Functional analysis of odorant-binding proteins for the parasitic host location to implicate convergent evolution between the grain aphid and its parasitoid Aphidius gifuensis.
Jiang, Xin; Jiang, Jun; Yu, Miaomiaoet al.
2022 • In International Journal of Biological Macromolecules, 226, p. 510 - 524
(E)-β-farnesene (EBF); Aphidifus gifuensis; Convergent evolution; Odorant-binding protein (OBPs); Olfactory plasticity; Molecular Biology; General Medicine; Biochemistry; Structural Biology
Abstract :
[en] (E)-β-farnesene (EBF) is a typical and ecologically important infochemical in tri-trophic level interactions among plant-aphid-natural enemies. However, the molecular mechanisms by which parasitoids recognize and utilize EBF are unclear. In this study, we functionally characterized 8 AgifOBPs in Aphidifus gifuensis, one dominant endo-parasitoid of wheat aphid as well as peach aphid in China. Among which, AgifOBP6 was the only OBP upregulated by various doses of EBF, and it showed a strong binding affinity to EBF in vitro. The lack of homology between AgifOBP6 and EBF-binding proteins from aphids or from other aphid natural enemies supported that this was a convergent evolution among insects from different orders driven by EBF. Molecular docking of AgifOBP6 with EBF revealed key interacting residues and hydrophobic forces as the main forces. AgifOBP6 is widely expressed among various antennal sensilla. Furthermore, two bioassays indicated that trace EBF may promote the biological control efficiency of A. gifuensis, especially on winged aphids. In summary, this study reveals an OBP (AgifOBP6) that may play a leading role in aphid alarm pheromone detection by parasitoids and offers a new perspective on aphid biological control by using EBF. These results will improve our understanding of tri-trophic level interactions among plant-aphid-natural enemies.
Disciplines :
Entomology & pest control
Author, co-author :
Jiang, Xin ; Université de Liège - ULiège > TERRA Research Centre
Jiang, Jun; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
Yu, Miaomiao; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
Zhang, Siyu; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
Qin, Yaoguo; Department of Entomology, MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, PR China
Xu, Yun; Institute of Agricultural Environment & Resources, Yunnan Academy of Agricultural Science, Yunnan, Kunming 650205, PR China
Francis, Frédéric ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Fan, Jia; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China. Electronic address: jfan@ippcaas.cn
Chen, Julian; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China. Electronic address: chenjulian@caas.cn
Language :
English
Title :
Functional analysis of odorant-binding proteins for the parasitic host location to implicate convergent evolution between the grain aphid and its parasitoid Aphidius gifuensis.
Publication date :
09 December 2022
Journal title :
International Journal of Biological Macromolecules
Lamichhaney, S., Berglund, J., Almén, M.S., Maqbool, K., Grabherr, M., Martinez-Barrio, A., Promerová, M., Rubin, C.J., Wang, C., Zamani, N., Grant, B.R., Grant, P.R., Webster, M.T., Andersson, L., Evolution of Darwin's finches and their beaks revealed by genome sequencing. Nature 518 (2015), 371–375, 10.1038/nature14181.
Simões, M., Breitkreuz, L., Alvarado, M., Baca, S., Cooper, J.C., Heins, L., Herzog, K., Lieberman, B.S., The evolving theory of evolutionary radiations. Trends Ecol. Evol. 1 (2016), 27–34, 10.1016/j.tree.2015.10.007.
Büsgen, M., Der honigtau biologische studien an pflanzen und pflanzenlaüsen, Jena. Zeits, Naturwiss. 1891.
Dixon, A.F.G., The escape responses shown by certain aphids to the presence of the coccinellid Adalia decempunctata (L.). Trans.R.Entomol.Soc.Lond. 110 (1958), 319–334, 10.1111/j.1365-2311.1958.tb00786.x.
Nault, L.R., Phelan, P.L., Alarm pheromones and sociality in pre-social insects. Chemical Ecology of Insects, 1984, Springer, Boston, MA, 237–256, 10.1007/978-1-4899-3368-3_9.
Francis, F., Vandermoten, S., Verheggen, F., Lognay, G., Haubruge, E., Is the (E)-β-farnesene only volatile terpenoid in aphids?. J. Appl. Entomol. 129 (2005), 6–11, 10.1111/j.1439-0418.2005.00925.x.
Micha, S.G., Wyss, U., Aphid alarm pheromone (E)-β-farnesene: a host finding kairomone for the aphid primary parasitoid Aphidius uzbekistanicus (Hymenoptera: Aphididae). Chemoecology 7 (1996), 132–139, 10.1007/BF01245965.
Zhu, J., Cossé, A.A., Obrycki, J.J., Boo, K.S., Baker, T.C., Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea to semiochemicals released from their prey and host plant: electroantennogram and behavioral responses. J. Chem. Ecol. 25 (1999), 1163–1177, 10.1023/A:1020846212465.
Buitenhuis, R., McNeil, J.N., Boivin, G., Brodeur, J., The role of honeydew in host searching of aphid hyperparasitoids. J. Chem. Ecol. 30 (2004), 273–285, 10.1023/B: JOEC.0000017977.39957.97.
Francis, F., Lognay, G., Haubruge, E., Olfactory responses to aphid and host plant volatile releases:(E)-β-farnesene an effective kairomone for the predator Adalia bipunctata. J. Chem. Ecol. 30:4 (2004), 741–755, 10.1023/B:JOEC.0000028429.13413.a2.
Francis, F., Martin, T., Lognay, G., Haubruge, E., Role of (E)-beta-farnesene in systematic aphid prey location by Episyrphus balteatus larvae (Diptera: Syrphidae). Eur. J. Entomol. 102 (2005), 431–436, 10.14411/eje.2005.061.
Verheggen, F.J., Fagel, Q., Heuskin, S., Lognay, G., Francis, F., Haubruge, E., Electrophysiological and behavioral responses of the multicolored Asian lady beetle, Harmonia axyridis Pallas, to sesquiterpene semiochemicals. J. Chem. Ecol. 33 (2007), 2148–2155, 10.1007/s10886-007-9370-6.
Verheggen, F.J., Arnaud, L., Bartram, S., Gohy, M., Haubruge, E., Aphid and plant volatiles induce oviposition in an aphidophagous hoverfly. J. Chem. Ecol. 34 (2008), 301–307, 10.1007/s10886-008-9434-2.
Heuskin, S., Lorge, S., Godin, B., Leroy, P., Frère, I., Verheggen, F.J., Haubruge, E., Wathelet, J.P., Mestdagh, M., Hance, T., Lognay, G., Optimisation of a semiochemical slow-release alginate formulation attractive towards Aphidius ervi Haliday parasitoids. Pest Manag. Sci. 68 (2012), 127–136, 10.1002/ps.2234.
Fan, J., Zhang, Q., Xu, Q., Xue, W., Han, Z., Sun, J., Chen, J., Differential expression analysis of olfactory genes based on a combination of sequencing platforms and behavioral investigations in Aphidius gifuensis. Front. Physiol., 9, 2018, 1679, 10.3389/fphys.2018.01679.
Joachim, C., Weisser, W.W., Does the aphid alarm pheromone (E)-β-farnesene act as a kairomone under field conditions?. J. Chem. Ecol. 41 (2015), 267–275, 10.1007/s10886-015-0555-0.
Joachim, J.C., Vosteen, I., Weisser, W.W., The aphid alarm pheromone (E)-β-farnesene does not act as a cue for predators searching on a plant. Chemoecology 25 (2015), 105–113, 10.1007/s00049-014-0176-z.
Schnee, C., Köllner, T.G., Gershenzon, J., Degenhardt, J., The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-β-farnesene, (E)-nerolidol, and (E, E)-farnesol after herbivore damage. Plant Physiol. 130 (2002), 2049–2060, 10.1104/pp.008326.
Crock, J., Wildung, M., Croteau, R., Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-β-farnesene. Proc. Natl. Acad. Sci. U. S. A. 94 (1997), 12833–12838, 10.1073/pnas.94.24.12833.
Vosteen, I., Weisser, W.W., Kunert, G., Is there any evidence that aphid alarm pheromones work as prey and host finding kairomones for natural enemies?. Ecol. Entomol. 41 (2016), 1–12, 10.1111/een.12271.
Vogt, R.G., Riddiford, L.M., Pheromone binding and inactivation by moth antennae. Nature 293 (1981), 161–163, 10.1038/293161a0.
Pelosi, P., Zhou, J.J., Ban, L.P., Calvello, M., Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 63 (2006), 1658–1676, 10.1007/s00018-005-5607-0.
Leal, W.S., Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 58 (2013), 373–391, 10.1146/annurev-ento-120811-153635.
Wang, Q., Liu, J., Zhang, Y., Chen, J., Li, X., Liang, P., Gao, X., Zhoue, J., Gu, S., Coordinative mediation of the response to alarm pheromones by three odorant binding proteins in the green peach aphid Myzus persicae. Insect Biochem. Mol. Biol., 130, 2021, 103528, 10.1016/j.ibmb.2021.103528.
Zhong, T., Yin, J., Deng, S., Li, K., Cao, Y., Fluorescence competition assay for the assessment of green leaf volatiles and trans-β-farnesene bound to three odorant-binding proteins in the wheat aphid Sitobion avenae (Fabricius). J. Insect Physiol. 58 (2012), 771–781, 10.1016/j.jinsphys.2012.01.011.
Qiao, H., Tuccori, E., He, X., Gazzano, A., Field, L., Zhou, J., Pelosi, P., Discrimination of alarm pheromone (E)-β-farnesene by aphid odorant-binding proteins. Insect Biochem. Mol. Biol. 39 (2009), 414–419, 10.1016/j.ibmb.2009.03.004.
Qin, Y., Yang, Z., Song, D., Wang, Q., Gu, S., Li, W., Duan, H., Zhou, J., Yang, X., Bioactivities of synthetic salicylate-substituted carboxyl (E)-β-farnesene derivatives as ecofriendly agrochemicals and their binding mechanism with potential targets in aphid olfactory system. Pest Manag. Sci. 76 (2020), 2465–2472, 10.1002/ps.5787.
Wang, L., Bi, Y., Liu, M., Li, W., Liu, M., Di, S., Yang, S., Fan, C., Bai, L., Lai, Y., Identification and expression profiles analysis of odorant-binding proteins in soybean aphid, Aphis glycines (Hemiptera: Aphididae). Insect Sci. 27 (2020), 1019–1030, 10.1111/1744-7917.12709.
Bruno, D., Grossi, G., Salvia, R., Scala, A., Farina, D., Grimaldi, A., Zhou, J., Bufo, S.A., Vogel, H., Grosse-Wilde, E., Hansson, B.S., Falabella, P., Sensilla morphology and complex expression pattern of odorant binding proteins in the vetch aphid Megoura viciae (Hemiptera: Aphididae). Front. Physiol., 9, 2018, 777, 10.3389/fphys.2018.00777.
Fan, J., Xue, W., Duan, H., Jiang, X., Zhang, Y., Yu, W., Jiang, S., Sun, J., Chen, J., Identification of an intraspecific alarm pheromone and two conserved odorant-binding proteins associated with (E)-β-farnesene perception in aphid Rhopalosiphum padi. J. Insect Physiol. 101 (2017), 151–160, 10.1016/j.jinsphys.2017.07.014.
Liu, Z., Huang, X., Jiang, L., Qiao, G., The species diversity and geographical distribution of aphids in China (Hemiptera, Aphidoidea). Acta Zootaxon.Sin. 34 (2009), 277–291.
Yang, S., Xu, R., Yang, S., Kuang, R., Olfactory responses of Aphidius gifuensis to odors of host plants and aphid-plant complexes. Insect Sci. 16 (2009), 503–510, 10.1111/j.1744-7917.2009.01282.x.
Wang, B., Dong, W., Li, H., D'Onofrio, C., Bai, P., Chen, R., Yang, L., Wu, J., Wang, X., Wang, B., Ai, D., Knoll, W., Pelosi, P., Wang, G., Molecular basis of (E)-β-farnesene-mediated aphid location in the predator Eupeodes corollae. Curr. Biol. 32 (2022), 951–962, 10.1016/j.cub.2021.12.054.
Li, Z., Zhang, S., Cai, X., Luo, J., Dong, S., Cui, J., Chen, Z., Three odorant binding proteins may regulate the behavioural response of Chrysopa pallens to plant volatiles and the aphid alarm pheromone (E)-β-farnesene. Insect Mol. Biol. 26 (2017), 255–265, 10.1111/imb.12295.
Du, Y., Poppy, G.M., Powell, W., Wadhams, L.J., Chemically mediated associative learning in the host foraging behavior of the aphid parasitoid Aphidius ervi (Hymenoptera: Braconidae). J. Insect Behav. 10 (1997), 509–522, 10.1007/BF02765374.
Du, Y., Poppy, G.M., Powell, W., Pickett, J.A., Wadhams, L.J., Woodcock, C.M., Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J. Chem. Ecol., 24, 1998, 1355e1368, 10.1023/A:1021278816970.
Guerrieri, E., Poppy, G.M., Powell, W., Tremblay, E., Pennacchio, F., Induction and systemic release of herbivore-induced plant volatiles mediating in-flight orientation of Aphidius ervi. J. Chem. Ecol. 25 (1999), 1247–1261, 10.1023/A:1020914506782.
Battaglia, D., Pennacchio, F., Marincola, G., Tranfaglia, A., Cornicle secretion of Acyrthosiphon pisum (Homoptera: Aphididae) as a contact kairomone for the parasitoid Aphidius ervi (Hymenoptera: Braconidae). Eur. J. Entomol., 90, 1993 423-423.
Jiang, X., Qin, Y., Jiang, J., Xu, Y., Francis, F., Fan, J., Chen, J., Spatial expression analysis of odorant binding proteins in both sexes of the aphid parasitoid Aphidius gifuensis and their ligand binding properties. Front. Physiol., 13, 2022, 877133, 10.3389/fphys.2022.877133.
Ohta, I., Honda, K., Use of Sitobion akebiae (Hemiptera: Aphididae) as an alternative host aphid for a banker-plant system using an indigenous parasitoid, Aphidius gifuensis (Hymenoptera: Braconidae). Appl. Entomol. Zool. 45 (2010), 233–238, 10.1303/aez.2010.233.
Pan, M., Liu, T., Nansen, C., Avoidance of parasitized host by female wasps of Aphidius gifuensis (Hymenoptera: Braconidae): the role of natal rearing effects and host availability?. Insect Sci. 25 (2018), 1035–1044, 10.1111/1744-7917.12496.
Zhang, L., Lu, G., Huang, X., Guo, H., Su, X., Han, L., Zhang, Y., Qi, Z., Xiao, Y., Cheng, H., Overexpression of the caryophyllene synthase gene GhTPS1 in cotton negatively affects multiple pests while attracting parasitoids. Pest Manag. Sci. 76 (2020), 1722–1730, 10.1002/ps.5695.
Song, Y., Liu, C., Cai, P., Chen, W., Guo, Y., Lin, J., Zhang, S., Host-seeking behavior of Aphidius gifuensis (Hymenoptera: Braconidae) modulated by chemical cues within a tritrophic context. J. Insect Sci., 21, 2021, 10.1093/jisesa/ieab036.
Pan, L., Guo, M., Jin, X., Sun, Z., Jiang, H., Han, J., Wang, Y., Yan, C., Li, M., Full-length transcriptome survey and expression analysis of parasitoid wasp Chouioia cunea upon exposure to 1-dodecene. Sci. Rep. 9 (2019), 1–11, 10.1038/s41598-019-54710-0.
Hu, L., Chen, B., Liu, K., Yu, G., Chen, Y., Dai, J., Zhao, X., Zhong, G., Zhang, Y., Shen, J., OBP2 in the midlegs of the male Bactrocera dorsalis is involved in the perception of the female-biased sex pheromone 4-allyl-2, 6-dimethoxyphenol. J. Agric. Food Chem. 69 (2021), 126–134, 10.1021/acs.jafc.0c05945.
Ma, Y., Huang, T., Tang, B., Wang, B., Wang, L., Liu, J., Zhou, Q., Transcriptome analysis and molecular characterization of soluble chemical communication proteins in the parasitoid wasp Anagrus nilaparvatae (Hymenoptera: Mymaridae). Ecol. Evol., 12, 2022, e8661, 10.1002/ece3.8661.
Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25 (2001), 402–408, 10.1006/meth.2001.1262.
Prestwich, G.D., Bacterial expression and photoaffinity labeling of a pheromone binding protein. Protein Sci. 2 (1993), 420–428, 10.1002/pro.5560020314.
Song, X., Qin, Y.G., Yin, Y., Li, Z.X., Identification and behavioral assays of alarm pheromone in the vetch aphid Megoura viciae. J. Chem. Ecol. 47 (2021), 740–746, 10.1007/s10886-021-01297-4.
Ban, L., Scaloni, A., D'ambrosio, C., Zhang, L., Yan, Y., Pelosi, P., Biochemical characterization and bacterial expression of an odorant-binding protein from Locusta migratoria. Cell. Mol. Life Sci. 60 (2003), 390–400, 10.1007/s000180300032.
Tamura, K., Stecher, G., Kumar, S., MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38 (2021), 3022–3027, 10.1093/molbev/msab120.
Wang, Q., Zhou, J., Liu, J., Huang, G., Xu, W., Zhang, Q., Chen, J., Zhang, Y., Li, X., Gu, S., Integrative transcriptomic and genomic analysis of odorant binding proteins and chemosensory proteins in aphids. Insect Mol. Biol. 28 (2019), 1–22, 10.1111/imb.12513.
Xue, W., Fan, J., Zhang, Y., Xu, Q., Han, Z., Sun, J., Chen, J., Identification and expression analysis of candidate odorant-binding protein and chemosensory protein genes by antennal transcriptome of Sitobion avenae. PLoS One, 11, 2016, e0161839, 10.1371/journal.pone.0161839.
Gu, S., Wu, K., Guo, Y., Field, L.M., Pickett, J.A., Zhang, Y., Zhou, J., Identification and expression profiling of odorant binding proteins and chemosensory proteins between two wingless morphs and a winged morph of the cotton aphid Aphis gossypii Glover. PLoS One, 8, 2013, e73524, 10.1371/journal.pone.0073524.
Zhou, J., Vieira, F.G., He, X., Smadja, C., Liu, R., Rozas, J., Field, L.M., Genome annotation and comparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphid Acyrthosiphon pisum. Insect Mol. Biol. 19 (2010), 113–122, 10.1111/j.1365-2583.2009.00919.x.
Li, Z., Zhang, S., Ma, Y., Luo, J., Wang, C., Lv, L., Dong, S., Cui, J., First transcriptome and digital gene expression analysis in Neuroptera with an emphasis on chemoreception genes in Chrysopa pallens (Rambur). PLoS One, 8, 2013, e67151, 10.1371/journal.pone.0067151.
Wang, B., Liu, Y., Wang, G.R., Chemosensory genes in the antennal transcriptome of two syrphid species, Episyrphus balteatus and Eupeodes corollae (Diptera: Syrphidae). BMC Genomics 18 (2017), 1–15, 10.1186/s12864-017-3939-4.
Jia, H., Sun, Y., Luo, S., Wu, K., Characterization of antennal chemosensilla and associated odorant binding as well as chemosensory proteins in the Eupeodes corollae (Diptera: Syrphidae). J. Insect Physiol. 113 (2019), 49–58, 10.1016/j.jinsphys.2018.08.002.
Laskowski, R.A., Rullmann, J.A.C., MacArthur, M.W., Kaptein, R., Thornton, J.M., AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8 (1996), 477–486, 10.1007/BF00228148.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25 (2004), 1605–1612, 10.1002/jcc.20084.
Muk Mukherjee, S., Balius, T.E., Rizzo, R.C., Docking validation resources: protein family and ligand flexibility experiments. J. Chem. Inf. Model. 50 (2010), 1986–2000, 10.1021/ci1001982.
Li, Q., Fu, Y., Liu, X., Sun, J., Hou, M., Zhang, Y., Chen, J., Activation of wheat defense response by Buchnera aphidicola-derived small chaperone protein GroES in wheat aphid saliva. J. Agric. Food Chem. 70 (2022), 1058–1067, 10.1021/acs.jafc.1c07046.
Xia, P.L., Yu, X.L., Li, Z.T., Feng, Y., The impacts of Harmonia axyridis cues on foraging behavior of Aphidius gifuensis to Myzus persicae. J. Asia Pac. Entomol. 24 (2021), 278–284, 10.1016/j.aspen.2020.12.008.
Rezaei, M., Talebi, A.A., Fathipour, Y., Karimzadeh, J., Mehrabadi, M., Foraging behavior of Aphidius matricariae (Hymenoptera: Braconidae) on tobacco aphid, Myzus persicae nicotianae (Hemiptera: Aphididae). Bull. Entomol. Res. 109 (2019), 840–848, 10.1017/S0007485319000166.
Wu, S., Zhou, Z., Peng, S., Shan, X., Zeng, W., Cai, H., Zhou, F., Parasitic selectivity of Aphidius gifuensis on different ages of Myzus persicae and development of their offsprings (in Chinese). J.Henan Agric.Sci. 46 (2017), 84–88.
Pan, M., Cao, H., Liu, T., Effects of winter wheat cultivars on the life history traits and olfactory response of Aphidius gifuensis. BioControl. 59 (2014), 539–546, 10.1007/s10526-014-9594-7.
Bi, Z., Ji, Z., Biological study of Aphidius gifuensis Ashmead: I. The developmental process and nymph morphology (in Chinese). J.Hebei Agric.Univ. 16 (1993), 1–8.
Scaloni, A., Monti, M., Angeli, S., Pelosi, P., Structural analysis and disulfide-bridge pairing of two odorant-binding proteins from Bombyx mori. Biochem. Biophys. Res. Commun. 266 (1999), 386–391, 10.1006/bbrc.1999.1791.
Yao, C., Du, L., Liu, Q., Hu, X., Ye, W., Turlings, T.C.J., Li, Y., Stemborer-induced rice plant volatiles boost direct and indirect resistance in neighboring plants. New Phytol., 2022, 10.1111/nph.18548.
Northey, T., Venthur, H., De Biasio, F., Chauviac, F.X., Cole, A., Junior, K.A.L.R., Grossi, G., Falabella, P., Field, L.M., Keep, N.H., Zhou, J., Crystal structures and binding dynamics of odorant-binding protein 3 from two aphid species Megoura viciae and Nasonovia ribisnigri. Sci. Rep. 6 (2016), 1–13, 10.1038/srep24739.
Ochieng, S.A., Park, K.C., Zhu, J.W., Baker, T.C., Functional morphology of antennal chemoreceptors of the parasitoid Microplitis croceipes (Hymenoptera: Braconidae). Arthropod Struct. Dev. 29 (2000), 231–240, 10.1016/S1467-8039(01)00008-1.
Bourdais, D., Vernon, P., Krespi, L., Le Lannic, J., Van Baaren, J., Antennal structure of male and female Aphidius rhopalosiphi DeStefani-peres (Hymenoptera: Braconidae): description and morphological alterations after cold storage or heat exposure. Microsc. Res. Tech. 69 (2006), 1005–1013.
Xi, Y., Y, X., Li, X., Zhu, C., Zhang, Y., Scanning electron microscopy studies of antennal sensilla of Lysiphlebus fabarum (Marshall) (Hymenoptera: Braconidae). Acta Ecol. Sin. 53 (2010), 936–942.
Das, P., Chen, L., Sharma, K.R., Fadamiro, H.Y., Abundance of antennal chemosensilla in two parasitoid wasps with different degree of host specificity may explain sexual and species differences in their response to host-related volatiles. Microsc. Res. Tech. 74 (2011), 900–909, 10.1002/jemt.20974.
Jing-Gong, X., Zhang, F., Fang, Y., Kan, W., Zhang, G., Zhang, Z., Behavioural response of aphids to the alarm pheromone component (E)-β-farnesene in the field. Physiol. Entomol. 27 (2002), 307–311, 10.1046/j.1365-3032.2002.00302.x.
Edwards, J.S., Defence by smear: supercooling in the cornicle wax of aphids. Nature 211 (1966), 73–74, 10.1038/211073a0.
Hatano, E., Kunert, G., Bartram, S., Boland, W., Gershenzon, J., Weisser, W.W., Do aphid colonies amplify their emission of alarm pheromone?. J. Chem. Ecol. 34 (2008), 1149–1152, 10.1007/s10886-008-9527-y.
Callow, R.K., Greenway, A.R., Griffiths, D.C., Chemistry of the secretion from the cornicles of various species of aphids. J. Insect Physiol. 19 (1973), 737–748, 10.1016/0022-1910(73)90146-7.
Harmon, J.P., Losey, J.E., Ives, A.R., The role of vision and color in the close proximity foraging behavior of four coccinellid species. Oecologia 115 (1998), 287–292, 10.1007/s004420050518.
Read, D.P., Feeny, P.P., Root, R.B., Habitat selection by the aphid parasite Diaeretiella rapae (Hymenoptera: Braconidae) and hyperparasite Charips brassicae (Hymenoptera: Cynipidae). Can. Entomol. 102 (1970), 1567–1578, 10.4039/Ent1021567-12.
Singh, R., Sinha, T.B., Bionomics of Trioxys (Binodoxys) indicus Subba Rao & Sharma, an aphidiid parasitoid of Aphis craccivora Koch. J. Appl. Entomol. 93 (1982), 64–75, 10.1111/j.1439-0418.1982.tb03571.x.
Wickremasinghe, M.G.V., Emden, H.V., Reactions of adult female parasitoids, particularly Aphidius rhopalosiphi, to volatile chemical cues from the host plants of their aphid prey. Physiol. Entomol. 17 (1992), 297–304, 10.1111/j.1365-3032.1992.tb01025.x.
Powell, W., Pennacchio, F., Poppy, G.M., Tremblay, E., Strategies involved in the location of hosts by the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae). Biol. Control 11 (1998), 104–112, 10.1006/bcon.1997.0584.
Storeck, A., Poppy, G.M., van Emden, H.F., Powell, W., The role of plant chemical cues in determining host preference in the generalist aphid parasitoid Aphidius colemani. Entomol. Exp. Appl. 97 (2000), 41–46, 10.1046/j.1570-7458.2000.00714.x.
Pineda, A., Morales, I., Marcos-García, M.A., Fereres, A., Oviposition avoidance of parasitized aphid colonies by the syrphid predator Episyrphus balteatus mediated by different cues. Biol. Control 42 (2007), 274–280, 10.1016/j.biocontrol.2007.05.017.
Yang, F., Liu, B., Zhu, Y., Wyckhuys, K.A., van der Werf, W., Lu, Y., Species diversity and food web structure jointly shape natural biological control in agricultural landscapes. Commun. Biol. 4 (2021), 1–11, 10.1038/s42003-021-02509-z.
Kindlmann, P., Houdkova, K., Dixon, A.F.G., Aphid Biodiversity Under Environmental Change. 2010 Dordrecht, The Netherlands.
Zhang, Y., Zhao, M., Cheng, J., Liu, S., Yuan, H., Population dynamics and species composition of maize field parasitoids attacking aphids in northeastern China. PLoS One, 15, 2020, e0241530, 10.1371/journal.pone.0241530.
Yang, F., Xu, L., Wu, Y., Wang, Q., Yao, Z., Žikić, V., Tomanović, Ž., Ferrer-Suay, M., Selfa, J., Pujade-Villar, J., Traugott, M., Desneux, N., Lu, Y., Guo, Y., Species composition and seasonal dynamics of aphid parasitoids and hyperparasitoids in wheat fields in northern China. Sci. Rep., 7, 2017, 13989, 10.1038/s41598-017-14441-6.
Xu, Q., Hatt, S., Han, Z., Francis, F., Chen, J., Combining E-β-farnesene and methyl salicylate release with wheat-pea intercropping enhances biological control of aphids in North China. Biocontrol Sci. Tech. 28 (2018), 883–894, 10.1080/09583157.2018.1504885.
Liu, J., Zhao, X., Zhan, Y., Wang, K., Francis, F., Liu, Y., New slow release mixture of (E)-β-farnesene with methyl salicylate to enhance aphid biocontrol efficacy in wheat ecosystem. Pest Manag. Sci. 77 (2021), 3341–3348, 10.1002/ps.6378.