Infant, Newborn; Humans; White Matter; Neuroscience (all); General Neuroscience
Abstract :
[en] Understanding human white matter development is vital to characterize typical brain organization and developmental neurocognitive disorders. In this issue of Neuron, Nazeri and colleagues1 identify different parts of white matter in the neonatal brain and show their maturational trajectories in line with microstructural feature development.
Disciplines :
Neurosciences & behavior
Author, co-author :
Genon, Sarah ; Université de Liège - ULiège > Département des sciences cliniques > Neuroimagerie des troubles de la mémoire et revalidation cognitive ; Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany, Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany. Electronic address: s.genon@fz-juelich.de
Forkel, Stephanie J; Donders Institute for Brain Cognition Behaviour, Radboud University, Nijmegen, the Netherlands, Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France, Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK, Departments of Neurosurgery, Technical University of Munich School of Medicine, Munich, Germany
Language :
English
Title :
How do different parts of brain white matter develop after birth in humans?
The authors thank Prof. A. Nazeri, Prof. A. Sotiras, Dr. L. Talozzi, and Dr. A. Beyh for their helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft (DFG, GE 2835/2–1 ) and a Donders Mohrmann Fellowship no. 2401515 ( SJF , NEUROVARIABILITY).
Nazeri, A., Krsnik, Z., Kostovic, I., Ha, S.M., Kopic, J., Alexopoulos, D., Kaplan, S., Meyer, D., Luby, J.L., Warner, B.B., et al. Neurodevelopmental patterns of early postnatal white matter maturation represent distinct underlying microstructure and histology. Neuron 110 (2022), 4015–4030, 10.1016/j.neuron.2022.09.020.
Thiebaut de Schotten, M., Forkel, S.J., The emergent properties of the connected brain. Science 378 (2022), 505–510, 10.1126/science.abq2591.
Pujol, J., Soriano-Mas, C., Ortiz, H., Sebastian-Galles, N., Losilla, J.M., Deus, J., Myelination of language-related areas in the developing brain. Neurology 66 (2006), 339–343, 10.1212/01.wnl.0000201049.66073.8d.
Lebel, C., Deoni, S., The development of brain white matter microstructure. Neuroimage 182 (2018), 207–218, 10.1016/j.neuroimage.2017.12.097.
Bastiani, M., Andersson, J.L., Cordero-Grande, L., Murgasova, M., Hutter, J., Price, A.N., Makropoulos, A., Fitzgibbon, S.P., Hughes, E., Rueckert, D., et al. Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project. Neuroimage 185 (2019), 750–763, 10.1016/j.neuroimage.2018.05.064.
Eickhoff, S.B., Yeo, B.T.T., Genon, S., Imaging-based parcellations of the human brain. Nat. Rev. Neurosci. 19 (2018), 672–686, 10.1038/s41583-018-0071-7.
Gilmore, J.H., Knickmeyer, R.C., Gao, W., Imaging structural and functional brain development in early childhood. Nat. Rev. Neurosci. 19 (2018), 123–137, 10.1038/nrn.2018.1.
Glasser, M.F., Goyal, M.S., Preuss, T.M., Raichle, M.E., Van Essen, D.C., Trends and properties of human cerebral cortex: Correlations with cortical myelin content. Neuroimage 93 (2014), 165–175, 10.1016/j.neuroimage.2013.03.060.
Dubois, J., Dehaene-Lambertz, G., Kulikova, S., Poupon, C., Hüppi, P.S., Hertz-Pannier, L., The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276 (2014), 48–71, 10.1016/j.neuroscience.2013.12.044.
Studholme, C., Kroenke, C.D., Dighe, M., Motion corrected MRI differentiates male and female human brain growth trajectories from mid-gestation. Nat. Commun., 11, 2020, 3038, 10.1038/s41467-020-16763-y.