Antibacterials; Counterion; Free base guanidine; Guanidine; Hydrochloride salt; Trifluoroacetate salt; Catalysis; Information Systems; Molecular Biology; Drug Discovery; Physical and Theoretical Chemistry; Organic Chemistry; Inorganic Chemistry; General Medicine
Abstract :
[en] Trifluoroacetic acid (TFA), due to its strong acidity and low boiling point, is extensively used in protecting groups-based synthetic strategies. Indeed, synthetic compounds bearing basic functions, such as amines or guanidines (commonly found in peptido or peptidomimetic derivatives), developed in the frame of drug discovery programmes, are often isolated as trifluoroacetate (TF-Acetate) salts and their biological activity is assessed as such in in vitro, ex vivo, or in vivo experiments. However, the presence of residual amounts of TFA was reported to potentially affect the accuracy and reproducibility of a broad range of cellular assays (e. g. antimicrobial susceptibility testing, and cytotoxicity assays) limiting the further development of these derivatives. Furthermore, the impact of the counterion on biological activity, including TF-Acetate, is still controversial. Herein, we present a focused case study aiming to evaluate the activity of an antibacterial AlkylGuanidino Urea (AGU) compound obtained as TF-Acetate (1a) and hydrochloride (1b) salt forms to highlight the role of counterions in affecting the biological activity. We also prepared and tested the corresponding free base (1c). The exchange of the counterions applied to polyguanidino compounds represents an unexplored and challenging field, which required significant efforts for the successful optimization of reliable methods of preparation, also reported in this work. In the end, the biological evaluation revealed a quite similar biological profile for the salt derivatives 1a and 1b and a lower potency was found for the free base 1c.
Disciplines :
Microbiology Life sciences: Multidisciplinary, general & others
Author, co-author :
Ardino, Claudia ; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy
Sannio, Filomena ; Dipartimento di Biotecnologie Mediche, University of Siena, Viale Bracci 16, 53100, Siena, Italy
Pasero, Carolina; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy
Botta, Lorenzo ; Lead Discovery Siena s.r.l., Via Vittorio Alfieri 31, 53019, Castelnuovo Berardenga, Italy ; Department of Biological and Ecological Sciences, University of Tuscia, Largo Università s.n.c., 01100, Viterbo, Italy
Dreassi, Elena ; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy
Docquier, Jean-Denis ✱; Université de Liège - ULiège > Integrative Biological Sciences (InBioS) ; Dipartimento di Biotecnologie Mediche, University of Siena, Viale Bracci 16, 53100, Siena, Italy. jddocquier@unisi.it ; Lead Discovery Siena s.r.l., Via Vittorio Alfieri 31, 53019, Castelnuovo Berardenga, Italy.
D'Agostino, Ilaria ✱; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy. ilaria.dagostino91@gmail.com ; Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via de Vestini, 31, 66013, Chieti, Italy. ilaria.dagostino91@gmail.com
✱ These authors have contributed equally to this work.
Language :
English
Title :
The impact of counterions in biological activity: case study of antibacterial alkylguanidino ureas.
We thank LDS (Lead Discovery Siena) S.r.l. for financial support. Thanks are due to Prof. Lucia Pallecchi (Dipartimento di Biotecnologie Mediche, University of Siena, Italy) for kindly providing some of the clinical isolates used in this study.
Genscript Impact of TFA—A Review, https://www.genscript.com/review-impact-of-tfa-in-peptide.html. Accessed 18 Jun 2022.
Food and Drug Administration of the United Nations. Prominent global leaders in science, industry and government meet to step up fight against antimicrobial resistance. https://www.fao.org/news/story/en/item/1371017/icode. Accessed 18 Jun 2022.
Lal A, Erondu NA, Heymann DL et al (2021) Fragmented health systems in COVID-19: rectifying the misalignment between global health security and universal health coverage. Lancet 397:61–67. 10.1016/S0140-6736(20)32228-5 DOI: 10.1016/S0140-6736(20)32228-5
Subramanya SH, Czyż DM, Acharya KP, Humphreys H (2021) The potential impact of the COVID-19 pandemic on antimicrobial resistance and antibiotic stewardship. VirusDisease. 10.1007/s13337-021-00695-2 DOI: 10.1007/s13337-021-00695-2
Nasir N, Rehman F, Omair SF (2021) Risk factors for bacterial infections in patients with moderate to severe COVID-19: a case-control study. J Med Virol 93:4564–4569. 10.1002/jmv.27000 DOI: 10.1002/jmv.27000
Rawson TM, Moore LSP, Zhu N et al (2020) Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis 71:2459–2468. 10.1093/cid/ciaa530 DOI: 10.1093/cid/ciaa530
Botta M, Maccari G, Sanfilippo S, et al (2015) Linear guanidine derivatives, methods of preparation and uses thereof. Int. Patent Appl. WO2016/055644 A1
Zamperini C, Maccari G, Deodato D et al (2017) Identification, synthesis and biological activity of alkyl- guanidine oligomers as potent antibacterial agents. Sci Rep 7:1–11. 10.1038/s41598-017-08749-6 DOI: 10.1038/s41598-017-08749-6
Pasero C, D’Agostino I, De Luca F et al (2018) Alkyl-guanidine compounds as potent broad-spectrum antibacterial agents: chemical library extension and biological characterization. J Med Chem. 10.1021/acs.jmedchem.8b00619 DOI: 10.1021/acs.jmedchem.8b00619
D’Agostino I, Ardino C, Poli G et al (2022) Antibacterial alkylguanidino ureas: molecular simplification approach, searching for membrane-based MoA. Eur J Med Chem. 10.1016/J.EJMECH.2022.114158 DOI: 10.1016/J.EJMECH.2022.114158
López SE, Salazar J (2013) Trifluoroacetic acid: uses and recent applications in organic synthesis. J Fluor Chem 156:73–100. 10.1016/j.jfluchem.2013.09.004 DOI: 10.1016/j.jfluchem.2013.09.004
Cornish J, Callon KE, Lin CQXQ-X et al (1999) Trifluoroacetate, a contaminant in purified proteins, inhibits proliferation of osteoblasts and chondrocytes. Am J Physiol 277(5):E779–E783. 10.1152/ajpendo.1999.277.5.E779 DOI: 10.1152/ajpendo.1999.277.5.E779
Ma TG, Ling YH, McClure GD, Tseng MT (1990) Effects of trifluoroacetic acid, a halothane metabolite, on C6 glioma cells. J Toxicol Environ Health 31:147–158. 10.1080/15287399009531444 DOI: 10.1080/15287399009531444
Tipps ME, Iyer SV, John Mihic S (2012) Trifluoroacetate is an allosteric modulator with selective actions at the glycine receptor. Neuropharmacology 63:368–373. 10.1016/j.neuropharm.2012.04.011 DOI: 10.1016/j.neuropharm.2012.04.011
Roux S, Zékri E, Rousseau B et al (2008) Elimination and exchange of trifluoroacetate counter-ion from cationic peptides: a critical evaluation of different approaches. J Pept Sci 14:354–359. 10.1002/PSC.951 DOI: 10.1002/PSC.951
Sikora K, Jaśkiewicz M, Neubauer D et al (2018) Counter-ion effect on antistaphylococcal activity and cytotoxicity of selected antimicrobial peptides. Amino Acids 50:609–619. 10.1007/s00726-017-2536-9 DOI: 10.1007/s00726-017-2536-9
Sikora K, Jaśkiewicz M, Neubauer D et al (2020) The role of counter-ions in peptides—an overview. Pharmaceuticals 13:1–26. 10.3390/ph13120442 DOI: 10.3390/ph13120442
Gaussier H, Morency H, Lavoie MC, Subirade M (2002) Replacement of trifluoroacetic acid with HCl in the hydrophobic purification steps of pediocin PA-1: a structural effect. Appl Environ Microbiol 68:4803–4808. 10.1128/AEM.68.10.4803-4808.2002 DOI: 10.1128/AEM.68.10.4803-4808.2002
Rizzello CG, Losito I, Gobbetti M et al (2005) Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. J Dairy Sci 88:2348–2360. 10.3168/jds.S0022-0302(05)72913-1 DOI: 10.3168/jds.S0022-0302(05)72913-1
Greber KE, Dawgul M, Kamysz W, Sawicki W (2017) Cationic net charge and counter ion type as antimicrobial activity determinant factors of short lipopeptides. Front Microbiol 8:123. 10.3389/fmicb.2017.00123 DOI: 10.3389/fmicb.2017.00123
Zhang C, Jiang Y, Ju H et al (2017) “Organic counterion” modified quaternary ammonium salt: Impact on antibacterial activity & application properties. J Mol Liq 241:638–645. 10.1016/j.molliq.2017.06.062 DOI: 10.1016/j.molliq.2017.06.062
Dutta S, Shome A, Kar T, Das PK (2011) Counterion-induced modulation in the antimicrobial activity and biocompatibility of amphiphilic hydrogelators: Influence of in-situ-synthesized ag-nanoparticle on the bactericidal property. Langmuir 27:5000–5008. 10.1021/la104903z DOI: 10.1021/la104903z
Gut J, Christen U, Frey N et al (1995) Molecular mimicry in halothane hepatitis: Biochemical and structural characterization of lipoylated autoantigens. Toxicology 97(1–3):199–224. 10.1016/0300-483x(94)03010-y DOI: 10.1016/0300-483x(94)03010-y
Collins KD, Washabaugh MW (1985) The Hofmeister effect and the behaviour of water at interfaces. Q Rev Biophys 18:323–422. 10.1017/S0033583500005369 DOI: 10.1017/S0033583500005369
You Q, Cheng L, Reilly TP et al (2006) Role of neutrophils in a mouse model of halothane-induced liver injury. Hepatology 44:1421–1431. 10.1002/hep.21425 DOI: 10.1002/hep.21425
Trudell JR, Ardies CM, Anderson WR (1991) Antibodies raised against trifluoroacetyl-protein adducts bind to N-trifluoroacetyl-phosphatidylethanolamine in hexagonal phase phospholipid micelles. J Pharmacol Exp Ther 257(2):657–662
You Q, Cheng L, Ju C (2010) Generation of T cell responses targeting the reactive metabolite of halothane in mice. Toxicol Lett 194:79–85. 10.1016/j.toxlet.2010.02.009 DOI: 10.1016/j.toxlet.2010.02.009
Boullerne AI, Polak PE, Braun D et al (2014) Effects of peptide fraction and counter ion on the development of clinical signs in experimental autoimmune encephalomyelitis. J Neurochem 129:696–703. 10.1111/jnc.12664 DOI: 10.1111/jnc.12664
George N, Ofori S, Parkin S, Awuah SG (2020) Mild deprotection of the N-tert-butyloxycarbonyl (N-Boc) group using oxalyl chloride. RSC Adv 10:24017–24026. 10.1039/D0RA04110F DOI: 10.1039/D0RA04110F
Jacquemard U, Bénéteau V, Lefoix M et al (2004) Mild and selective deprotection of carbamates with Bu4NF. Tetrahedron 60:10039–10047. 10.1016/J.TET.2004.07.071 DOI: 10.1016/J.TET.2004.07.071
Tom NJ, Simon WM, Frost HN, Ewing M (2004) Deprotection of a primary Boc group under basic conditions. Tetrahedron Lett 45:905–906. 10.1016/J.TETLET.2003.11.108 DOI: 10.1016/J.TETLET.2003.11.108
Wuts PGM, Greene TW (2006) Greene’s protective groups in organic synthesis, 4th edn. Wiley-Interscience, Hoboken, N.J. 10.1002/0470053488 DOI: 10.1002/0470053488
Zhang Y, Jiang J, Chen Y (1999) Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts. Polymer (Guildf) 40:6189–6198. 10.1016/S0032-3861(98)00828-3 DOI: 10.1016/S0032-3861(98)00828-3
Ashworth IW, Cox BG, Meyrick B (2010) Kinetics and mechanism of N-Boc cleavage: evidence of a second-order dependence upon acid concentration. J Org Chem 75:8117–8125. 10.1021/jo101767h DOI: 10.1021/jo101767h
Han G, Tamaki M, Hruby VJ (2001) Fast, efficient and selective deprotection of the tert-butoxycarbonyl (Boc) group using HCl/dioxane (4 m). J Pept Res 58:338–341. 10.1034/J.1399-3011.2001.00935.X DOI: 10.1034/J.1399-3011.2001.00935.X
Nudelman A, Bechor Y, Falb E et al (2006) Acetyl chloride-methanol as a convenient reagent for: A) quantitative formation of amine hydrochlorides B) carboxylate ester formation C) mild removal of N-t-boc-protective group. Synth Commun 28:471–474. 10.1080/00397919808005101 DOI: 10.1080/00397919808005101
Balestri LJI, D’Agostino I, Rango E et al (2022) Focused library of phenyl-fused macrocyclic amidinoureas as antifungal agents. Mol Divers 1:1–11. 10.1007/S11030-022-10388-7 DOI: 10.1007/S11030-022-10388-7
Lloyd L, Boguszewski P (2010) Freebasing of peptide salts and the removal of acidic ion-pairing reagents from fractions after hplc purification, agiilent: varian, Application Note SI-02449, https://www.agilent.com/cs/library/applications/SI-02449.pdf. Accessed 20 Jun 2022
Spivak A, Khalitova R, Nedopekina D (2018) Synthesis and evaluation of anticancer activities of novel C-28 guanidine-functionalized triterpene acid derivatives. Molecules 23:3000. 10.3390/MOLECULES23113000 DOI: 10.3390/MOLECULES23113000
Capua M, Perrone S, Perna FM et al (2016) An expeditious and greener synthesis of 2-aminoimidazoles in deep eutectic solvents. Molecules. 10.3390/MOLECULES21070924 DOI: 10.3390/MOLECULES21070924
Nagle PS, Rodriguez F, Kahvedžić A et al (2009) Asymmetrical diaromatic guanidinium/2-aminoimidazolinium derivatives: synthesis and DNA affinity. J Med Chem 52:7113–7121. 10.1021/JM901017T DOI: 10.1021/JM901017T
Bachand B, DiMaio J, Siddiqui MA (1999) Synthesis and structure-activity relationship of potent bicyclic lactam thrombin inhibitors. Bioorg Med Chem Lett 9:913–918. 10.1016/S0960-894X(99)00130-4 DOI: 10.1016/S0960-894X(99)00130-4
Diez-Cecilia E, Kelly B, Perez C et al (2014) Guanidinium-based derivatives: searching for new kinase inhibitors. Eur J Med Chem 81:427–441. 10.1016/J.EJMECH.2014.05.025 DOI: 10.1016/J.EJMECH.2014.05.025
Thurston JT (1941) Preparation of free guanidine and biguanide bases, Official Gazette of the United States Patent Office. Appl. 383277
Trummal A, Lipping L, Kaljurand I et al (2016) Acidity of strong acids in water and dimethyl sulfoxide. J Phys Chem A 120:3663–3669. 10.1021/ACS.JPCA.6B02253 DOI: 10.1021/ACS.JPCA.6B02253
Sweis R, Edmondson S, Kaelin D (2008) Substituted aminopyrimidines as cholecystokinin-i receptor modulators background of the invention. Int. Patent Appl. WO 2008/091631 A1
Pinho SP, Macedo EA (2004) Solubility of NaCl, NaBr, and KCl in water, methanol, ethanol, and their mixed solvents. J Chem Eng Data 50:29–32. 10.1021/JE049922Y DOI: 10.1021/JE049922Y