Article (Scientific journals)
In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids.
Viira, Birgit; Gendron, Thibault; Lanfranchi, Don Antoine et al.
2016In Molecules, 21 (7), p. 853
Peer reviewed
 

Files


Full Text
2016_Molecules_2016_21_853.pdf
Publisher postprint (1.36 MB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Plasmodium falciparum; antimalarial; quantitative structure-activity relationships (QSAR); Antimalarials/chemistry; Antimalarials/pharmacology; Curcuma/chemistry; Plasmodium falciparum/drug effects; Computer Simulation; Data Mining; Drug Design; Quantitative Structure-Activity Relationship; Molecular Medicine; Pharmaceutical Science; Drug Discovery; Organic Chemistry
Abstract :
[en] Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs) represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.
Disciplines :
Chemistry
Immunology & infectious disease
Author, co-author :
Viira, Birgit;  Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia. birgit.viira@gmail.com ; Bioorganic and Medicinal Chemistry Team, UMR 7509 CNRS-Université, de Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, Strasbourg F-67087, France. birgit.viira@gmail.com ; Laboratoire de Chemoinformatique, UMR7140 CNRS-Université, de Strasbourg, 1 rue Blaise Pascal, Strasbourg F-67000, France. birgit.viira@gmail.com
Gendron, Thibault  ;  Université de Liège - ULiège > Département de chimie (sciences) > Chimie organique-nucléaire ; Bioorganic and Medicinal Chemistry Team, UMR 7509 CNRS-Université, de Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, Strasbourg F-67087, France. t.gendron@ucl.ac.uk
Lanfranchi, Don Antoine;  Bioorganic and Medicinal Chemistry Team, UMR 7509 CNRS-Université, de Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, Strasbourg F-67087, France. don.antoine.lanfranchi@gmail.com
Cojean, Sandrine;  Antiparasitic Chemotherapy, Faculty of Pharmacy, BioCIS, UMR 8076 CNRS-Université, Paris-Sud, Rue Jean-Baptiste Clé,ment, Chatenay-Malabry F-92290, France. sandrine.cojean@u-psud.fr
Horvath, Dragos;  Laboratoire de Chemoinformatique, UMR7140 CNRS-Université, de Strasbourg, 1 rue Blaise Pascal, Strasbourg F-67000, France. dhorvath@unistra.fr
Marcou, Gilles;  Laboratoire de Chemoinformatique, UMR7140 CNRS-Université, de Strasbourg, 1 rue Blaise Pascal, Strasbourg F-67000, France. g.marcou@unistra.fr
Varnek, Alexandre;  Laboratoire de Chemoinformatique, UMR7140 CNRS-Université, de Strasbourg, 1 rue Blaise Pascal, Strasbourg F-67000, France. varnek@unistra.fr
Maes, Louis;  Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Antwerp B-2610, Belgium. louis.maes@ua.ac.be
Maran, Uko;  Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia. uko.maran@ut.ee
Loiseau, Philippe M;  Antiparasitic Chemotherapy, Faculty of Pharmacy, BioCIS, UMR 8076 CNRS-Université, Paris-Sud, Rue Jean-Baptiste Clé,ment, Chatenay-Malabry F-92290, France. philippe.loiseau@u-psud.fr
Davioud-Charvet, Elisabeth ;  Bioorganic and Medicinal Chemistry Team, UMR 7509 CNRS-Université, de Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, Strasbourg F-67087, France. elisabeth.davioud@unistra.fr
Language :
English
Title :
In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids.
Publication date :
29 June 2016
Journal title :
Molecules
eISSN :
1420-3049
Publisher :
MDPI AG, Basel, Switzerland
Volume :
21
Issue :
7
Pages :
853
Peer reviewed :
Peer reviewed
Funders :
ANR - Agence Nationale de la Recherche
Funding number :
ANR-11-LABX-0024
Available on ORBi :
since 01 December 2022

Statistics


Number of views
38 (0 by ULiège)
Number of downloads
14 (0 by ULiège)

Scopus citations®
 
20
Scopus citations®
without self-citations
17
OpenCitations
 
13
OpenAlex citations
 
20

Bibliography


Similar publications



Contact ORBi