[en] The nutritional status of meat is tarnished by its association with the induced cooking contaminants. The aim of this study was to assess the heterocyclic aromatic amines profile and contents in processed chicken in Burkina Faso. Eight polar and apolar heterocyclic aromatic amines (HAAs) including 2-mino-3-methylimidazo[4,5-f]quinolone (IQ), 3-amino-1,4-dimethyl-5H-pyrido[4, 3-b]indole (Trp-P1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P2), 2-mino-9H-pyrido-[2,3-b]indole (AαC), 2-amino-1-methyl-6-phenylimidazo[4, 5- ]pyridine (PhIP), 2-amino-3-methyl-9H-pyrido[2,3-b] indole (MeAαC), 2-amino-3,4,8-rimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-3,8-imethylimidazo[4,5-]quinoxaline (MeIQx) were screened by high performance liquid chromatography from 29 samples of flamed chicken and 66 samples of braised chicken collected in Ouagadougou city. Apolar HAAs and polar HAAs were respectively 12 and 3 times more abundant in flamed chickens (32.66±10 and 3.48±10.39 ng/g, respectively) than in braised chickens (2.70±9.67 and 0.92 ng/g, respectively). The maximum levels of AαC were in the same proportions in flamed (12.01 ng/g) and braised chickens (14.13 ng/g). Flamed chicken had the highest Trp-P1 content (530.31 ng/g). The 4,8-DiMeIQx was not detected in braised chicken. The AαCs were more abundant in flamed than in braised chicken. The profile and the contents of the HAAs in processed chicken are related to cooking methods. Because of the high variability observed on the obtained concentrations, investigations on the contents of precursors in raw chicken, the effect of marinating ingredients on the formation of HAAs are needed.
Research Center/Unit :
FARAH. Santé publique vétérinaire - ULiège
Disciplines :
Food science
Author, co-author :
Bazié, Bazoin Sylvain Raoul ; Laboratoire de Biologie Moléculaire d'Épidémiologie et de Surveillance des agents Transmissibles par les Aliments (LABESTA), Unité de Formation et de la Recherche en Sciences de la Vie et de la Terre, École Doctorale Sciences et Technologies, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso ; Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso
Bougma, Adjima; Laboratoire de Biologie Moléculaire d'Épidémiologie et de Surveillance des agents Transmissibles par les Aliments (LABESTA), Unité de Formation et de la Recherche en Sciences de la Vie et de la Terre, École Doctorale Sciences et Technologies, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
Séré, Aminata; Laboratoire de Biologie Moléculaire d'Épidémiologie et de Surveillance des agents Transmissibles par les Aliments (LABESTA), Unité de Formation et de la Recherche en Sciences de la Vie et de la Terre, École Doctorale Sciences et Technologies, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
Ouilly, Judicael Thomas; Laboratoire de Biologie Moléculaire d'Épidémiologie et de Surveillance des agents Transmissibles par les Aliments (LABESTA), Unité de Formation et de la Recherche en Sciences de la Vie et de la Terre, École Doctorale Sciences et Technologies, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
Sangaré, Hassane; Laboratoire de Biologie Moléculaire d'Épidémiologie et de Surveillance des agents Transmissibles par les Aliments (LABESTA), Unité de Formation et de la Recherche en Sciences de la Vie et de la Terre, École Doctorale Sciences et Technologies, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
Kabré, Elie; Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso
Savadogo, Aly; Laboratoire de Biochimie et d'Immunologie Appliquée, Unité de Formation et de la Recherche en Sciences de la Vie et de la Terre, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
Hounhouigan, Djidjoho Joseph; Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey, Cotonou, Benin
Scippo, Marie-Louise ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Analyse des denrées alimentaires ; Département des Sciences des Denrées alimentaires, Centre de recherche FARAH-Secteur Santé Publique Vétérinaire, Liège, Belgique
Bassole, Imaël Henri Nestor; Laboratoire de Biologie Moléculaire d'Épidémiologie et de Surveillance des agents Transmissibles par les Aliments (LABESTA), Unité de Formation et de la Recherche en Sciences de la Vie et de la Terre, École Doctorale Sciences et Technologies, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
Language :
English
Title :
Assessment of heterocyclic aromatic amines contents in flamed and braised chicken in Burkina Faso.
Püssa T. Toxicological issues associated with production and processing of meat. Meat Sci. 2013; 95:844–53. https://doi.org/10.1016/j.meatsci.2013.04.032 PMID: 23660174
Salmon CP, Knize MG, Felton JS, Zhao B, Seow A. Heterocyclic Aromatic Amines in Domestically Prepared Chicken and Fish from Singapore Chinese Households. Food Chem Toxicol. 2005; 44:484–92. https://doi.org/10.1016/j.fct.2005.08.022 PMID: 16226366
Sugimura T. Overview of carcinogenic heterocyclic amines. Mutat Res. 1977; 376:211–9.
Alaejos MS, Afonso AM. Factors that affect the content of heterocyclic aromatic amines in foods. 2011; 10 Table 1:52–108.
Polak T, Došler D, Žlender B, Gašperlin L. Heterocyclic amines in aged and thermally treated pork longissimus dorsi muscle of normal and PSE quality. LWT—Food Sci Technol. 2009; 42:504–13.
Gibis M, Weiss J. Impact of Precursors Creatine, Creatinine, and Glucose on the Formation of Heterocyclic Aromatic Amines in Grilled Patties of Various Animal Species. J Food Sci. 2015; 80:C2430–9. https://doi.org/10.1111/1750-3841.13090 PMID: 26445401
Johansson MA, Fay LB, Gross GA, Olsson K, Jägerstad M. Influence of amino acids on the formation of mutagenic/carcinogenic heterocyclic amines in a model system. Carcinogenesis. 1995; 16:2553–60. https://doi.org/10.1093/carcin/16.10.2553 PMID: 7586166
Jamin E. Développement de méthodes de spectrométrie de masse pour la caractérisation des Amines Aromatiques Hétérocycliques (AAH) générées lors de la cuisson des aliments et l’étude de leur réactivité vis-à-vis des bases de l’ADN. Institut National Polytechnique de Toulouse; 2007.
Arvidsson P Van Boekel, Skog M.A.J.S., K Jägerstad M. Kinetics of Formation of Polar Heterocyclic Amines in a Meat Model System. J Food Sci. 1997; 62:911–6. https://doi.org/10.1111/j.1365-2621.1997.tb15005.x
Puangsombat K, Gadgil P, Houser TA, Hunt MC, Smith JS. Heterocyclic amine content in commercial ready to eat meat products. MESC. 2011; 88:227–33. https://doi.org/10.1016/j.meatsci.2010.12.025 PMID: 21242037
IARC. Some food additives, feed additives and naturally occurring substances. IARC Monographs on the evaluation of carcinogenic risks to humans. Lyon, France; 1983.
IARC. Some naturally occurring and synthetic food components, furocoumarins and ultraviolet radiation. IARC Monographs on the evaluation of carcinogenic risks to humans. Lyon, France; 1986.
IARC. Some naturally occurring substances: food Items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monographs on the evaluation of carcinogenic risks to humans. Lyon, France; 1993.
Sanz Alaejos M.; Ayala J.H.; González V.; Afonso A. Analytical methods applied to the determination of heterocyclic aromatic amines in foods. J Chromatogr B Analyt Technol Biomed Life Sci. 2008; 862:15–42. https://doi.org/10.1016/j.jchromb.2007.11.040 PMID: 18155650
Dong A.; Lee J.; Shin H. Influence of natural food ingredients on the formation of heterocyclic amines in fried beef patties and chicken breasts. Food Sci Biotechnol. 2011; 20:359–365.
Liao GZ, Wang GY, Xu XL, Zhou GH. Effect of cooking methods on the formation of heterocyclic aromatic amines in chicken and duck breast. Meat Sci. 2010; 85:149–54. https://doi.org/10.1016/j.meatsci.2009.12.018 PMID: 20374878
Oz F, Kaban G, Kaya M. Effects of cooking methods and levels on formation of heterocyclic aromatic amines in chicken and fish with Oasis extraction method. LWT—Food Sci Technol. 2010; 44:1345–50.
Skog K. Cooking procedures and food mutagens: a literature review. Food Chem Toxicol. 1993; 31:655–75. https://doi.org/10.1016/0278-6915(93)90049-5 PMID: 8406243
Skog K, Augustsson K, Steineck G, Stenberg M, Jägerstad M. Polar and non-polar heterocyclic amines in cooked fish and meat products and their corresponding pan residues. Food Chem Toxicol. 1997; 35:555–65. https://doi.org/10.1016/s0278-6915(97)00021-5 PMID: 9225013
Felton JS, Knize MG, Roper M, Fultz E, Shen NH, Turteltaub KW. Chemical analysis, prevention, and low-level dosimetry of heterocyclic amines from cooked food. Cancer Res. 1992; 52 7 Suppl:2103s2107s. https://pubmed.ncbi.nlm.nih.gov/1544148. PMID: 1544148
Barro N, Ouattara CA., Nikiéma A., Ouattara AS, Traoré A. Evaluation de la qualité microbiologique de quelques aliments de rue dans la ville de Ouagadougou au Burkina Faso. Cah d’études Rech Francoph / Santé. 2002; 12:369–74.
Kagambèga A, Martikainen O, Lienemann T, Siitonen A, Traoré AS, Barro N, et al. Diarrheagenic Escherichia coli detected by 16-plex PCR in raw meat and beef intestines sold at local markets in Ouagadougou, Burkina Faso. Int J Food Microbiol. 2012; 153:154–8. https://doi.org/10.1016/j.ijfoodmicro.2011.10.032 PMID: 22130499
Somda NS, Bonkoungou OJI, Zongo C, Kagambèga A, Bassolé IHN, Traoré Y, et al. Safety of ready-to- eat chicken in Burkina Faso: Microbiological quality, antibiotic resistance, and virulence genes in Escherichia coli isolated from chicken samples of Ouagadougou. Food Sci Nutr. 2018; 6:1077–1084. https://doi.org/10.1002/fsn3.650 PMID: 29983972
Bazié BSR, Bougma A, Séré A, Ouilly JT, Kabré E, Hounhouigan DJ, et al. Concentrations and Health Risk Assessment of Metallic Trace Elements in Ready-to-Eat Braised and Flamed Chickens in Burkina Faso. Biol Trace Elem Res. 2020; 199:1556–65. https://doi.org/10.1007/s12011-020-02252-2 PMID: 32557114
Bazie BSR, Douny C, Ouilly TJ, Hounhouigan DJ, Savadogo A, Kabr E, et al. Polycyclic Aromatic Hydrocarbons Contamination of Flamed and Braised Chickens and Health Risk Assessment in Burkina Faso. toxics. 2021;65. https://doi.org/10.3390/toxics9030065 PMID: 33803506
Santos FJ, Barceló-barrachina E, Toribio F, Puignou L, Galceran MT, Persson E, et al. Analysis of heterocyclic amines in food products: interlaboratory studies. J Chromatogr B. 2004; 802:69–78. https://doi.org/10.1016/j.jchromb.2003.09.030 PMID: 15035998
Melo A, Viegas O, Eça R, Petisca C, Pinho O. Extraction, Detection, and Quantification of Heterocyclic Aromatic Amines in Portuguese Meat Dishes by HPLC/Diode Array. J Liq Chromatogr Relat Technol. 2008; 31:772–87.
Gibis M. Heterocyclic Aromatic Amines in Cooked Meat Products: Causes, Formation, Occurrence, and Risk Assessment. Compr Rev Food Sci Food Saf. 2016; 15:269–302. https://doi.org/10.1111/1541-4337.12186 PMID: 33371602
Ahn J, Grün IU. Heterocyclic amines: 1. Kinetics of formation of polar and nonpolar heterocyclic amines as a function of time and temperature. J Food Sci. 2005; 70:173–179.
Busquets R, Bordas M, Toribio F, Puignou L, Galceran MT, Borgen E S. Occurence of heterocyclic amines in several home-cooked meat dishes of the Spanish diet. J Chrom B. 2004; 802:79–86.
Krul C., Luiten-Schuite A., Baandagger R., Verhagen H., Mohn G., Feron V. et al. Application of a dynamic in vitro gastrointestinal tract model to study the availability of food mutagens, using heterocyclic aromatic amines as model compounds. Food Chem Toxicol. 2000; 39:783–792.
Norrish A. E., Ferguson L. R., Knize M. G., Felton J. S., Sharpe S. J., & Jackson RT. Heterocyclic amine content of cooked meat and risk of prostate cancer. J Natl Cancer Inst. 1999; 91:2038–2044.
Sinha R., Rothman N., Brown E. D., Salmon C. P., Knize M. G., Swanson C. A. et al. High concentrations of the carcinogen 2-amino-1-methyl-6- phenylimidazo-[4,5-b] pyridine (PhIP) occur in chicken but are dependent on the cooking method. Cancer Res. 1995; 55:4516–4519. PMID: 7553619
Solyakov A., & Skog K. Screening for heterocyclic amines in chicken cooked in various ways. Food Chem Toxicol. 2002; 40:1205–1211. https://doi.org/10.1016/s0278-6915(02)00054-6 PMID: 12067585
Salmon C. P., Knize M. G., & Felton JS. Effects of marinating on heterocyclic amine carcinogen formation in grilled chicken. Food Chem Toxicol. 1997; 35:433–441. https://doi.org/10.1016/s0278-6915(97) 00020-3 PMID: 9216741
Knize M. G., Salmon C. P., Hopmans E. C., & Felton JS. Analysis of foods for heterocyclic aromatic amine carcinogens by solid-phase extraction and high- performance liquid chromatography. J Chromatogr A. 1997; 763:179–185. https://doi.org/10.1016/s0021-9673(96)00720-0 PMID: 9129321
Brockstedt U., & Pfau W. Formation of 2-amino-carbolines in pan-fried poultry and 32P-postlabelling analysis of DNA adducts. Zeitschrift fur Leb Untersuchung und–Forsch A. 1998; 207:472–476.
Holder C. L., Preece S. W., Conway S. C., Pu Y. M., & Doerge DR. Quantification of heterocyclic amine carcinogens in cooked meats using isotope dilution liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 1997; 11:1667–1672. https://doi.org/10.1002/(SICI)1097-0231(19971015)11:15<1667::AID-RCM58>3.0.CO;2-N PMID: 9364795
jo Cheon-Ho, Sim Young-Eun, Lee Hyo Min, myung Taikyung ryeom S-W. Heterocyclic Amines in Several Types of Cooked Meat and Chicken Dishes which Form Part of the Korean Diet. Food Sci Technol Res. 2008; 14:169–75.
Matsumoto T., Yoshida D., & Tomita H. Determination of mutagens, amino- alpha-carbolines in grilled foods and cigarette smoke condensate. Cancer Lett. 1981; 12:105–110. https://doi.org/10.1016/0304-3835(81)90045-8 PMID: 7272995
Knize M. G., Sinha R., Salmon C. P., Mehta S. S., Dewhirst K. P., & Felton JS. Formation of heterocyclic amine mutagens/carcinogens during home and commercial cooking of muscle foods. J Muscle Foods. 1996;7.
Totsuka Y., Ushiyama H., Ishihara J., Sinha R., Goto S., Sugimura T. et al. Quantification of the co-mutagenic beta-carbolines, Norharman and Harman, in cigarette smoke condensates and cooked foods. Cancer Res. 1999;55.
Adeyeye SAO. Heterocyclic amines and polycyclic aromatic hydrocarbons in cooked meat products: a review. Polycycl Aromat Compd. 2018; 40:1557–1567.
Salmon CP, Knize MG, Panteleakos FN, Wu RW, Nelson DO, Felton JS. Minimization of heterocyclic amines and thermal inactivation of Escherichia coli in fried ground beef. J Natl Cancer Inst. 2000; 92:1773–8. https://doi.org/10.1093/jnci/92.21.1773 PMID: 11058620
Balogh Z, Gray JI, Gomaa EA, Booren AM. Formation and inhibition of heterocyclic aromatic amines in fried ground beef patties. Food Chem Toxicol. 2000; 38:395–401. https://doi.org/10.1016/s0278-6915 (00)00010-7 PMID: 10762724
Murkovic M, Steinberger D, Pfannhauser W. Antioxidant spices reduce the formation of heterocyclic amines in fried meat. Zeitschrift für Leb und -forsch A. 1998; 207:477–80. https://doi.org/10.1007/ s002170050364
Ahn J, Grün IU. Heterocyclic Amines: 2. Inhibitory Effects of Natural Extracts on the Formation of Polar and Nonpolar Heterocyclic Amines in Cooked Beef. J Food Sci. 2005; 70:C263–8. https://doi.org/10.1111/j.1365-2621.2005.tb07171.x