swimming crab Necora puber in mussel raft areas of the Ría de Arousa (Galicia, NW Spain). Mar Ecol Prog Ser. 1995; 119: 139–154.
Tonk AL, Rozemeijer MJC. Ecology of the brown crab (Cancer pagurus) and production potential for passive fisheries in Dutch offshore windfarms. Yerseke: Wageningen Marine Research report C064/ 19A; 2019. p. 49 pp.
Evans PL, Kaiser MJ, Hughes RN. Behaviour and energetics of whelks, Buccinum undutum (L.), feeding on animals killed by beam trawling. J Exp Mar Bio Ecol. 1996; 197: 51–62.
Bozzano A, Sardà F. Fishery discard consumption rate and scavenging activity in the northwestern Mediterranean Sea. ICES J Mar Sci. 2002; 59: 15–28. https://doi.org/10.1006/jmsc.2001.1142
Swan GJF, Bearhop S, Redpath SM, Silk MJ, Goodwin CED, Inger R, et al. Evaluating Bayesian stable isotope mixing models of wild animal diet and the effects of trophic discrimination factors and informative priors. Methods Ecol Evol. 2019; 11: 139–149. https://doi.org/10.1111/2041-210X.13311
Khojasteh Pour Fard I. Modélisation des échanges dissous entre l ‘estuaire de la Loire et les baies côtières adjacentes. Université de Bordeaux. 2015.
Lazure P, Jegou A-M. 3D modelling of seasonal evolution of Loire and Gironde plumes on Biscay Bay continental shelf. Oceanol Acta. 1998; 21: 165–177.
Boudreau SA, Worm B. Ecological role of large benthic decapods in marine ecosystems: a review. Mar Ecol Prog Ser. 2012; 469: 195–213. https://doi.org/10.3354/meps09862