[en] We demonstrate that full-field deflectometry is a viable alternative to interferometry for the characterization of free-form mirrors. Deflectometry does not require the use of a CGH. Instead of measuring the surface height map, the deflectometer measures the surface slopes in two orthogonal directions using the phase-shifting Schlieren method [1]. The surface height map is then reconstructed by integration of the slope maps. We present two instruments. The first one can be mounted in the lathe for in situ measurement. The second is adapted for the characterization of large concave mirrors.
Disciplines :
Physics
Author, co-author :
Bouwens, Arno; Nivelles, Belgium
Boussemaere, Luc; Nivelles, Belgium
Antoine, Philippe; Nivelles, Belgium
Moreau, Vincent; AMOS, Angleur, Belgium
Borguet, Benoit; AMOS, Angleur, Belgium
Arts, Mathijs; ESTEC, Noordwijk, Netherlands
Tomuta, Dana; ESTEC, Noordwijk, Netherlands
Georges, Marc ; Université de Liège - ULiège > Centres généraux > CSL (Centre Spatial de Liège) ; Centre Spatial de Liège, Angleur, Belgium
Vandenrijt, Jean-François ; Université de Liège - ULiège > Centres généraux > CSL (Centre Spatial de Liège) ; Centre Spatial de Liège, Angleur, Belgium
Language :
English
Title :
Development of full-field deflectometry for characterization of free-form mirrors for space applications
Publication date :
2021
Event name :
International Conference on Space Optics — ICSO 2020
Event organizer :
CNES/ESA
Event date :
30-03-2021 => 02-04-2021
Audience :
International
Journal title :
Proceedings of SPIE: The International Society for Optical Engineering
ISSN :
0277-786X
eISSN :
1996-756X
Publisher :
SPIE
Volume :
11852
Funding text :
The authors acknowledge the European Space Agency for financial support. The project was carried under the contract No. 4000123292/18/NL/GLC/fk.
L. Joannes, F. Dubois and J.-C. Legos, “Phase-shifting schlieren: high-resolution quantitative schlieren that uses the phase-shifting technique principle,” Appl. Opt. 42(25), 5046-5053 (2003).
E. Neefs, A. C. Vandaele, R. Drummond, I. R. Thomas, S. Berkenbosch, R. Clairquin, S. Delanoye, B. Ristic, J. Maes, S. Bonnewijn, G. Pieck, E. Equeter, C. Depiesse, F. Daerden, E. Van Ransbeeck, D. Nevejans, J. Rodriguez-Gómez, J.-J. López-Moreno, R. Sanz, R. Morales, G. P. Candini, M. C. Pastor-Morales, B. Aparicio del Moral, J.-M. Jeronimo-Zafra, J. M. Gómez-López, G. Alonso-Rodrigo, I. Pérez-Grande, J. Cubas, A. M. Gomez-Sanjuan, F. Navarro-Medina, T. Thibert, M. R. Patel, G. Bellucci, L. De Vos, S. Lesschaeve, N. Van Vooren, W. Moelans, L. Aballea, S. Glorieux, A. Baeke, D. Kendall, J. De Neef, A. Soenen, P.-Y. Puech, J. Ward, J.-F. Jamoye, D. Diez, A. Vicario-Arroyo, and M. Jankowski, “NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 1—design, manufacturing and testing of the infrared channels,” Appl. Opt. 54(28), 8494–8520 (2015).
F. Languy, J-F. Vandenrijt, Ph. Saint-Georges, S. Paquay, P. De Vincenzo and M. Georges, “Space mirror deformation: from thermo-mechanical measurements by speckle interferometry to optical comparison with multiphysics simulation,” App. Opt. 57(24), 6982-6989 (2018).