GWAS; agent-based model (ABM); artificial intelligence–AI; catabolism; immune-privileged microenvironment; inflammation; intervertebral disc degeneration; low back pain; Developmental Biology; Cell Biology
Abstract :
[en] Low back pain is a highly prevalent, chronic, and costly medical condition predominantly triggered by intervertebral disc degeneration (IDD). IDD is often caused by structural and biochemical changes in intervertebral discs (IVD) that prompt a pathologic shift from an anabolic to catabolic state, affecting extracellular matrix (ECM) production, enzyme generation, cytokine and chemokine production, neurotrophic and angiogenic factor production. The IVD is an immune-privileged organ. However, during degeneration immune cells and inflammatory factors can infiltrate through defects in the cartilage endplate and annulus fibrosus fissures, further accelerating the catabolic environment. Remarkably, though, catabolic ECM disruption also occurs in the absence of immune cell infiltration, largely due to native disc cell production of catabolic enzymes and cytokines. An unbalanced metabolism could be induced by many different factors, including a harsh microenvironment, biomechanical cues, genetics, and infection. The complex, multifactorial nature of IDD brings the challenge of identifying key factors which initiate the degenerative cascade, eventually leading to back pain. These factors are often investigated through methods including animal models, 3D cell culture, bioreactors, and computational models. However, the crosstalk between the IVD, immune system, and shifted metabolism is frequently misconstrued, often with the assumption that the presence of cytokines and chemokines is synonymous to inflammation or an immune response, which is not true for the intact disc. Therefore, this review will tackle immunomodulatory and IVD cell roles in IDD, clarifying the differences between cellular involvements and implications for therapeutic development and assessing models used to explore inflammatory or catabolic IVD environments.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Bermudez-Lekerika, Paola; Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland ; Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
Crump, Katherine B; Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland ; Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
Nüesch, Andrea; Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
Kanelis, Exarchos; ProtATonce Ltd., Athens, Greece ; School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
Alminnawi, Ahmad ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique ; Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
Compte, Roger; Twin Research and Genetic Epidemiology, St Thomas' Hospital, King's College London, London, United Kingdom
Gualdi, Francesco; Institut Hospital Del Mar D'Investigacions Mèdiques (IMIM), Barcelona, Spain
Alexopoulos, Leonidas G; ProtATonce Ltd., Athens, Greece ; School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
Geris, Liesbet ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique ; Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium ; Biomechanics Research Unit, KU Leuven, Leuven, Belgium
Wuertz-Kozak, Karin; Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States ; Spine Center, Schön Klinik München Harlaching Academic Teaching Hospital and Spine Research Institute of the Paracelsus Private Medical University Salzburg (Austria), Munich, Germany
Le Maitre, Christine L; Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
Gantenbein, Benjamin; Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland ; Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
Financial support was received from the Marie Skłodowska Curie International Training Network (ITN) “disc4all” ( https://disc4all.upf.edu , accessed on 10 May 2022) grant agreement #955735 ( https://cordis.europa.eu/project/id/955735 , accessed on 10 May 2022).We thank the Marie Skłodowska Curie International Training Network (ITN) “disc4all” for financial support. Furthermore, we thank the entire disc4all consortium for enabling this review.
Adams M. A. Freeman B. J. C. Morrison H. P. Nelson I. W. Dolan P. (2000). Mechanical Initiation of Intervertebral Disc Degeneration. Spine 25, 1625–1636. 10.1097/00007632-200007010-00005
Adams M. A. McMillan D. W. Green T. P. Dolan P. (1996). Sustained Loading Generates Stress Concentrations in Lumbar Intervertebral Discs. Spine 21, 434–438. 10.1097/00007632-199602150-00006
Adams M. A. Roughley P. J. (2006). What Is Intervertebral Disc Degeneration, and what Causes it? Spine 31, 2151–2161. 10.1097/01.brs.0000231761.73859.2c
Al Dhaheri N. Wu N. Zhao S. Wu Z. Blank R. D. Zhang J. et al. (2020). KIAA1217: A Novel Candidate Gene Associated with Isolated and Syndromic Vertebral Malformations. Am. J. Med. Genet. 182, 1664–1672. 10.1002/ajmg.a.61607
Albert H. B. Lambert P. Rollason J. Sorensen J. S. Worthington T. Pedersen M. B. et al. (2013a). Does Nuclear Tissue Infected with Bacteria Following Disc Herniations Lead to Modic Changes in the Adjacent Vertebrae? Eur. Spine J. 22, 690–696. 10.1007/s00586-013-2674-z
Albert H. B. Sorensen J. S. Christensen B. S. Manniche C. (2013b). Antibiotic Treatment in Patients with Chronic Low Back Pain and Vertebral Bone Edema (Modic Type 1 Changes): a Double-Blind Randomized Clinical Controlled Trial of Efficacy. Eur. Spine J. 22, 697–707. 10.1007/s00586-013-2675-y
Alini M. Eisenstein S. M. Ito K. Little C. Kettler A. A. Masuda K. et al. (2008). Are Animal Models Useful for Studying Human Disc Disorders/degeneration? Eur. Spine J. 17, 2–19. 10.1007/s00586-007-0414-y
Alkhatib B. Rosenzweig D. H. Rosenzweig D. Krock E. Roughley P. Beckman L. et al. (2014). Acute Mechanical Injury of the Human Intervertebral Disc: Link to Degeneration and Pain. eCM 28, 98–111.; discussion 110-1. 10.22203/ecm.v028a08
Alvarez-Galvez J. Suarez-Lledo V. (2019). Using Agent-Based Modeling to Understand the Emergence and Reproduction of Social Inequalities in Health. Proceedings 44, 2. 10.3390/IECEHS-2-06372
Amini H. Shroff N. Stamova B. Ferino E. Carmona-Mora P. Zhan X. et al. (2020). Genetic Variation Contributes to Gene Expression Response in Ischemic Stroke: an eQTL Study. Ann. Clin. Transl. Neurol. 7, 1648–1660. 10.1002/acn3.51154
Anjankar S. D. Poornima S. Raju S. Jaleel M. A. Bhiladvala D. Hasan Q. (2015). Degenerated Intervertebral Disc Prolapse and its Association of Collagen I Alpha 1 Spl Gene Polymorphism. Ijoo 49, 589–594. 10.4103/0019-5413.168765
Aramburu J. López-Rodríguez C. (2019). Regulation of Inflammatory Functions of Macrophages and T Lymphocytes by NFAT5. Front. Immunol. 10, 535. 10.3389/fimmu.2019.00535
Aubin G. G. Baud’huin M. Lavigne J.-P. Brion R. Gouin F. Lepelletier D. et al. (2017). Interaction of Cutibacterium (Formerly Propionibacterium) Acnes with Bone Cells: a Step toward Understanding Bone and Joint Infection Development. Sci. Rep. 7, 42918. 10.1038/srep42918
Barry F. P. Neame P. J. Sasse J. Pearson D. (1994). Length Variation in the Keratan Sulfate Domain of Mammalian Aggrecan. Matrix Biol. 14, 323–328. 10.1016/0945-053x(94)90198-8
Batagelj V. Mrvar A. (2004). “Pajek - Analysis and Visualization of Large Networks,” in Graph Drawing Software. Editor Jünger M. M. P. (Berlin, Heidelberg: Springer Berlin Heidelberg), 77–103. 10.1007/978-3-642-18638-7_4
Battié M. C. Videman T. (2006). Lumbar Disc Degeneration: Epidemiology and Genetics. JBJS 88, 3–9. 10.2106/JBJS.E.01313
Battié M. C. Videman T. Parent E. (2004). Lumbar Disc Degeneration. Spine 29, 2679–2690. 10.1097/01.brs.0000146457.83240.eb
Baumgartner L. Reagh J. J. González Ballester M. A. Noailly J. (2021a). Simulating Intervertebral Disc Cell Behaviour within 3D Multifactorial Environments. Bioinformatics 37, 1246–1253. 10.1093/bioinformatics/btaa939
Baumgartner L. Sadowska A. Tío L. González Ballester M. A. Wuertz-Kozak K. Noailly J. (2021b). Evidence-Based Network Modelling to Simulate Nucleus Pulposus Multicellular Activity in Different Nutritional and Pro-inflammatory Environments. Front. Bioeng. Biotechnol. 9, 734258. 10.3389/fbioe.2021.734258
Baumgartner L. Wuertz-Kozak K. Le Maitre C. L. Wignall F. Richardson S. M. Hoyland J. et al. (2021c). Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. Ijms 22, 703. 10.3390/ijms22020703
Beckstein J. C. Sen S. Schaer T. P. Vresilovic E. J. Elliott D. M. (2008). Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc. Spine 33, E166–E173. 10.1097/BRS.0b013e318166e001
Bedore J. Sha W. McCann M. R. Liu S. Leask A. Séguin C. A. (2013). Loss of Notochord-Derived CCN2 Results in Impaired Intervertebral Disc Development and Premature Disc Degeneration. Arthritis & Rheumatism 65, a–n. 10.1002/art.38075
Benneker L. M. Heini P. F. Alini M. Anderson S. E. Ito K. (2005). 2004 Young Investigator Award Winner: Vertebral Endplate Marrow Contact Channel Occlusions and Intervertebral Disc Degeneration. Spine 30, 167–173. 10.1097/01.brs.0000150833.93248.09
Bibby S. R. S. Urban J. P. G. (2004). Effect of Nutrient Deprivation on the Viability of Intervertebral Disc Cells. Eur. Spine J. 13, 695–701. 10.1007/s00586-003-0616-x
Binch A. L. A. Cole A. A. Breakwell L. M. Michael A. L. R. Chiverton N. Creemers L. B. et al. (2015a). Class 3 Semaphorins Expression and Association with Innervation and Angiogenesis within the Degenerate Human Intervertebral Disc. Oncotarget 6, 18338–18354. 10.18632/oncotarget.4274
Binch A. L. A. Cole A. A. Breakwell L. M. Michael A. L. R. Chiverton N. Creemers L. B. et al. (2015b). Nerves Are More Abundant Than Blood Vessels in the Degenerate Human Intervertebral Disc. Arthritis Res. Ther. 17, 370. 10.1186/s13075-015-0889-6
Blumenthal S. McAfee P. C. Guyer R. D. Hochschuler S. H. Geisler F. H. Holt R. T. et al. (2005). A Prospective, Randomized, Multicenter Food and Drug Administration Investigational Device Exemptions Study of Lumbar Total Disc Replacement with the CHARITÉ Artificial Disc versus Lumbar Fusion. Spine 30, 1565–1575. discussion E387-91. 10.1097/01.brs.0000170587.32676.0e
Binch A. L. Cole A. A. Breakwell L. M. Michael A. L. Chiverton N. Cross A. K. et al. (2014). Expression and Regulation of Neurotrophic and Angiogenic Factors during Human Intervertebral Disc Degeneration. Arthritis Res. Ther. 16, 416. 10.1186/s13075-014-0416-1
Bongers P. M. Hulshof C. T. J. DlJKSTRA L. Boshuizen H. C. Groenhout H. J. M. Valken E. (1990). Back Pain and Exposure to Whole Body Vibration in Helicopter Pilots. Ergonomics 33, 1007–1026. 10.1080/00140139008925309
Bournonville S. Lambrechts T. Vanhulst J. Luyten F. P. Papantoniou I. Geris L. (2019). Towards Self-Regulated Bioprocessing: A Compact Benchtop Bioreactor System for Monitored and Controlled 3D Cell and Tissue Culture. Biotechnol. J. 14, 1800545. 10.1002/biot.201800545
Bråten L. C. H. Grøvle L. Espeland A. Pripp A. H. Grotle M. Helllum C. et al. (2020). Clinical Effect Modifiers of Antibiotic Treatment in Patients with Chronic Low Back Pain and Modic Changes - Secondary Analyses of a Randomised, Placebo-Controlled Trial (The AIM Study). Bmc. Musculoskelet. Disord. 21, 1–11. 10.1186/s12891-020-03422-y
Buckwalter J. A. (1995). Aging and Degeneration of the Human Intervertebral Disc. Spine 20, 1307–1314. 10.1097/00007632-199506000-00022
Cambria E. Brunner S. Heusser S. Fisch P. Hitzl W. Ferguson S. J. et al. (2020). Cell-Laden Agarose-Collagen Composite Hydrogels for Mechanotransduction Studies. Front. Bioeng. Biotechnol. 8, 346. 10.3389/fbioe.2020.00346
Cannon M. E. Mohlke K. L. (2018). Deciphering the Emerging Complexities of Molecular Mechanisms at GWAS Loci. Am. J. Hum. Genet. 103, 637–653. 10.1016/j.ajhg.2018.10.001
Cano-Gamez E. Trynka G. (2020). From GWAS to Function: Using Functional Genomics to Identify the Mechanisms Underlying Complex Diseases. Front. Genet. 11, 424. 10.3389/fgene.2020.00424
Capoor M. N. Konieczna A. McDowell A. Ruzicka F. Smrcka M. Jancalek R. et al. (2021). Pro-Inflammatory and Neurotrophic Factor Responses of Cells Derived from Degenerative Human Intervertebral Discs to the Opportunistic Pathogen Cutibacterium Acnes. Ijms 22, 2347. 10.3390/ijms22052347
Chan S. C. W. Gantenbein-Ritter B. (2012). Preparation of Intact Bovine Tail Intervertebral Discs for Organ Culture. JoVE 60, e3490. 10.3791/3490
Chan S. C. W. Walser J. Käppeli P. Shamsollahi M. J. Ferguson S. J. Gantenbein-Ritter B. (2013). Region Specific Response of Intervertebral Disc Cells to Complex Dynamic Loading: An Organ Culture Study Using a Dynamic Torsion-Compression Bioreactor. PLoS. ONE. 8, e72489. 10.1371/journal.pone.0072489
Chang H. Cai F. Zhang Y. Xue M. Liu L. Yang A. et al. (2017). Early-stage Autophagy Protects Nucleus Pulposus Cells from Glucose Deprivation-Induced Degeneration via the P -eIF2α/ATF4 Pathway. Biomed. Pharmacother. 89, 529–535. 10.1016/j.biopha.2017.02.074
Chang H. Wang H. Yang X. You K. Jiang M. Cai F. et al. (2021). Comprehensive Profile Analysis of Differentially Expressed circRNAs in Glucose Deprivation-Induced Human Nucleus Pulposus Cell Degeneration. BioMed Res. Int. 2021, 1–14. 10.1155/2021/4770792
Chen J.-W. Li B. Yang Y.-H. Jiang S.-D. Jiang L.-S. (2014). Significance of Hypoxia in the Physiological Function of Intervertebral Disc Cells. Crit. Rev. Eukaryot. Gene. Expr. 24, 193–204. 10.1615/critreveukaryotgeneexpr.2014010485
Chen J. Baer A. E. Paik P. Y. Yan W. Setton L. A. (2002). Matrix Protein Gene Expression in Intervertebral Disc Cells Subjected to Altered Osmolarity. Biochem. Biophysical Res. Commun. 293, 932–938. 10.1016/S0006-291X(02)00314-5
Cheung K. M. C. Karppinen J. Chan D. Ho D. W. H. Song Y.-Q. Sham P. et al. (2009). Prevalence and Pattern of Lumbar Magnetic Resonance Imaging Changes in a Population Study of One Thousand Forty-Three Individuals. Spine 34, 934–940. 10.1097/BRS.0b013e3181a01b3f
Ching C. T. S. Chow D. H. K. Yao F. Y. D. Holmes A. D. (2003). The Effect of Cyclic Compression on the Mechanical Properties of the Inter-vertebral Disc: an In Vivo Study in a Rat Tail Model. Clin. Biomech. 18, 182–189. 10.1016/s0268-0033(02)00188-2
Choi H. Chaiyamongkol W. Doolittle A. C. Johnson Z. I. Gogate S. S. Schoepflin Z. R. et al. (2018). COX-2 Expression Mediated by Calcium-TonEBP Signaling axis under Hyperosmotic Conditions Serves Osmoprotective Function in Nucleus Pulposus Cells. J. Biol. Chem. 293, 8969–8981. 10.1074/jbc.RA117.001167
Chou P.-H. Wang S.-T. Yen M.-H. Liu C.-L. Chang M.-C. Lee O. K.-S. (2016). Fluid-induced, Shear Stress-Regulated Extracellular Matrix and Matrix Metalloproteinase Genes Expression on Human Annulus Fibrosus Cells. Stem. Cell. Res. Ther. 7, 34. 10.1186/s13287-016-0292-5
Chu G. Shi C. Wang H. Zhang W. Yang H. Li B. (2018). Strategies for Annulus Fibrosus Regeneration: From Biological Therapies to Tissue Engineering. Front. Bioeng. Biotechnol. 6, 90. 10.3389/fbioe.2018.00090
Costi J. J. Stokes I. A. Gardner-Morse M. G. Iatridis J. C. (2008). Frequency-Dependent Behavior of the Intervertebral Disc in Response to Each of Six Degree of Freedom Dynamic Loading. Spine 33, 1731–1738. 10.1097/BRS.0b013e31817bb116
Croft A. S. Roth Y. Oswald K. A. C. Ćorluka S. Bermudez-Lekerika P. Gantenbein B. (2021). In Situ Cell Signalling of the Hippo-YAP/TAZ Pathway in Reaction to Complex Dynamic Loading in an Intervertebral Disc Organ Culture. Ijms 22, 13641. 10.3390/ijms222413641
Dahia C. L. Engiles J. B. Gullbrand S. E. Iatridis J. C. Lai A. Le Maitre C. L. et al. (2021). A Perspective on the ORS Spine Section Initiative to Develop a Multi-Species JOR Spine Histopathology Series. JOR. Spine 4, e1165. 10.1002/jsp2.1165
Dai J. Xing Y. Xiao L. Li J. Cao R. He Y. et al. (2019). Microfluidic Disc-On-A-Chip Device for Mouse Intervertebral Disc-Pitching a Next-Generation Research Platform to Study Disc Degeneration. ACS Biomater. Sci. Eng. 5, 2041–2051. 10.1021/acsbiomaterials.8b01522
Daly C. Ghosh P. Jenkin G. Oehme D. Goldschlager T. (2016). A Review of Animal Models of Intervertebral Disc Degeneration: Pathophysiology, Regeneration, and Translation to the Clinic. BioMed Res. Int. 2016, 1–14. 10.1155/2016/5952165
Damiati S. Kompella U. Damiati S. Kodzius R. (2018). Microfluidic Devices for Drug Delivery Systems and Drug Screening. Genes 9, 103. 10.3390/genes9020103
Daniels J. Binch A. A. L. Le Maitre C. L. (2017). Inhibiting IL-1 Signaling Pathways to Inhibit Catabolic Processes in Disc Degeneration. J. Orthop. Res. 35, 74–85. 10.1002/jor.23363
de Souza N. (2012). The ENCODE Project. Nat. Methods. 9, 1046. 10.1038/nmeth.2238
Dong D. M. Yao M. Liu B. Sun C. Y. Jiang Y. Q. Wang Y. S. (2007). Association between the -1306C/T Polymorphism of Matrix Metalloproteinase-2 Gene and Lumbar Disc Disease in Chinese Young Adults. Eur. Spine J. 16, 1958–1961. 10.1007/s00586-007-0454-3
Du H. Bai B. Qiu Y. Yin S. Bian W. (2015). Association between TRAIL Gene Polymorphisms and the Susceptibility and Severity of Lumbar Disc Degeneration. Int. J. Clin. Exp. Pathol. 8, 7415–7420.
Du Y. Tavana S. Rahman T. Baxan N. Hansen U. N. Newell N. (2021). Sensitivity of Intervertebral Disc Finite Element Models to Internal Geometric and Non-geometric Parameters. Front. Bioeng. Biotechnol. 9, 660013. 10.3389/fbioe.2021.660013
Dudli S. Fields A. J. Samartzis D. Karppinen J. Lotz J. C. (2016). Pathobiology of Modic Changes. Eur. Spine J. 25, 3723–3734. 10.1007/s00586-016-4459-7
Dudli S. Haschtmann D. Ferguson S. J. (2011). Fracture of the Vertebral Endplates, but Not Equienergetic Impact Load, Promotes Disc Degeneration In Vitro. J. Orthop. Res. 30, 809–816. 10.1002/jor.21573
Dudli S. Haschtmann D. Ferguson S. J. (2014). Persistent Degenerative Changes in the Intervertebral Disc after Burst Fracture in an In Vitro Model Mimicking Physiological Post-traumatic Conditions. Eur. Spine J. 24, 1901–1908. 10.1007/s00586-014-3301-3
Dudli S. Liebenberg E. Magnitsky S. Lu B. Lauricella M. Lotz J. C. (2018). Modic Type 1 Change Is an Autoimmune Response that Requires a Proinflammatory Milieu provided by the 'Modic Disc'. Spine J. 18, 831–844. 10.1016/j.spinee.2017.12.004
Duncan L. E. Ostacher M. Ballon J. (2019). How Genome-wide Association Studies (GWAS) Made Traditional Candidate Gene Studies Obsolete. Neuropsychopharmacol. 44, 1518–1523. 10.1038/s41386-019-0389-5
Elfervig M. K. Minchew J. T. Francke E. Tsuzaki M. Banes A. J. (2001a). IL-1? Sensitizes Intervertebral Disc Annulus Cells to Fluid-Induced Shear Stress. J. Cell. Biochem. 82, 290–298. 10.1002/jcb.1153
Elfervig M. K. Minchew J. T. Francke E. Tsuzaki M. Banes A. J. (2001b). IL-1? Sensitizes Intervertebral Disc Annulus Cells to Fluid-Induced Shear Stress. J. Cell. Biochem. 82, 290–298. 10.1002/jcb.1153
Fadok V. A. (1999). Clearance: The Last and Often Forgotten Stage of Apoptosis. J. Mamm. Gl. Biol. Neoplasia 4, 203–211. 10.1023/A:1011384009787
Fearing B. V. Hernandez P. A. Setton L. A. Chahine N. O. (2018). Mechanotransduction and Cell Biomechanics of the Intervertebral Disc. JOR. Spine 1, e1026. 10.1002/jsp2.1026
Feng Y. Egan B. Wang J. (2016). Genetic Factors in Intervertebral Disc Degeneration. Genes & Dis. 3, 178–185. 10.1016/j.gendis.2016.04.005
Fernando H. N. Czamanski J. Yuan T.-Y. Gu W. Salahadin A. Huang C.-Y. C. (2011). Mechanical Loading Affects the Energy Metabolism of Intervertebral Disc Cells. J. Orthop. Res. 29, 1634–1641. 10.1002/jor.21430
Flannery C. R. Little C. B. Caterson B. (1998). Molecular Cloning and Sequence Analysis of the Aggrecan Interglobular Domain from Porcine, Equine, Bovine and Ovine Cartilage: Comparison of Proteinase-Susceptible Regions and Sites of Keratan Sulfate Substitution. Matrix Biol. 16, 507–511. 10.1016/s0945-053x(98)90021-x
Forgetta V. Jiang L. Vulpescu N. A. Hogan M. S. Chen S. Morris J. A. et al. (2022). An Effector Index to Predict Target Genes at GWAS Loci. Hum. Genet. [Epub ahead of print]. 10.1007/s00439-022-02434-z
Frauchiger D. Tekari A. Tekari A. Wöltje M. Fortunato G. Benneker L. et al. (2017). A Review of the Application of Reinforced Hydrogels and Silk as Biomaterials for Intervertebral Disc Repair. eCM 34, 271–290. 10.22203/eCM.v034a17
Freemont A. J. Watkins A. Le Maitre C. Baird P. Jeziorska M. Knight M. T. N. et al. (2002). Nerve Growth Factor Expression and Innervation of the Painful Intervertebral Disc. J. Pathol. 197, 286–292. 10.1002/path.1108
Freemont A. Peacock T. Goupille P. Hoyland J. O'Brien J. Jayson M. (1997). Nerve Ingrowth into Diseased Intervertebral Disc in Chronic Back Pain. Lancet 350, 178–181. 10.1016/s0140-6736(97)02135-1
Frobin W. Brinckmann P. Kramer M. Hartwig E. (2001). Height of Lumbar Discs Measured from Radiographs Compared with Degeneration and Height Classified from MR Images. Eur. Radiol. 11, 263–269. 10.1007/s003300000556
Galbusera F. Schmidt H. Neidlinger-Wilke C. Wilke H.-J. (2011a). The Effect of Degenerative Morphological Changes of the Intervertebral Disc on the Lumbar Spine Biomechanics: a Poroelastic Finite Element Investigation. Comput. Methods Biomechanics Biomed. Eng. 14, 729–739. 10.1080/10255842.2010.493522
Galbusera F. Schmidt H. Noailly J. Malandrino A. Lacroix D. Wilke H.-J. et al. (2011b). Comparison of Four Methods to Simulate Swelling in Poroelastic Finite Element Models of Intervertebral Discs. J. Mech. Behav. Biomed. Mater. 4, 1234–1241. 10.1016/j.jmbbm.2011.04.008
Gantenbein B. Frauchiger D. A. May R. D. Bakirci E. Urs R. Sibylle G. (2019). “Developing Bioreactors to Host Joint-Derived Tissues that Require Mechanical Stimulation,” in Encyclopedia of Tissue Engineering and Regenerative Medicine. Editors Reis R. L. Gomes M. E. (NY: Elsevier), 261–280. 10.1016/b978-0-12-801238-3.65611-8
Gantenbein B. Calandriello E. Wuertz-Kozak K. Benneker L. M. Keel M. J. Chan S. C. (2014). Activation of Intervertebral Disc Cells by Co-culture with Notochordal Cells, Conditioned Medium and Hypoxia. BMC Musculoskelet. Disord. 15, 422. 10.1186/1471-2474-15-422
Gantenbein B. Grünhagen T. Lee C. R. van Donkelaar C. C. Alini M. Ito K. (2006). An In Vitro Organ Culturing System for Intervertebral Disc Explants with Vertebral Endplates. Spine 31, 2665–2673. 10.1097/01.brs.0000244620.15386.df
Gantenbein B. Illien-Jünger S. Chan S. Walser J. Haglund L. Ferguson S. et al. (2015). Organ Culture Bioreactors - Platforms to Study Human Intervertebral Disc Degeneration and Regenerative Therapy. Cscr 10, 339–352. 10.2174/1574888X10666150312102948
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (2018). Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858. 10.1016/S0140-6736(18)32279-7
Ghezelbash F. Schmidt H. Shirazi-Adl A. El-Rich M. (2020). Internal Load-Sharing in the Human Passive Lumbar Spine: Review of In Vitro and Finite Element Model Studies. J. Biomechanics 102, 109441. 10.1016/j.jbiomech.2019.109441
Gibson G. (2010). Hints of Hidden Heritability in GWAS. Nat. Genet. 42, 558–560. 10.1038/ng0710-558
Gilbert H. T. Hoyland J. A. Freemont A. J. Millward-Sadler S. J. (2011). The Involvement of Interleukin-1 and Interleukin-4 in the Response of Human Annulus Fibrosus Cells to Cyclic Tensile Strain: an Altered Mechanotransduction Pathway with Degeneration. Arthritis Res. Ther. 13, R8. 10.1186/ar3229
Gilbert H. T. J. Hodson N. Baird P. Richardson S. M. Hoyland J. A. (2016). Acidic pH Promotes Intervertebral Disc Degeneration: Acid-Sensing Ion Channel -3 as a Potential Therapeutic Target. Sci. Rep. 6, 37360. 10.1038/srep37360
Gilligan C. J. Cohen S. P. Fischetti V. A. Hirsch J. A. Czaplewski L. G. (2021). Chronic Low Back Pain, Bacterial Infection and Treatment with Antibiotics. Spine J. 21, 903–914. 10.1016/j.spinee.2021.02.013
Goddard M. E. Kemper K. E. MacLeod I. M. Chamberlain A. J. Hayes B. J. (2016). Genetics of Complex Traits: Prediction of Phenotype, Identification of Causal Polymorphisms and Genetic Architecture. Proc. R. Soc. B 283, 20160569. 10.1098/rspb.2016.0569
Gorth D. J. Shapiro I. M. Risbud M. V. (2015). Discovery of the Drivers of Inflammation Induced Chronic Low Back Pain: from Bacteria to Diabetes. Discov. Med. 20, 177–184.
Gorth D. J. Shapiro I. M. Risbud M. V. (2019). A New Understanding of the Role of IL-1 in Age-Related Intervertebral Disc Degeneration in a Murine Model. J. Bone. Min. Res. 34, 1531–1542. 10.1002/jbmr.3714
Gorth D. J. Shapiro I. M. Risbud M. V. (2018). Transgenic Mice Overexpressing Human TNF-α Experience Early Onset Spontaneous Intervertebral Disc Herniation in the Absence of Overt Degeneration. Cell. death. Dis. 10, 1–14. 10.1038/s41419-018-1246-x
Granville Smith I. Danckert N. P. Freidin M. B. Wells P. Marchesi J. R. Williams F. M. K. (2021). Evidence for Infection in Intervertebral Disc Degeneration: a Systematic Review. Eur. Spine J. 31, 414–430. 10.1007/s00586-021-07062-1
Gu J. Guan F. Guan G. Xu G. Wang X. Zhao W. et al. (2013). Aggrecan Variable Number of Tandem Repeat Polymorphism and Lumbar Disc Degeneration. Spine 38, E1600–E1607. 10.1097/BRS.0000000000000012
Guerrero J. Häckel S. Croft A. S. Albers C. E. Gantenbein B. (2020). The Effects of 3D Culture on the Expansion and Maintenance of Nucleus Pulposus Progenitor Cell Multipotency. JOR Spine 4, e1131. 10.1002/jsp2.1131
Gullbrand S. E. Malhotra N. R. Schaer T. P. Zawacki Z. Martin J. T. Bendigo J. R. et al. (2017). A Large Animal Model that Recapitulates the Spectrum of Human Intervertebral Disc Degeneration. Osteoarthr. Cartil. 25, 146–156. 10.1016/j.joca.2016.08.006
Gullbrand S. E. Smith L. J. Smith H. E. Mauck R. L. (2018). Promise, Progress, and Problems in Whole Disc Tissue Engineering. JOR. Spine 1, e1015. 10.1002/jsp2.1015
Guo X. Chen G. (2020). Hypoxia-Inducible Factor Is Critical for Pathogenesis and Regulation of Immune Cell Functions in Rheumatoid Arthritis. Front. Immunol. 11, 1668. 10.3389/fimmu.2020.01668
Haglund L. Moir J. Beckman L. Mulligan K. R. Jim B. Ouellet J. A. et al. (2011). Development of a Bioreactor for Axially Loaded Intervertebral Disc Organ Culture. Tissue Eng. Part C. Methods 17, 1011–1019. 10.1089/ten.TEC.2011.0025
Hamilton D. J. Séguin C. A. Wang J. Pilliar R. M. Kandel R. A. (2006). BioEngineering of Skeletal Tissues TeamFormation of a Nucleus Pulposus-Cartilage Endplate Construct In Vitro. Biomaterials 27, 397–405. 10.1016/j.biomaterials.2005.07.007
Han I. B. Ropper A. E. Teng Y. D. Shin D. A. Jeon Y. J. Park H. M. et al. (2013). Association between VEGF and eNOS Gene Polymorphisms and Lumbar Disc Degeneration in a Young Korean Population. Genet. Mol. Res. 12, 2294–2305. 10.4238/2013.July.8.10
Hellum C. Johnsen L. G. JohnsenBerg L. G. Gjertsen Ø. Berg L. Neckelmann G. et al. (2012). Predictors of Outcome after Surgery with Disc Prosthesis and Rehabilitation in Patients with Chronic Low Back Pain and Degenerative Disc: 2-year Follow-Up. Eur. Spine J. 21, 681–690. 10.1007/s00586-011-2145-3
Hernandez P. A. Jacobsen T. D. Barati Z. Chahine N. O. (2020a). Confocal Scanning of Intervertebral Disc Cells in 3D: Inside Alginate Beads and in Native Microenvironment. JOR Spine 3, e1106. 10.1002/jsp2.1106
Hernandez P. A. Jacobsen T. D. Chahine N. O. (2020b). Actomyosin Contractility Confers Mechanoprotection against TNFα-Induced Disruption of the Intervertebral Disc. Sci. Adv. 6, eaba2368. 10.1126/sciadv.aba2368
Hingert D. Nawilaijaroen P. Aldridge J. Baranto A. Brisby H. (2019). Investigation of the Effect of Secreted Factors from Mesenchymal Stem Cells on Disc Cells from Degenerated Discs. Cells. Tissues. Organs 208, 76–88. 10.1159/000506350
Hirose Y. Chiba K. Karasugi T. Nakajima M. Kawaguchi Y. Mikami Y. et al. (2008). A Functional Polymorphism in THBS2 that Affects Alternative Splicing and MMP Binding Is Associated with Lumbar-Disc Herniation. Am. J. Hum. Genet. 82, 1122–1129. 10.1016/j.ajhg.2008.03.013
Holm S. Holm A. K. Ekström L. Karladani A. Hansson T. (2004). Experimental Disc Degeneration Due to Endplate Injury. J. Spinal Disord. Tech. 17, 64–71. 10.1097/00024720-200402000-00012
Hoogendoorn W. E. van Poppel M. N. M. Bongers P. M. Koes B. W. Bouter L. M. (2000). Systematic Review of Psychosocial Factors at Work and Private Life as Risk Factors for Back Pain. Spine 25, 2114–2125. 10.1097/00007632-200008150-00017
Horner H. A. Urban J. P. G. (20012001). 2001 Volvo Award Winner in Basic Science Studies: Effect of Nutrient Supply on the Viability of Cells from the Nucleus Pulposus of the Intervertebral Disc. Spine 26, 2543–2549. 10.1097/00007632-200112010-00006
Hoyland J. A. Le Maitre C. Freemont A. J. (2008). Investigation of the Role of IL-1 and TNF in Matrix Degradation in the Intervertebral Disc. Rheumatology 47, 809–814. 10.1093/rheumatology/ken056
Hu J. Yan Q. Shi C. Tian Y. Cao P. Yuan W. (2017). BMSC Paracrine Activity Attenuates Interleukin-1β-Induced Inflammation and Apoptosis in Rat AF Cells via Inhibiting Relative NF-Κb Signaling and the Mitochondrial Pathway. Am. J. Transl. Res. 9, 79–89.
Hu Z. Mellor J. Wu J. DeLisi C. (2004). VisANT: an Online Visualization and Analysis Tool for Biological Interaction Data. Bmc. Bioinforma. 5, 17. 10.1186/1471-2105-5-17
Huang Y.-C. Hu Y. Li Z. Luk K. D. K. (2018). Biomaterials for Intervertebral Disc Regeneration: Current Status and Looming Challenges. J. Tissue. Eng. Regen. Med. 12, 2188–2202. 10.1002/term.2750
Hunter C. J. De Plaen I. G. (2014). Inflammatory Signaling in NEC: Role of NF-Κb, Cytokines and Other Inflammatory Mediators. Pathophysiology 21, 55–65. 10.1016/j.pathophys.2013.11.010
Hunter C. J. (1988). The Biology of the Intervertebral Disc. Boca Raton, Florida, US: CRC Press.
Hwang M. H. Son H.-G. Kim J. Choi H. (2020). In Vitro model of Distinct Catabolic and Inflammatory Response Patterns of Endothelial Cells to Intervertebral Disc Cell Degeneration. Sci. Rep. 10, 20596. 10.1038/s41598-020-77785-6
Iatridis J. C. Mente P. L. Stokes I. A. F. Aronsson D. D. Alini M. (1999). Compression-induced Changes in Intervertebral Disc Properties in a Rat Tail Model. Spine 24, 996–1002. 10.1097/00007632-199905150-00013
Illien-Jünger S. Walter B. A. Mayer J. E. Hecht A. C. Iatridis J. C. (2014). “Intervertebral Disc Culture Models and Their Applications to Study Pathogenesis and Repair,” in The Intervertebral Disc (Vienna: Springer), 353–371. 10.1007/978-3-7091-1535-0_22
Isa I. L. M. Mokhtar S. A. Abbah S. A. Fauzi M. B. Devitt A. Pandit A. (2022). Intervertebral Disc Degeneration: Biomaterials and Tissue Engineering Strategies toward Precision Medicine. Adv. Healthc. Mater., e2102530. 10.1002/adhm.202102530
Jauregui J. J. Tran A. Kaveeshwar S. Nadarajah V. Chaudhri M. W. Henn R. F. et al. (2021). Diagnosing a Periprosthetic Shoulder Infection: A Systematic Review. J. Orthop. 26, 58–66. 10.1016/j.jor.2021.07.012
Jensen C. Teng Y. (2020). Is it Time to Start Transitioning from 2D to 3D Cell Culture? Front. Mol. Biosci. 7, 33. 10.3389/fmolb.2020.00033
Jiang J. Cole J. B. Freebern E. Da Y. VanRaden P. M. Ma L. (2019). Functional Annotation and Bayesian Fine-Mapping Reveals Candidate Genes for Important Agronomic Traits in Holstein Bulls. Commun. Biol. 2, 1–12. 10.1038/s42003-019-0454-y
Jin L. Balian G. Li X. J. (2018). Animal Models for Disc Degeneration-An Update. Histol. Histopathol. 33, 543–554. 10.14670/HH-11-910
Johnson W. E. B. Caterson B. Eisenstein S. M. Hynds D. L. Snow D. M. Roberts S. (2002). Human Intervertebral Disc Aggrecan Inhibits Nerve Growth In Vitro. Arthritis & Rheumatism 46, 2658–2664. 10.1002/art.10585
Johnson W. E. B. Caterson B. Eisenstein S. M. Roberts S. (2005). Human Intervertebral Disc Aggrecan Inhibits Endothelial Cell Adhesion and Cell Migration In Vitro. Spine 30, 1139–1147. 10.1097/01.brs.0000162624.95262.73
Johnson W. E. B. Stephan S. Roberts S. (2008). The Influence of Serum, Glucose and Oxygen on Intervertebral Disc Cell Growth In Vitro: Implications for Degenerative Disc Disease. Arthritis Res. Ther. 10, R46. 10.1186/ar2405
Johnson Z. I. Doolittle A. C. Snuggs J. W. Shapiro I. M. Le Maitre C. L. Risbud M. V. (2017). TNF-α Promotes Nuclear Enrichment of the Transcription Factor TonEBP/NFAT5 to Selectively Control Inflammatory but Not Osmoregulatory Responses in Nucleus Pulposus Cells. J. Biol. Chem. 292, 17561–17575. 10.1074/jbc.M117.790378
Johnson Z. Schoepflin Z. R. Schoepflin Z. Choi H. Shapiro I. Risbud M. (2015). Disc in Flames: Roles of TNF-α and IL-1β in Intervertebral Disc Degeneration. eCM 30, 104–117. 10.22203/ecm.v030a08
Jones A. C. Wilcox R. K. (2008). Finite Element Analysis of the Spine: towards a Framework of Verification, Validation and Sensitivity Analysis. Med. Eng. Phys. 30, 1287–1304. 10.1016/j.medengphy.2008.09.006
Jones P. Gardner L. Menage J. Williams G. T. Roberts S. (2008). Intervertebral Disc Cells as Competent Phagocytes In Vitro: Implications for Cell Death in Disc Degeneration. Arthritis Res. Ther. 10, R86. 10.1186/ar2466
Kalb S. Martirosyan N. L. Kalani M. Y. S. Broc G. G. Theodore N. (2012). Genetics of the Degenerated Intervertebral Disc. World Neurosurg. 77, 491–501. 10.1016/j.wneu.2011.07.014
Kang J. D. Stefanovic-Racic M. McIntyre L. A. Georgescu H. I. Evans C. H. (1997). Toward a Biochemical Understanding of Human Intervertebral Disc Degeneration and Herniation. Spine 22, 1065–1073. 10.1097/00007632-199705150-00003
Karasugi T. Semba K. Hirose Y. Kelempisioti A. Nakajima M. Miyake A. et al. (2009). Association of the Tag SNPs in the HumanSKTGene (KIAA1217) with Lumbar Disc Herniation. J. Bone Mineral Res. 24, 1537–1543. 10.1359/jbmr.090314
Karppinen J. Daavittila I. Solovieva S. Kuisma M. Taimela S. Natri A. et al. (2008). Genetic Factors Are Associated with Modic Changes in Endplates of Lumbar Vertebral Bodies. Spine 33, 1236–1241. 10.1097/BRS.0b013e318170fd0e
Kashtan N. Itzkovitz S. Milo R. Alon U. (2004). Efficient Sampling Algorithm for Estimating Subgraph Concentrations and Detecting Network Motifs. Bioinformatics 20, 1746–1758. 10.1093/bioinformatics/bth163
Kawaguchi Y. (2018). Genetic Background of Degenerative Disc Disease in the Lumbar Spine. Spine Surg. Relat. Res. 2, 98–112. 10.22603/ssrr.2017-0007
Kawaguchi Y. Osada R. Kanamori M. Ishihara H. Ohmori K. Matsui H. et al. (1999). Association between an Aggrecan Gene Polymorphism and Lumbar Disc Degeneration. Spine 24, 2456–2460. 10.1097/00007632-199912010-00006
Kelempisioti A. Eskola P. J. Okuloff A. Karjalainen U. Takatalo J. Daavittila I. et al. (2011). Genetic Susceptibility of Intervertebral Disc Degeneration Among Young Finnish Adults. Bmc. Med. Genet. 12, 12–153. 10.1186/1471-2350-12-153
Kelly T.-A. N. Ng K. W. Ateshian G. A. Hung C. T. (2009). Analysis of Radial Variations in Material Properties and Matrix Composition of Chondrocyte-Seeded Agarose Hydrogel Constructs. Osteoarthr. Cartil. 17, 73–82. 10.1016/j.joca.2008.05.019
Kepler C. K. Ponnappan R. K. Tannoury C. A. Risbud M. V. Anderson D. G. (2013). The Molecular Basis of Intervertebral Disc Degeneration. Spine J. 13, 318–330. 10.1016/j.spinee.2012.12.003
Kim A.-G. Kim T.-W. Kwon W.-K. Lee K.-H. Jeong S. Hwang M.-H. et al. (2021). Microfluidic Chip with Low Constant-Current Stimulation (LCCS) Platform: Human Nucleus Pulposus Degeneration In Vitro Model for Symptomatic Intervertebral Disc. Micromachines 12, 1291. 10.3390/mi12111291
Kim N. K. Shin D. A. Han I. B. Yoo E. H. Kim S. H. Chung S. S. (2010). The Association of Aggrecan Gene Polymorphism with the Risk of Intervertebral Disc Degeneration. Acta Neurochir. 153, 129–133. 10.1007/s00701-010-0831-2
Knudson C. B. Knudson W. (2001). Cartilage Proteoglycans. Seminars Cell & Dev. Biol. 12, 69–78. 10.1006/scdb.2000.0243
Krock E. Rosenzweig D. H. Chabot-Doré A. J. Jarzem P. Weber M. H. Ouellet J. A. et al. (2014). Painful, Degenerating Intervertebral Discs Up-Regulate Neurite Sprouting andCGRPthrough Nociceptive Factors. J. Cell. Mol. Med. 18, 1213–1225. 10.1111/jcmm.12268
Kudo S. Mizuno K. Hirai Y. Shimizu T. (1990). Clearance and Tissue Distribution of Recombinant Human Interleukin 1 Beta in Rats. Cancer. Res. 50, 5751–5755.
Lakstins K. Arnold L. Gunsch G. Flanigan D. Khan S. Gadde N. et al. (2021). Characterization of the Human Intervertebral Disc Cartilage Endplate at the Molecular, Cell, and Tissue Levels. J. Orthop. Res. 39, 1898–1907. 10.1002/jor.24854
Lama P. Le Maitre C. L. Harding I. J. Dolan P. Adams M. A. (2018). Nerves and Blood Vessels in Degenerated Intervertebral Discs Are Confined to Physically Disrupted Tissue. J. Anat. 233, 86–97. 10.1111/joa.12817
Larson J. W. Levicoff E. A. Gilbertson L. G. Kang J. D. (2006). Biologic Modification of Animal Models of Intervertebral Disc Degeneration. J. Bone. Jt. Surg. Am. 88 (Suppl. 2), 83–87. 10.2106/JBJS.F.00043
Lazarus E. Bermudez-Lekerika P. Farchione D. Schofield T. Howard S. Mambetkadyrov I. et al. (2021). Sulfated Hydrogels in Intervertebral Disc and Cartilage Research. Cells 10, 3568. 10.3390/cells10123568
Le Maitre C. Freemont A. J. Hoyland J. (2005). The Role of Interleukin-1 in the Pathogenesis of Human Intervertebral Disc Degeneration. Arthritis Res. Ther. 7, R732–R745. 10.1186/ar1732
Le Maitre C. Hoyland J. Freemont A. J. (2007). Catabolic Cytokine Expression in Degenerate and Herniated Human Intervertebral Discs: IL-1β and TNFα Expression Profile. Arthritis Res. Ther. 9, R77. 10.1186/ar2275
Le Maitre C. L. Frain J. Fotheringham A. P. Freemont A. J. Hoyland J. A. (2008). Human Cells Derived from Degenerate Intervertebral Discs Respond Differently to Those Derived from Non-degenerate Intervertebral Discs Following Application of Dynamic Hydrostatic Pressure. Biorheology 45, 563–575. 10.3233/BIR-2008-0498
Le Maitre C. L. Frain J. Millward-Sadler J. Fotheringham A. P. Freemont A. J. Hoyland J. A. (2009a). Altered Integrin Mechanotransduction in Human Nucleus Pulposus Cells Derived from Degenerated Discs. Arthritis. Rheum. 60(2), 460–469. 10.1002/art.24248
Le Maitre C. L. Freemont A. J. Hoyland J. A. (2009b). Expression of Cartilage-Derived Morphogenetic Protein in Human Intervertebral Discs and its Effect on Matrix Synthesis in Degenerate Human Nucleus Pulposus Cells. Arthritis Res. Ther. 11(5), R137. 10.1186/ar2808
Lee J. M. Song J. Y. Baek M. Jung H.-Y. Kang H. Han I. B. et al. (2011). Interleukin-1β Induces Angiogenesis and Innervation in Human Intervertebral Disc Degeneration. J. Orthop. Res. 29, 265–269. 10.1002/jor.21210
Leung L. Cahill C. M. (2010). TNF-α and Neuropathic Pain - a Review. J. Neuroinflammation 7, 27–11. 10.1186/1742-2094-7-27
Li C.-G. Liang Q.-Q. Zhou Q. Menga E. Cui X.-J. Shu B. et al. (2009). A Continuous Observation of the Degenerative Process in the Intervertebral Disc of Smad3 Gene Knock-Out Mice. Spine 34, 1363–1369. 10.1097/BRS.0b013e3181a3c7c7
Li H. Li W. Zhang L. He J. Tang L. Li Z. et al. (2022). Comprehensive Network Analysis Identified SIRT7, NTRK2, and CHI3L1 as New Potential Markers for Intervertebral Disc Degeneration. J. Oncol. 2022, 1–17. 10.1155/2022/4407541
Li W. Lai K. Chopra N. Zheng Z. Das A. Diwan A. D. (2022). Gut-disc axis: A Cause of Intervertebral Disc Degeneration and Low Back Pain? Eur. Spine J. 31(4), 917–992. 10.1007/s00586-022-07152-8
Li X. Lin F. Wu Y. Liu N. Wang J. Chen R. et al. (2019). Resveratrol Attenuates Inflammation Environment-Induced Nucleus Pulposus Cell Senescence In Vitro. Biosci. Rep. 39, 30962260. 10.1042/BSR20190126
Li Y. Li K. Mao L. Han X. Zhang K. Zhao C. et al. (2016). Cordycepin Inhibits LPS-Induced Inflammatory and Matrix Degradation in the Intervertebral Disc. PeerJ 4, e1992. 10.7717/peerj.1992
Li Z. Shao Z. Chen S. Huang D. Peng Y. Chen S. et al. (2020). TIGAR Impedes Compression-Induced Intervertebral Disc Degeneration by Suppressing Nucleus Pulposus Cell Apoptosis and Autophagy. J. Cell. Physiology 235, 1780–1794. 10.1002/jcp.29097
Lin X. Lin Q. (2020). MiRNA-495-3p Attenuates TNF-α Induced Apoptosis and Inflammation in Human Nucleus Pulposus Cells by Targeting IL5RA. Inflammation 43, 1797–1805. 10.1007/s10753-020-01254-5
Lindblom K. (1957). Intervertebral-disc Degeneration Considered as a Pressure Atrophy. J. Bone & Jt. Surg. 39, 933–945. 10.2106/00004623-195739040-00016
Liu G.-Z. Ishihara H. Osada R. Kimura T. Tsuji H. (2001). Nitric Oxide Mediates the Change of Proteoglycan Synthesis in the Human Lumbar Intervertebral Disc in Response to Hydrostatic Pressure. Spine 26, 134–141. 10.1097/00007632-200101150-00005
Liu L. He J. Liu C. Yang M. Fu J. Yi J. et al. (2021). Cartilage Intermediate Layer Protein Affects the Progression of Intervertebral Disc Degeneration by Regulating the Extracellular Microenvironment (Review). Int. J. Mol. Med. 47, 475–484. 10.3892/ijmm.2020.4832
Liu S. Wu N. Liu J. Liu H. Su X. Liu Z. et al. (2016). Association betweenADAMTS-4gene Polymorphism and Lumbar Disc Degeneration in Chinese Han Population. J. Orthop. Res. 34, 860–864. 10.1002/jor.23081
Loibl M. Wuertz-Kozak K. Vadala G. Lang S. Fairbank J. Urban J. P. (2019). Controversies in Regenerative Medicine: Should Intervertebral Disc Degeneration Be Treated with Mesenchymal Stem Cells? JOR Spine 2, e1043. 10.1002/jsp2.1043
Lotz J. C. (2004). Animal Models of Intervertebral Disc Degeneration. Spine 29, 2742–2750. 10.1097/01.brs.0000146498.04628.f9
Lü D.-S. Shono Y. Oda I. Abumi K. Kaneda K. (1997). Effects of Chondroitinase ABC and Chymopapain on Spinal Motion Segment Biomechanics. Spine 22, 1828–1834.; discussion 1834-5. 10.1097/00007632-199708150-00006
Lyons G. Eisenstein S. M. Sweet M. B. E. (1981). Biochemical Changes in Intervertebral Disc Degeneration. Biochimica Biophysica Acta (BBA) - General Subj. 673, 443–453. 10.1016/0304-4165(81)90476-1
MacLean M. A. Touchette C. J. Han J. H. Christie S. D. Pickett G. E. (2020). Gender Differences in the Surgical Management of Lumbar Degenerative Disease: a Scoping Review. Spine 32, 799–816. 10.3171/2019.11.SPINE19896
Maidhof R. Jacobsen T. Papatheodorou A. Chahine N. O. (2014). Inflammation Induces Irreversible Biophysical Changes in Isolated Nucleus Pulposus Cells. PLoS ONE 9, e99621. 10.1371/journal.pone.0099621
Mainardi A. Cambria E. Occhetta P. Martin I. Barbero A. Schären S. et al. (2021). Intervertebral Disc-On-A-Chip as Advanced In Vitro Model for Mechanobiology Research and Drug Testing: A Review and Perspective. Front. Bioeng. Biotechnol. 9, 826867. 10.3389/fbioe.2021.826867
Malandrino A. Noailly J. Lacroix D. (2011). The Effect of Sustained Compression on Oxygen Metabolic Transport in the Intervertebral Disc Decreases with Degenerative Changes. PLoS. Comput. Biol. 7, e1002112. 10.1371/journal.pcbi.1002112
Manolio T. A. Collins F. S. Cox N. J. Goldstein D. B. Hindorff L. A. Hunter D. J. et al. (2009). Finding the Missing Heritability of Complex Diseases. Nature 461, 747–753. 10.1038/nature08494
Masuda K. Lotz J. C. (2010). New Challenges for Intervertebral Disc Treatment Using Regenerative Medicine. Tissue Eng. Part B Rev. 16, 147–158. 10.1089/ten.TEB.2009.0451
Mayer J. E. Iatridis J. C. Chan D. Qureshi S. A. Gottesman O. Hecht A. C. (2013). Genetic Polymorphisms Associated with Intervertebral Disc Degeneration. Spine J. 13, 299–317. 10.1016/j.spinee.2013.01.041
McAfee P. C. Cunningham B. Holsapple G. Adams K. Blumenthal S. Guyer R. D. et al. (2005). A Prospective, Randomized, Multicenter Food and Drug Administration Investigational Device Exemption Study of Lumbar Total Disc Replacement with the CHARITÉ Artificial Disc versus Lumbar Fusion. Spine 30, 1576–1583. 10.1097/01.brs.0000170561.25636.1c
McLaren W. Gil L. Hunt S. E. Riat H. S. Ritchie G. R. S. Thormann A. et al. (2016). The Ensembl Variant Effect Predictor. Genome. Biol. 17, 1–14. 10.1186/s13059-016-0974-4
Merceron C. Mangiavini L. Robling A. Wilson T. L. Giaccia A. J. Shapiro I. M. et al. (2014). Loss of HIF-1α in the Notochord Results in Cell Death and Complete Disappearance of the Nucleus Pulposus. PLoS. ONE 9, e110768. 10.1371/journal.pone.0110768
Metzcar J. Wang Y. Heiland R. Macklin P. (2019). A Review of Cell-Based Computational Modeling in Cancer Biology. JCO Clin. cancer Inf. 3, 1–13. 10.1200/CCI.18.00069
Milenković T. Lai J. Pržulj N. (2008). GraphCrunch: a Tool for Large Network Analyses. Bmc. Bioinforma. 9, 70. 10.1186/1471-2105-9-70
Millecamps I. Tajerian M. Sage E. H. Stone L. S. (2011). Behavioral Signs of Chronic Back Pain in the SPARC-Null Mouse. Spine 36, 95–102. 10.1097/BRS.0b013e3181cd9d75
Millecamps M. Tajerian M. Naso L. Sage H. E. Stone L. S. (2012). Lumbar Intervertebral Disc Degeneration Associated with Axial and Radiating Low Back Pain in Ageing SPARC-Null Mice. Pain 153, 1167–1179. 10.1016/j.pain.2012.01.027
Millward-Sadler S. J. Costello P. W. Freemont A. J. Hoyland J. A. (2009). Regulation of Catabolic Gene Expression in Normal and Degenerate Human Intervertebral Disc Cells: Implications for the Pathogenesis of Intervertebral Disc Degeneration. Arthritis Res. Ther. 11, R65. 10.1186/ar2693
Min S.-K. Nakazato K. Yamamoto Y. Gushiken K. Fujimoto H. Fujishiro H. et al. (2010). Cartilage Intermediate Layer Protein Gene Is Associated with Lumbar Disc Degeneration in Male, but Not Female, Collegiate Athletes. Am. J. Sports. Med. 38, 2552–2557. 10.1177/0363546510376714
Mio F. Chiba K. Hirose Y. Kawaguchi Y. Mikami Y. Oya T. et al. (2007). A Functional Polymorphism in COL11A1, Which Encodes the α1 Chain of Type XI Collagen, Is Associated with Susceptibility to Lumbar Disc Herniation. Am. J. Hum. Genet. 81, 1271–1277. 10.1086/522377
Miyagi M. Millecamps M. Danco A. T. Ohtori S. Takahashi K. Stone L. S. (2014). ISSLS Prize Winner. Spine 39, 1345–1354. 10.1097/BRS.0000000000000334
Miyazaki T. Kobayashi S. Takeno K. Meir A. Urban J. Baba H. (2009). A Phenotypic Comparison of Proteoglycan Production of Intervertebral Disc Cells Isolated from Rats, Rabbits, and Bovine Tails; Which Animal Model Is Most Suitable to Study Tissue Engineering and Biological Repair of Human Disc Disorders? Tissue Eng. Part A 15, 3835–3846. 10.1089/ten.tea.2009.0250
Moon S. M. Yoder J. H. Wright A. C. Smith L. J. Vresilovic E. J. Elliott D. M. (2013). Evaluation of Intervertebral Disc Cartilaginous Endplate Structure Using Magnetic Resonance Imaging. Eur. Spine J. 22, 1820–1828. 10.1007/s00586-013-2798-1
Moore R. J. (2000). The Vertebral End-Plate: what Do We Know? Eur. Spine J. 9, 92–96. 10.1007/s005860050217
Mountjoy E. Schmidt E. M. Carmona M. Schwartzentruber J. Peat G. Miranda A. et al. (2021). An Open Approach to Systematically Prioritize Causal Variants and Genes at All Published Human GWAS Trait-Associated Loci. Nat. Genet. 53, 1527–1533. 10.1038/s41588-021-00945-5
Mu J. Ge W. Zuo X. Chen Y. Huang C. (2013). Analysis of Association between IL-1β, CASP-9, and GDF5 Variants and Low-Back Pain in Chinese Male Soldiers. Spi 19, 243–247. 10.3171/2013.4.SPINE12782
Munir S. Freidin M. B. Rade M. Määttä J. Livshits G. Williams F. M. K. (2018). Endplate Defect Is Heritable, Associated with Low Back Pain and Triggers Intervertebral Disc Degeneration. Spine 43, 1496–1501. 10.1097/BRS.0000000000002721
Näkki A. Videman T. Kujala U. M. Suhonen M. Männikkö M. Peltonen L. et al. (2011). Candidate Gene Association Study of Magnetic Resonance Imaging-Based Hip Osteoarthritis (OA): Evidence for COL9A2 Gene as a Common Predisposing Factor for Hip OA and Lumbar Disc Degeneration. J. Rheumatol. 38, 747–752. 10.3899/jrheum.100080
Naqvi S. M. Buckley C. T. (2015). Differential Response of Encapsulated Nucleus Pulposus and Bone Marrow Stem Cells in Isolation and Coculture in Alginate and Chitosan Hydrogels. Tissue Eng. Part A 21, 288–299. 10.1089/ten.TEA.2013.0719
Neidlinger-Wilke C. Mietsch A. Rinkler C. Wilke H.-J. Ignatius A. Urban J. (2012). Interactions of Environmental Conditions and Mechanical Loads Have Influence on Matrix Turnover by Nucleus Pulposus Cells. J. Orthop. Res. 30, 112–121. 10.1002/jor.21481
Newell N. Little J. Christou A. Adams M. Adam C. Masouros S. (2017). Biomechanics of the Human Intervertebral Disc: A Review of Testing Techniques and Results. J. Mech. Behav. Biomed. Mater. 69, 420–434. 10.1016/j.jmbbm.2017.01.037
Nicolae D. L. Gamazon E. Zhang W. Duan S. Dolan M. E. Cox N. J. (2010). Trait-associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from GWAS. PLoS Genet. 6, e1000888. 10.1371/journal.pgen.1000888
Niemeyer F. Galbusera F. Tao Y. Kienle A. Beer M. Wilke H.-J. (2021). A Deep Learning Model for the Accurate and Reliable Classification of Disc Degeneration Based on MRI Data. Invest. Radiol. 56, 78–85. 10.1097/RLI.0000000000000709
Noponen-Hietala N. Kyllönen E. Männikkö M. Ilkko E. Karppinen J. Ott J. et al. (2003). Sequence Variations in the Collagen IX and XI Genes Are Associated with Degenerative Lumbar Spinal Stenosis. Ann. Rheumatic Dis. 62, 1208–1214. 10.1136/ard.2003.008334
Noponen-Hietala N. Virtanen I. Karttunen R. Schwenke S. Jakkula E. Li H. et al. (2005). Genetic Variations in IL6 Associate with Intervertebral Disc Disease Characterized by Sciatica. Pain 114, 186–194. 10.1016/j.pain.2004.12.015
Novais E. J. Choi H. Madhu V. Suyama K. Anjo S. I. Manadas B. et al. (2021). Hypoxia and Hypoxia-Inducible Factor-1α Regulate Endoplasmic Reticulum Stress in Nucleus Pulposus Cells. Am. J. Pathology 191, 487–502. 10.1016/j.ajpath.2020.11.012
O′Connell G. D. Vresilovic E. J. Elliott D. M. (2007). Comparison of Animals Used in Disc Research to Human Lumbar Disc Geometry. Spine 32, 328–333. 10.1097/01.brs.0000253961.40910.c1
Oliver J. C. Bland L. A. Oettinger C. W. Arduino M. J. McAllister S. K. Aguero S. M. et al. (1993). Cytokine Kinetics in an In Vitro Whole Blood Model Following an Endotoxin Challenge. Lymphokine Cytokine Res. 12, 115–120.
Omair A. Holden M. Lie B. A. Reikeras O. Brox J. I. (2013). Treatment Outcome of Chronic Low Back Pain and Radiographic Lumbar Disc Degeneration Are Associated with Inflammatory and Matrix Degrading Gene Variants: a Prospective Genetic Association Study. BMC Musculoskelet. Disord. 14, 1–9. 10.1186/1471-2474-14-105
Oshima H. Ishihara H. Urban J. P. G. Tsuji H. (1993). The Use of Coccygeal Discs to Study Intervertebral Disc Metabolism. J. Orthop. Res. 11, 332–338. 10.1002/jor.1100110304
Oswald K. A. C. Bigdon S. F. Croft A. S. Bermudez-Lekerika P. Bergadano A. Gantenbein B. et al. (2021). Establishment of a Novel Method for Spinal Discectomy Surgery in Elderly Rats in an In Vivo Spinal Fusion Model. MPs 4, 79. 10.3390/mps4040079
Öztürk E. ArlovAksel Ø. Aksel S. Li L. Ornitz D. M. Skjåk-Braek G. et al. (2016). Sulfated Hydrogel Matrices Direct Mitogenicity and Maintenance of Chondrocyte Phenotype through Activation of FGF Signaling. Adv. Funct. Mat. 26, 3649–3662. 10.1002/adfm.201600092
Paassilta P. Lohiniva J. Göring H. H. Perälä M. Räinä S. S. Karppinen J. et al. (2001). Identification of a Novel Common Genetic Risk Factor for Lumbar Disk Disease. JAMA 285, 1843–1849. 10.1001/jama.285.14.1843
Parenteau C. S. Lau E. C. Campbell I. C. Courtney A. (2021). Prevalence of Spine Degeneration Diagnosis by Type, Age, Gender, and Obesity Using Medicare Data. Sci. Rep. 11, 5389. 10.1038/s41598-021-84724-6
Pattappa G. Peroglio M. Peroglio M. Sakai D. Mochida J. Benneker L. et al. (2014). CCL5/RANTES Is a Key Chemoattractant Released by Degenerative Intervertebral Discs in Organ Culture. eCM 27, 124–136.; discussion 136. 10.22203/ecm.v027a10
Paul C. P. L. Schoorl T. Zuiderbaan H. A. Zandieh Doulabi B. van der Veen A. J. van de Ven P. M. et al. (2013). Dynamic and Static Overloading Induce Early Degenerative Processes in Caprine Lumbar Intervertebral Discs. PLoS ONE 8, e62411. 10.1371/journal.pone.0062411
Paul C. P. L. Zuiderbaan H. A. Zandieh Doulabi B. van der Veen A. J. van de Ven P. M. Smit T. H. et al. (2012). Simulated-physiological Loading Conditions Preserve Biological and Mechanical Properties of Caprine Lumbar Intervertebral Discs in Ex Vivo Culture. PLoS ONE 7, e33147. 10.1371/journal.pone.0033147
Pearce D. Fischer S. Huda F. Vahdati A. (2020). Applications of Computer Modeling and Simulation in Cartilage Tissue Engineering. Tissue. Eng. Regen. Med. 17, 1–13. 10.1007/s13770-019-00216-9
Pfaff T. Fortunato M. Sanchez-Gonzalez A. Battaglia P. W. (2020). Learning Mesh-Based Simulation with Graph Networks. 10.48550/ARXIV.2010.03409
Pfannkuche J.-J. Guo W. Cui S. Ma J. Lang G. Peroglio M. et al. (2020). Intervertebral Disc Organ Culture for the Investigation of Disc Pathology and Regeneration - Benefits, Limitations, and Future Directions of Bioreactors. Connect. Tissue Res. 61, 304–321. 10.1080/03008207.2019.1665652
Phillips F. M. Reuben J. Wetzel F. T. (2002). Intervertebral Disc Degeneration Adjacent to a Lumbar Fusion. An Experimental Rabbit Model. J. Bone Jt. Surg. Br. volume 84, 289–294. 10.1302/0301-620x.84b2.11937
Phillips K. L. E. Chiverton N. Michael A. L. Cole A. A. Breakwell L. M. Haddock G. et al. (2013a). The Cytokine and Chemokine Expression Profile of Nucleus Pulposus Cells: Implications for Degeneration and Regeneration of the Intervertebral Disc. Arthritis Res. Ther. 15, R213. 10.1186/ar4408
Phillips K. L. E. Cullen K. Chiverton N. Michael A. L. R. Cole A. A. Breakwell L. M. et al. (2015). Potential Roles of Cytokines and Chemokines in Human Intervertebral Disc Degeneration: Interleukin-1 Is a Master Regulator of Catabolic Processes. Osteoarthr. Cartil. 23, 1165–1177. 10.1016/j.joca.2015.02.017
Phillips K. L. E. Jordan-Mahy N. Nicklin M. J. H. Le Maitre C. L. (2013b). Interleukin-1 Receptor Antagonist Deficient Mice Provide Insights into Pathogenesis of Human Intervertebral Disc Degeneration. Ann. Rheum. Dis. 72(11), 1860–1867. 10.1136/annrheumdis-2012-202266
Pincus T. Burton A. K. Vogel S. Field A. P. (2002). A Systematic Review of Psychological Factors as Predictors of Chronicity/disability in Prospective Cohorts of Low Back Pain. Spine 27, E109–E120. 10.1097/00007632-200203010-00017
Pluijm S. M. F. Hw V. E. Bravenboer N. Uitterlinden A. G. Smit J. H. Pols H. A. et al. (2004). Collagen Type I 1 Sp1 Polymorphism, Osteoporosis, and Intervertebral Disc Degeneration in Older Men and Women. Ann. Rheumatic Dis. 63, 71–77. 10.1136/ard.2002.002287
Pockert A. J. Richardson S. M. Le Maitre C. L. Lyon M. Deakin J. A. Buttle D. J. et al. (2009). Modified Expression of the ADAMTS Enzymes and Tissue Inhibitor of Metalloproteinases 3 during Human Intervertebral Disc Degeneration. Arthritis Rheum. 60, 482–491. 10.1002/art.24291
Purmessur D. Freemont A. J. Hoyland J. A. (2008). Expression and Regulation of Neurotrophins in the Nondegenerate and Degenerate Human Intervertebral Disc. Arthritis Res. Ther. 10, R99. 10.1186/ar2487
Raine E. V. A. Reynard L. N. van de Laar I. M. B. H. Bertoli-Avella A. M. Loughlin J. (2014). Identification and Analysis of a SMAD3 Cis-Acting eQTL Operating in Primary Osteoarthritis and in the Aneurysms and Osteoarthritis Syndrome. Osteoarthr. Cartil. 22, 698–705. 10.1016/j.joca.2014.02.931
Rajasekaran S. Kanna R. M. Senthil N. Raveendran M. Ranjani V. Cheung K. M. C. et al. (2014). Genetic Susceptibility of Lumbar Degenerative Disc Disease in Young Indian Adults. Eur. Spine J. 24, 1969–1975. 10.1007/s00586-014-3687-y
Rajasekaran S. Soundararajan D. C. R. Tangavel C. Muthurajan R. Sri Vijay Anand K. S. Matchado M. S. et al. (2020). Human Intervertebral Discs Harbour a Unique Microbiome and Dysbiosis Determines Health and Disease. Eur. Spine J. 29, 1621–1640. 10.1007/s00586-020-06446-z
Rastogi A. Thakore P. Leung A. Benavides M. Machado M. Morschauser M. A. et al. (2009). Environmental Regulation of Notochordal Gene Expression in Nucleus Pulposus Cells. J. Cell. Physiol. 220, 698–705. 10.1002/jcp.21816
Rätsep T. Minajeva A. Asser T. (2013). Relationship between Neovascularization and Degenerative Changes in Herniated Lumbar Intervertebral Discs. Eur. Spine J. 22, 2474–2480. 10.1007/s00586-013-2842-1
Rijsbergen M. V. van Rietbergen B. Barthelemy V. Eltes P. Lazáry Á. Lacroix D. et al. (2018). Comparison of Patient-specific Computational Models vs. Clinical Follow-Up, for Adjacent Segment Disc Degeneration and Bone Remodelling after Spinal Fusion. PLoS ONE 13, e0200899. 10.1371/journal.pone.0200899
Rikard S. M. Athey T. L. Nelson A. R. Christiansen S. L. M. Lee J.-J. Holmes J. W. et al. (2019). Multiscale Coupling of an Agent-Based Model of Tissue Fibrosis and a Logic-Based Model of Intracellular Signaling. Front. Physiol. 10, 1481. 10.3389/fphys.2019.01481
Rim D. C. (2016). Quantitative Pfirrmann Disc Degeneration Grading System to Overcome the Limitation of Pfirrmann Disc Degeneration Grade. Korean. J. Spine 13, 1–8. 10.14245/kjs.2016.13.1.1
Risbud M. V. Shapiro I. M. (2013). Role of Cytokines in Intervertebral Disc Degeneration: Pain and Disc Content. Nat. Rev. Rheumatol. 10, 44–56. 10.1038/nrrheum.2013.160
Roberts S. Evans H. Trivedi J. Menage J. (2006). Histology and Pathology of the Human Intervertebral Disc. J. Bone. Jt. Surg. Am. 88 (Suppl. 2), 10–14. 10.2106/JBJS.F.00019
Roberts S. Menage J. Urban J. P. G. (1989). Biochemical and Structural Properties of the Cartilage End-Plate and its Relation to the Intervertebral Disc. Spine 14, 166–174. 10.1097/00007632-198902000-00005
Robinson M. R. English G. English G. Moser G. Lloyd-Jones L. R. Triplett M. A. et al. (2017). Genotype-covariate Interaction Effects and the Heritability of Adult Body Mass Index. Nat. Genet. 49, 1174–1181. 10.1038/ng.3912
Romanoski C. E. Glass C. K. Stunnenberg H. G. Wilson L. Almouzni G. (2015). Roadmap for Regulation. Nature 518, 314–316. 10.1038/518314a
Rosiak P. Latanska I. Paul P. Sujka W. Kolesinska B. (2021). Modification of Alginates to Modulate Their Physic-Chemical Properties and Obtain Biomaterials with Different Functional Properties. Molecules 26, 7264. 10.3390/molecules26237264
Ruiz Wills C. Foata B. González Ballester M. Á. Karppinen J. Noailly J. (2018). Theoretical Explorations Generate New Hypotheses about the Role of the Cartilage Endplate in Early Intervertebral Disk Degeneration. Front. Physiol. 9, 1210. 10.3389/fphys.2018.01210
Sadowska A. Altinay B. Hitzl W. Ferguson S. J. Wuertz-Kozak K. (2020). Hypo-Osmotic Loading Induces Expression of IL-6 in Nucleus Pulposus Cells of the Intervertebral Disc Independent of TRPV4 and TRPM7. Front. Pharmacol. 11, 952. 10.3389/fphar.2020.00952
Sadowska A. Kameda T. Kameda T. Krupkova O. Wuertz-Kozak K. (2018). Osmosensing, Osmosignalling and Inflammation: How Intervertebral Disc Cells Respond to Altered Osmolarity. eCM 36, 231–250. 10.22203/eCM.v036a17
Saggese T. Thambyah A. Wade K. McGlashan S. R. (2020). Differential Response of Bovine Mature Nucleus Pulposus and Notochordal Cells to Hydrostatic Pressure and Glucose Restriction. Cartilage 11, 221–233. 10.1177/1947603518775795
Salzer E. Mouser V. H. M. Tryfonidou M. A. Ito K. (2021). A Bovine Nucleus Pulposus Explant Culture Model. J. Orthop. Res [Epub ahead of print]. 10.1002/jor.25226
Samartzis D. Karppinen J. Chan D. Luk K. D. K. Cheung K. M. C. (2012). The Association of Lumbar Intervertebral Disc Degeneration on Magnetic Resonance Imaging with Body Mass Index in Overweight and Obese Adults: a Population-Based Study. Arthritis & Rheumatism 64, 1488–1496. 10.1002/art.33462
Sambrook P. N. MacGregor A. J. Spector T. D. (1999). Genetic Influences on Cervical and Lumbar Disc Degeneration: A Magnetic Resonance Imaging Study in Twins. Arthritis & Rheumatism 42, 366–372. 10.1002/1529-0131(199902)42:2<366::aid-anr20>3.0.co;2-6
Saravi B. Lang G. Grad S. Alini M. Richards R. G. Schmal H. et al. (2021). A Proinflammatory, Degenerative Organ Culture Model to Simulate Early-Stage Intervertebral Disc Disease. JoVE 168. 10.3791/62100
Schaid D. J. Chen W. Larson N. B. (2018). From Genome-wide Associations to Candidate Causal Variants by Statistical Fine-Mapping. Nat. Rev. Genet. 19, 491–504. 10.1038/s41576-018-0016-z
Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014). Biological Insights from 108 Schizophrenia-Associated Genetic Loci. Nature 511, 421–427. 10.1038/nature13595
Schreiber F. Schwöbbermeyer H. (2005). MAVisto: a Tool for the Exploration of Network Motifs. Bioinformatics 21, 3572–3574. 10.1093/bioinformatics/bti556
Seki S. Kawaguchi Y. Chiba K. Mikami Y. Kizawa H. Oya T. et al. (2005). A Functional SNP in CILP, Encoding Cartilage Intermediate Layer Protein, Is Associated with Susceptibility to Lumbar Disc Disease. Nat. Genet. 37, 607–612. 10.1038/ng1557
Shannon P. Markiel A. Ozier O. Baliga N. S. Wang J. T. Ramage D. et al. (2003). Cytoscape: a Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 13, 2498–2504. 10.1101/gr.1239303
Showalter B. L. Beckstein J. C. Martin J. T. Beattie E. E. Orías A. A. E. Schaer T. P. et al. (2012). Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc. Spine 37, E900–E907. 10.1097/BRS.0b013e31824d911c
Smith L. Chiaro J. A. Chiaro J. Nerurkar N. Cortes D. Horava S. et al. (2011). Nucleus Pulposus Cells Synthesize a Functional Extracellular Matrix and Respond to Inflammatory Cytokine Challenge Following Long-Term Agarose Culture. eCM 22, 291–301. 10.22203/ecm.v022a22
Snuggs J. Bunning R. A. Bunning R. Le Maitre C. (2021). Osmotic Adaptation of Nucleus Pulposus Cells: the Role of Aquaporin 1, Aquaporin 4 and Transient Receptor Potential Vanilloid 4. eCM 41, 121–141. 10.22203/eCM.v041a09
Solovieva S. Kouhia S. Leino-Arjas P. Ala-Kokko L. Luoma K. Raininko R. et al. (2004). Interleukin 1 Polymorphisms and Intervertebral Disc Degeneration. Epidemiology 15, 626–633. 10.1097/01.ede.0000135179.04563.35
Solovieva S. Lohiniva J. Leino-Arjas P. Raininko R. Luoma K. Ala-Kokko L. et al. (2006). Intervertebral Disc Degeneration in Relation to the COL9A3 and the IL-1ß Gene Polymorphisms. Eur. Spine J. 15, 613–619. 10.1007/s00586-005-0988-1
Solovieva S. Noponen N. Männikkö M. Leino-Arjas P. Luoma K. Raininko R. et al. (2007). Association between the Aggrecan Gene Variable Number of Tandem Repeats Polymorphism and Intervertebral Disc Degeneration. Spine 32, 1700–1705. 10.1097/BRS.0b013e3180b9ed51
Song Y.-Q. Cheung K. M. C. Ho D. W. H. Poon S. C. S. Chiba K. Kawaguchi Y. et al. (2008). Association of the Asporin D14 Allele with Lumbar-Disc Degeneration in Asians. Am. J. Hum. Genet. 82, 744–747. 10.1016/j.ajhg.2007.12.017
Song Y.-Q. Karasugi T. Cheung K. M. C. Chiba K. Ho D. W. H. Miyake A. et al. (2013). Lumbar Disc Degeneration Is Linked to a Carbohydrate Sulfotransferase 3 Variant. J. Clin. Invest. 123, 4909–4917. 10.1172/JCI69277
Stirling A. Worthington T. Rafiq M. Lambert P. A. Elliott T. S. (2001). Association between Sciatica and Propionibacterium Acnes. Lancet 357, 2024–2025. 10.1016/S0140-6736(00)05109-6
Sun Q. Crowley C. A. Huang L. Wen J. Chen J. Bao E. L. et al. (2022). From GWAS Variant to Function: A Study of ∼148,000 Variants for Blood Cell Traits. Hum. Genet. Genomics Adv. 3, 100063. 10.1016/j.xhgg.2021.100063
Sun Y. Lv M. Zhou L. Tam V. Lv F. Chan D. et al. (2015). Enrichment of Committed Human Nucleus Pulposus Cells Expressing Chondroitin Sulfate Proteoglycans under Alginate Encapsulation. Osteoarthr. Cartil. 23, 1194–1203. 10.1016/j.joca.2015.02.166
Sun Z. Zhang M. Zhao X. H. Liu Z. H. Gao Y. Samartzis D. et al. (2013). Immune Cascades in Human Intervertebral Disc: the Pros and Cons. Int. J. Clin. Exp. Pathol. 6, 1009–1014.
Sun Z.-M. Ling M. Huo Y. Chang Y. Li Y. Qin H. et al. (2011). Caspase 9 Gene Polymorphism and Susceptibility to Lumbar Disc Disease in the Han Population in Northern China. Connect. Tissue Res. 52, 198–202. 10.3109/03008207.2010.510914
Sun Z.-m. Miao L. Zhang Y.-g. Ming L. (2009). Association between the -1562 C/T Polymorphism of Matrix Metalloproteinase-9 Gene and Lumbar Disc Disease in the Young Adult Population in North China. Connect. Tissue Res. 50, 181–185. 10.1080/03008200802585630
Sun Z. Liu B. Luo Z.-J. (2020). The Immune Privilege of the Intervertebral Disc: Implications for Intervertebral Disc Degeneration Treatment. Int. J. Med. Sci. 17, 685–692. 10.7150/ijms.42238
Suyama K. Sakai D. Hirayama N. Nakamura Y. Matsushita E. Terayama H. et al. (2018). Effects of interleukin-17A in Nucleus Pulposus Cells and its Small-Molecule Inhibitors for Intervertebral Disc Disease. J. Cell. Mol. Med. 22, 5539–5551. 10.1111/jcmm.13828
Swärd L. Hellström M. Jacobsson B. O. Nyman R. Peterson L. (1991). Disc Degeneration and Associated Abnormalities of the Spine in Elite Gymnasts. Spine 16, 437–443. 10.1097/00007632-199104000-00009
Tabor H. K. Risch N. J. Myers R. M. (2002). Candidate-gene Approaches for Studying Complex Genetic Traits: Practical Considerations. Nat. Rev. Genet. 3, 391–397. 10.1038/nrg796
Takahashi M. Haro H. Wakabayashi Y. Kawa-uchi T. Komori H. Shinomiya K. (2001). The Association of Degeneration of the Intervertebral Disc with 5a/6a Polymorphism in the Promoter of the Human Matrix Metalloproteinase-3 Gene. J. Bone Jt. Surg. Br. volume 83, 491–495. 10.1302/0301-620x.83b4.11617
Tan H. Zhao J. Jiang J. Ren Y. (2012). Association of the Polymorphism of DR4 with the Risk and Severity of Lumbar Disc Degeneration in the Chinese Han Population. Scand. J. Clin. Laboratory Investigation 72, 576–579. 10.3109/00365513.2012.713176
Tan N. Y. Khachigian L. M. (2009). Sp1 Phosphorylation and its Regulation of Gene Transcription. Mol. Cell. Biol. 29, 2483–2488. 10.1128/MCB.01828-08
Tapias A. Ciudad C. J. Roninson I. B. Noé V. (2008). Regulation of Sp1 by Cell Cycle Related Proteins. Cell. Cycle. 7, 2856–2867. 10.4161/cc.7.18.6671
Teraguchi M. Yoshimura N. Hashizume H. Muraki S. Yamada H. Minamide A. et al. (2014). Prevalence and Distribution of Intervertebral Disc Degeneration over the Entire Spine in a Population-Based Cohort: the Wakayama Spine Study. Osteoarthr. Cartil. 22, 104–110. 10.1016/j.joca.2013.10.019
The GTEX consortium (2020). The GTEx Consortium Atlas of Genetic Regulatory Effects across Human Tissues. Science 369, 1318–1330. 10.1126/science.aaz1776
Thorpe A. A. Bach F. C. Tryfonidou M. A. Le Maitre C. L. Mwale F. Diwan A. D. et al. (2018). Leaping the Hurdles in Developing Regenerative Treatments for the Intervertebral Disc from Preclinical to Clinical. JOR. Spine 1, e1027. 10.1002/jsp2.1027
Tilkeridis C. Bei T. Garantziotis S. Stratakis C. A. (2005). Association of a COL1A1 Polymorphism with Lumbar Disc Disease in Young Military Recruits. J. Med. Genet. 42, e44. 10.1136/jmg.2005.033225
Tolofari S. K. Richardson S. M. Freemont A. J. Hoyland J. A. (2010). Expression of Semaphorin 3A and its Receptors in the Human Intervertebral Disc: Potential Role in Regulating Neural Ingrowth in the Degenerate Intervertebral Disc. Arthritis Res. Ther. 12, R1–R11. 10.1186/ar2898
Tsai T.-T. Danielson K. G. Guttapalli A. Oguz E. Albert T. J. Shapiro I. M. et al. (2006). TonEBP/OREBP Is a Regulator of Nucleus Pulposus Cell Function and Survival in the Intervertebral Disc. J. Biol. Chem. 281, 25416–25424. 10.1074/jbc.M601969200
Turgut M. Uslu S. Uysal A. l. Yurtseven M. E. Ustün H. (2003). Changes in Vascularity of Cartilage Endplate of Degenerated Intervertebral Discs in Response to Melatonin Administration in Rats. Neurosurg. Rev. 26, 133–138. 10.1007/s10143-003-0259-8
Uffelmann E. Huang Q. Q. Munung N. S. de Vries J. Okada Y. Martin A. R. et al. (2021). Genome-wide Association Studies. Nat. Rev. Methods Prim. 1, 1–21. 10.1038/s43586-021-00056-9
Ulrich J. A. Liebenberg E. C. Thuillier D. U. Lotz J. C. (2007). ISSLS Prize Winner: Repeated Disc Injury Causes Persistent Inflammation. Spine 32, 2812–2819. 10.1097/BRS.0b013e31815b9850
Urban J. P. G. Smith S. Fairbank J. C. T. (2004). Nutrition of the Intervertebral Disc. Spine 29, 2700–2709. 10.1097/01.brs.0000146499.97948.52
Urban J. P. G. (2002). The Role of the Physicochemical Environment in Determining Disc Cell Behaviour. Biochem. Soc. Trans. 30, 858–863. 10.1042/bst0300858
Valdes A. M. Hassett G. Hart D. J. Spector T. D. (2005). Radiographic Progression of Lumbar Spine Disc Degeneration Is Influenced by Variation at Inflammatory Genes. Spine 30, 2445–2451. 10.1097/01.brs.0000184369.79744.a5
van Uden S. Silva-Correia J. Oliveira J. M. Reis R. L. (2017). Current Strategies for Treatment of Intervertebral Disc Degeneration: Substitution and Regeneration Possibilities. Biomater. Res. 21, 22. 10.1186/s40824-017-0106-6
Vazirinejad R. Ahmadi Z. Kazemi Arababadi M. Hassanshahi G. Kennedy D. (2014). The Biological Functions, Structure and Sources of CXCL10 and its Outstanding Part in the Pathophysiology of Multiple Sclerosis. Neuroimmunomodulation 21, 322–330. 10.1159/000357780
Vergroesen P.-P. A. Kingma I. Emanuel K. S. Hoogendoorn R. J. W. Welting T. J. van Royen B. J. et al. (2015). Mechanics and Biology in Intervertebral Disc Degeneration: a Vicious Circle. Osteoarthr. Cartil. 23, 1057–1070. 10.1016/j.joca.2015.03.028
Vergroesen P.-P. A. van der Veen A. J. van Royen B. J. Kingma I. Smit T. H. (2014). Intradiscal Pressure Depends on Recent Loading and Correlates with Disc Height and Compressive Stiffness. Eur. Spine J. 23, 2359–2368. 10.1007/s00586-014-3450-4
Verrecchia F. Mauviel A. (2004). TGF-β and TNF-α: Antagonistic Cytokines Controlling Type I Collagen Gene Expression. Cell. Signal. 16, 873–880. 10.1016/j.cellsig.2004.02.007
Videman T. Battié M. C. (1999). Spine Update. Spine 24, 1164–1168. 10.1097/00007632-199906010-00020
Videman T. Saarela J. Kaprio J. Näkki A. Levälahti E. Gill K. et al. (2009). Associations of 25 Structural, Degradative, and Inflammatory Candidate Genes with Lumbar Disc Desiccation, Bulging, and Height Narrowing. Arthritis Rheum. 60, 470–481. 10.1002/art.24268
Virgilio K. M. Martin K. S. Peirce S. M. Blemker S. S. (2018). Agent-based Model Illustrates the Role of the Microenvironment in Regeneration in Healthy and Mdx Skeletal Muscle. J. Appl. Physiology 125, 1424–1439. 10.1152/japplphysiol.00379.2018
Virtanen I. M. Karppinen J. Taimela S. Ott J. Barral S. Kaikkonen K. et al. (2007). Occupational and Genetic Risk Factors Associated with Intervertebral Disc Disease. Spine 32, 1129–1134. 10.1097/01.brs.0000261473.03274.5c
Vital J.-M. Boissière L. (2014). Total Disc Replacement. Orthop. Traumatology Surg. Res. 100, S1–S14. 10.1016/j.otsr.2013.06.018
Volz M. Elmasry S. Jackson A. R. Travascio F. (2022). Computational Modeling Intervertebral Disc Pathophysiology: A Review. Front. Physiol. 12, 750668. 10.3389/fphys.2021.750668
Walter B. A. Illien-Jünger S. Nasser P. R. Hecht A. C. Iatridis J. C. (2014). Development and Validation of a Bioreactor System for Dynamic Loading and Mechanical Characterization of Whole Human Intervertebral Discs in Organ Culture. J. Biomechanics 47, 2095–2101. 10.1016/j.jbiomech.2014.03.015
Walter B. A. Korecki C. L. Purmessur D. Roughley P. J. Michalek A. J. Iatridis J. C. (2011). Complex Loading Affects Intervertebral Disc Mechanics and Biology. Osteoarthr. Cartil. 19, 1011–1018. 10.1016/j.joca.2011.04.005
Walter B. Purmessur D. Purmessur D. Moon A. Occhiogrosso J. Laudier D. et al. (2016). Reduced Tissue Osmolarity Increases TRPV4 Expression and Pro-inflammatory Cytokines in Intervertebral Disc Cells. eCM 32, 123–136. 10.22203/ecm.v032a08
Wang H. Zhou Y. Huang B. Liu L.-T. Liu M.-H. Wang J. et al. (2014). Utilization of Stem Cells in Alginate for Nucleus Pulposus Tissue Engineering. Tissue Eng. Part A 20, 908–920. 10.1089/ten.TEA.2012.0703
Wang M. Tang D. Shu B. Wang B. Jin H. Hao S. et al. (2012). Conditional Activation of β-catenin Signaling in Mice Leads to Severe Defects in Intervertebral Disc Tissue. Arthritis & Rheumatism 64, 2611–2623. 10.1002/art.34469
Wang S.-L. Yu Y.-L. Tang C.-L. Lv F.-Z. (2013). Effects of TGF-Β1 and IL-1β on Expression of ADAMTS Enzymes and TIMP-3 in Human Intervertebral Disc Degeneration. Exp. Ther. Med. 6, 1522–1526. 10.3892/etm.2013.1348
Wáng Y. X. J. Wáng J.-Q. Káplár Z. (2016). Increased Low Back Pain Prevalence in Females Than in Males after Menopause Age: Evidences Based on Synthetic Literature Review. Quant. Imaging Med. Surg. 6, 199–206. 10.21037/qims.2016.04.06
Wangler S. Menzel U. Li Z. Ma J. Hoppe S. Benneker L. M. et al. (2019). CD146/MCAM Distinguishes Stem Cell Subpopulations with Distinct Migration and Regenerative Potential in Degenerative Intervertebral Discs. Osteoarthr. Cartil. 27, 1094–1105. 10.1016/j.joca.2019.04.002
Watanabe K. Taskesen E. van Bochoven A. Posthuma D. (2017). Functional Mapping and Annotation of Genetic Associations with FUMA. Nat. Commun. 8, 1–11. 10.1038/s41467-017-01261-5
Weiler C. Nerlich A. G. Bachmeier B. E. Boos N. (2005). Expression and Distribution of Tumor Necrosis Factor Alpha in Human Lumbar Intervertebral Discs: A Study in Surgical Specimen and Autopsy Controls. Spine 30, 44–53. 10.1097/01.brs.0000149186.63457.20
Wernicke S. Rasche F. (2006). FANMOD: a Tool for Fast Network Motif Detection. Bioinformatics 22, 1152–1153. 10.1093/bioinformatics/btl038
Wilke H. J. Neef P. Caimi M. Hoogland T. Claes L. E. (1999). New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life. Spine 24, 755–762. 10.1097/00007632-199904150-00005
Williams F. M. K. Bansal A. T. van Meurs J. B. Bell J. T. Meulenbelt I. Suri P. et al. (2013). Novel Genetic Variants Associated with Lumbar Disc Degeneration in Northern Europeans: a Meta-Analysis of 4600 Subjects. Ann. Rheum. Dis. 72, 1141–1148. 10.1136/annrheumdis-2012-201551
Williams F. M. K. Popham M. Hart D. J. de Schepper E. Bierma-Zeinstra S. Hofman A. et al. (2011a). GDF5 Single-Nucleotide Polymorphism Rs143383 Is Associated with Lumbar Disc Degeneration in Northern European Women. Arthritis & Rheumatism 63, 708–712. 10.1002/art.30169
Williams F. M. K. Popham M. Sambrook P. N. Jones A. F. Spector T. D. MacGregor A. J. (2011b). Progression of Lumbar Disc Degeneration over a Decade: a Heritability Study. Ann. Rheumatic Dis. 70, 1203–1207. 10.1136/ard.2010.146001
Williams R. J. Tryfonidou M. A. Snuggs J. W. Le Maitre C. L. (2021). Cell Sources Proposed for Nucleus Pulposus Regeneration. JOR. Spine 4, e1175. 10.1002/jsp2.1175
Wöltje M. Böbel M. (2017). “Natural Biodegradable Medical Polymers,” in Science and Principles of Biodegradable and Bioresorbable Medical Polymers. Editor Zhang X. (Amsterdam, The Netherlands: Woodhead Publishing), 351–376. 10.1016/B978-0-08-100372-5.00012-X
Wrocklage C. Wassmann H. Paulus W. (2000). COL9A2 Allelotypes in Intervertebral Disc Disease. Biochem. Biophysical Res. Commun. 279, 398–400. 10.1006/bbrc.2000.3967
Wu N. Chen J. Liu H. Zhao L. Liu S. Liu J. et al. (2014). The Involvement of ADAMTS-5 Genetic Polymorphisms in Predisposition and Diffusion Tensor Imaging Alterations of Lumbar Disc Degeneration. J. Orthop. Res. 32, 686–694. 10.1002/jor.22582
Wuertz K. Urban J. P. G. Klasen J. Ignatius A. Wilke H.-J. Claes L. et al. (2007). Influence of Extracellular Osmolarity and Mechanical Stimulation on Gene Expression of Intervertebral Disc Cells. J. Orthop. Res. 25, 1513–1522. 10.1002/jor.20436
Xu C. Luo S. Wei L. Wu H. Gu W. Zhou W. et al. (2021). Integrated Transcriptome and Proteome Analyses Identify Novel Regulatory Network of Nucleus Pulposus Cells in Intervertebral Disc Degeneration. Bmc. Med. Genomics. 14, 1–12. 10.1186/s12920-021-00889-z
Xu K. Wang X. Zhang Q. Liang A. Zhu H. Huang D. et al. (2016). Sp1 Downregulates Proinflammatory Cytokine-Induced Catabolic Gene Expression in Nucleus Pulposus Cells. Mol. Med. Rep. 14, 3961–3968. 10.3892/mmr.2016.5730
Yang J.-E. Zhao K.-H. Qu Y. Zou Y.-C. (2022). Increased Serum CXCL10 Levels Are Associated with Clinical Severity and Radiographic Progression in Patients with Lumbar Disc Degeneration. Clin. Chim. Acta 525, 15–22. 10.1016/j.cca.2021.12.006
Yang J. Ferreira T. Ferreira T. Morris A. P. Medland S. E. Madden P. A. F. et al. (2012). Conditional and Joint Multiple-SNP Analysis of GWAS Summary Statistics Identifies Additional Variants Influencing Complex Traits. Nat. Genet. 44, 369–375. 10.1038/ng.2213
Yao Y. Deng Q. Song W. Zhang H. Li Y. Yang Y. et al. (2016). MIF Plays a Key Role in Regulating Tissue-specific Chondro-Osteogenic Differentiation Fate of Human Cartilage Endplate Stem Cells under Hypoxia. Stem. Cell. Rep. 7, 249–262. 10.1016/j.stemcr.2016.07.003
Yao Y. Song W. Deng Q. Zhang H. Wang J. Liu H. et al. (2017). General Regulatory Effects of Hypoxia on Human Cartilage Endplate-Derived Stem Cells: A Genome-wide Analysis of Differential Gene Expression and Alternative Splicing Events. Mol. Med. Rep. 16, 3001–3009. 10.3892/mmr.2017.6907
Ye F. Lyu F. J. Wang H. Zheng Z. (2022). The Involvement of Immune System in Intervertebral Disc Herniation and Degeneration. JOR. Spine 5, e1196. 10.1002/jsp2.1196
Yoon S.-H. Miyazaki M. Hong S.-W. Tow B. Morishita Y. Hu M. et al. (2008). A Porcine Model of Intervertebral Disc Degeneration Induced by Annular Injury Characterized with Magnetic Resonance Imaging and Histopathological Findings. Spi 8, 450–457. 10.3171/SPI/2008/8/5/450
Yu H. Zhu X. Greenbaum D. Karro J. Gerstein M. (2004). TopNet: a Tool for Comparing Biological Sub-networks, Correlating Protein Properties with Topological Statistics. Nucleic Acids Res. 32, 328–337. 10.1093/nar/gkh164
Yu W. Fu J. Liu Y. Wu Y. Jiang D. (2018). Osteogenic Protein-1 Inhibits Nucleus Pulposus Cell Apoptosis through Regulating the NF-Κb/ROS Pathway in an Inflammation Environment. Biosci. Rep. 38, BSR20181530. 10.1042/BSR20181530
Zamanian C. Bhandarkar A. R. Monie D. D. Moinuddin F. Vile R. G. Quiñones-Hinojosa A. et al. (2022). Systems Neuroimmunology: a Review of Multiomics Methodologies to Characterize Neuroimmunological Interactions in Spinal and Cranial Diseases. Neurosurg. Focus. 52, E9. 10.3171/2021.11.FOCUS21571
Zeiter S. der Werf M. V. Ito K. (2009). The Fate of Bovine Bone Marrow Stromal Cells in Hydrogels: a Comparison to Nucleus Pulposus Cells and Articular Chondrocytes. J. Tissue. Eng. Regen. Med. 3, 310–320. 10.1002/term.167
Zhang C. Gullbrand S. E. Schaer T. P. Lau Y. K. Jiang Z. Dodge G. R. et al. (2020). Inflammatory Cytokine and Catabolic Enzyme Expression in a Goat Model of Intervertebral Disc Degeneration. J. Orthop. Res. 38, 2521–2531. 10.1002/jor.24639
Zhang J. Wang X. Liu H. Li Z. Chen F. Wang H. et al. (2019). TNF-α Enhances Apoptosis by Promoting Chop Expression in Nucleus Pulposus Cells: Role of the MAPK and NF-Κb Pathways. J. Orthop. Res. 37, 697–705. 10.1002/jor.24204
Zhang S. Ding L. Li X. Fan H. (2019). Identification of Biomarkers Associated with the Recurrence of Osteosarcoma Using ceRNA Regulatory Network Analysis. Int. J. Mol. Med. 43, 1723–1733. 10.3892/ijmm.2019.4108
Zhang Y. g. Sun Z. Liu J. Guo X. (2008). Advances in Susceptibility Genetics of Intervertebral Degenerative Disc Disease. Int. J. Biol. Sci. 4, 283–290. 10.7150/ijbs.4.283
Zhang Z. Li F. Tian H. Guan K. Zhao G. Shan J. et al. (2014). Differentiation of Adipose-Derived Stem Cells toward Nucleus Pulposus-like Cells Induced by Hypoxia and a Three-Dimensional Chitosan-Alginate Gel Scaffold In Vitro. Chin. Med. J. Engl. 127, 314–321. 10.3760/cma.j.issn.0366-6999.20130584
Zhou X. Cheung C.-L. Karasugi T. Karppinen J. Samartzis D. Hsu Y.-H. et al. (2018). Trans-Ethnic Polygenic Analysis Supports Genetic Overlaps of Lumbar Disc Degeneration with Height, Body Mass Index, and Bone Mineral Density. Front. Genet. 9, 267. 10.3389/fgene.2018.00267
Zhou Z. Cui S. Du J. Richards R. G. Alini M. Grad S. et al. (2021). One Strike Loading Organ Culture Model to Investigate the Post-traumatic Disc Degenerative Condition. J. Orthop. Transl. 26, 141–150. 10.1016/j.jot.2020.08.003
Zhu G.-b. Jiang X.-r. Xia C.-l. Sun Y.-j. Zeng Q.-s. Wu X.-m. et al. (2011). Association of FAS and FAS Ligand Polymorphisms with the Susceptibility and Severity of Lumbar Disc Degeneration in Chinese Han Population. Biomarkers 16, 485–490. 10.3109/1354750X.2011.598563
Zuo R. Wang Y. Li J. Wu J. Wang W. Li B. et al. (2019). Rapamycin Induced Autophagy Inhibits Inflammation-Mediated Endplate Degeneration by Enhancing Nrf2/Keap1 Signaling of Cartilage Endplate Stem Cells. Stem Cells 37, 828–840. 10.1002/stem.2999