Ecological and human health risk assessment of potentially toxic element contamination in waters of a former asbestos mine (Canari, Mediterranean Sea): implications for management.
Fisheries; Pollution; Potentially toxic elements; Risk assessment; Target cancer risk; Management, Monitoring, Policy and Law; General Environmental Science; General Medicine
Abstract :
[en] Between 1948 and 1965, the Canari asbestos mine (Corsica, France) discharged 11 million tonnes of serpentinite rubble into the sea. This study, therefore, aims to assess the environmental and health risks associated with contamination of potentially toxic elements using bioindicators (seagrass and fish) in the areas bordering the former mine within the perimeter of the Cap Corse and Agriate Marine Natural Park. The results and multivariate statistical analyses of the potentially toxic elements, made it possible to identify a concentration gradient, a model of bioaccumulation, and the occurrence of different groups, thus reflecting a spatial variation of the contamination. These results indicate that the former asbestos mine can still be considered, 55 years after its closure, as a major source of Co, Cr, and Ni for marine ecosystems and still influences the quality of the coastal area today. Our study, therefore, indicates that the two most polluted sites (Albo and Negru) are the closest stations to the south of the old Canary asbestos mine. According to the Trace Elements Pollution Index (TEPI) values, 6 species were classified as having a high contamination level: Scorpaena notata (1.37), Scorpaena porcus (1.36), Sepia officinalis (1.27), Diplodus vulgaris (1.02), Spicara maena (0.95), and Mullus surmuletus (0.94). Regarding the potentially toxic elements measured in the edible tissues of fish, the concentrations were all below the regulatory thresholds and did not reveal any potential risk to human health (Cd, Cu, Fe, Pb, Se, Sn, Zn). This work provides new and useful information to improve the monitoring of the environmental quality of a region characterized by previous mining activity and to assess the potential risk to human health due to the consumption of fish. Beyond the purely scientific aspects, these results could serve as decision support at the regional level for the definition of long-term public policies.
Marengo, Michel ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Océanographie biologique ; STAtion de REcherches Sous-Marines Et Océanographiques (STARESO), Punta Revellata, BP33, 20260, Calvi, France. michel.marengo@stareso.com
Fullgrabe, Lovina ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Océanographie biologique ; STAtion de REcherches Sous-Marines Et Océanographiques (STARESO), Punta Revellata, BP33, 20260, Calvi, France
Fontaine, Quentin; STAtion de REcherches Sous-Marines Et Océanographiques (STARESO), Punta Revellata, BP33, 20260, Calvi, France
Boissery, Pierre; Agence de l'Eau Rhône Méditerranée Corse - Délégation Paca Corse, Immeuble Le Noailles, 62 La Canebière, 13001, Marseille, France
Cancemi, Maddy; Parc Naturel Marin du Cap Corse et de l'Agriate (PNMCCA), Résidence 5Ème Avenue, Rue Paratojo, 20200, Bastia, France
Lejeune, Pierre ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Océanographie biologique ; STAtion de REcherches Sous-Marines Et Océanographiques (STARESO), Punta Revellata, BP33, 20260, Calvi, France
Gobert, Sylvie ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Océanographie biologique ; STAtion de REcherches Sous-Marines Et Océanographiques (STARESO), Punta Revellata, BP33, 20260, Calvi, France
Language :
English
Title :
Ecological and human health risk assessment of potentially toxic element contamination in waters of a former asbestos mine (Canari, Mediterranean Sea): implications for management.
Publication date :
25 November 2022
Journal title :
Environmental Monitoring and Assessment
ISSN :
0167-6369
eISSN :
1573-2959
Publisher :
Springer Science and Business Media LLC, Netherlands
Agah, H., Leermakers, M., Gao, Y., Fatemi, S. M. R., Katal, M. M., Baeyens, W., & Elskens, M. (2010). Mercury accumulation in fish species from the Persian Gulf and in human hair from fishermen. Environmental Monitoring and Assessment, 169(1–4), 203–216. DOI: 10.1007/s10661-009-1162-8
Amiard, J.-C., Amiard-Triquet, C., Barka, S., Pellerin, J., & Rainbow, P. S. (2006). Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers. Aquatic Toxicology, 76(2), 160–202. DOI: 10.1016/j.aquatox.2005.08.015
Amoussou, N., Marengo, M., Durieux, E. D. H., Douny, C., Scippo, M.-L., & Gobert, S. (2019). Trace elements and fatty acid profile of Argyrosomus regius (Asso, 1801) from Mediterranean aquaculture. Biological Trace Element Research. 10.1007/s12011-019-01925-x DOI: 10.1007/s12011-019-01925-x
Anan, Y., Kunito, T., Tanabe, S., Mitrofanov, I., & Aubrey, D. G. (2005). Trace element accumulation in fishes collected from coastal waters of the Caspian Sea. Marine Pollution Bulletin, 51(8–12), 882–888. DOI: 10.1016/j.marpolbul.2005.06.038
Anderson, R. A. (2000). Chromium in the prevention and control of diabetes. Diabetes and Metabolism, 26(1), 22–28.
Andral, B., Stanisiere, J. Y., Sauzade, D., & Damier, E. (2004). Monitoring chemical contamination levels in the Mediterranean based on the use of mussel caging. Marine Pollution Bulletin, 9.
Atwell, L., Hobson, K. A., & Welch, H. E. (1998). Biomagnification and bioaccumulation of mercury in an arctic marine food web: Insights from stable nitrogen isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences, 55(5), 1114–1121. DOI: 10.1139/f98-001
Bernier, P., Guidi, J.-B., & Böttcher, M. E. (1997). Coastal progradation and very early diagenesis of ultramafic sands as a result of rubble discharge from asbestos excavations (northern Corsica, western Mediterranean). Marine Geology, 144(1–3), 163–175. 10.1016/S0025-3227(97)00086-8 DOI: 10.1016/S0025-3227(97)00086-8
Bonanno, G. (2020). Seagrass Cymodocea nodosa and seaweed Ulva lactuca as tools for trace element biomonitoring. A comparative study. Marine Pollution Bulletin, 12.
Bonanno, G., & Di Martino, V. (2017). Trace element compartmentation in the seagrass Posidonia oceanica and biomonitoring applications. Marine Pollution Bulletin, 116(1), 196–203. DOI: 10.1016/j.marpolbul.2016.12.081
Bortey-Sam, N. (2015). Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana_ Estimation of the daily intakes and target hazard quotients (THQs). Ecotoxicology and Environmental Safety, 8.
Bouchoucha, M., Galgani, F., Andral, B., Baldi, Y., Chiffoleau, J.-F., Auger, D., & Rozuel, E. (2012). Evaluation des risques sanitaires et environnementaux liés à la contamination du Golfe de Saint-Florent par les métaux lourds-Etude CANARI III. Rapport d’étude à l’Office de l’Environnement Corse.
Boudouresque, C.-F., Bernard, G., Bonhomme, P., Charbonnel, E., Diviacco, G., Meinesz, A., et al. (2012). Protection and conservation of Posidonia oceanica meadows. RAMOGE and RAC/SPA.
Braune, B., Muir, D., DeMarch, B., Gamberg, M., Poole, K., Currie, R., et al. (1999). Spatial and temporal trends of contaminants in Canadian Arctic freshwater and terrestrial ecosystems: A review. Science of the Total Environment, 230(1), 145–207. 10.1016/S0048-9697(99)00038-8 DOI: 10.1016/S0048-9697(99)00038-8
Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. 10.1016/j.heliyon.2020.e04691 DOI: 10.1016/j.heliyon.2020.e04691
Canli, M., & Atli, G. (2003). The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environmental Pollution, 121(1), 129–136. DOI: 10.1016/S0269-7491(02)00194-X
Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53(1), 159–182. DOI: 10.1146/annurev.arplant.53.100301.135154
Currie, L. A. (1999). Nomenclature in evaluation of analytical methods including detection and quantification capabilities:(IUPAC Recommendations 1995). Analytica Chimica Acta, 391(2), 105–126. 10.1016/S0003-2670(99)00104-X DOI: 10.1016/S0003-2670(99)00104-X
Dadar, M., Adel, M., Ferrante, M., Nasrollahzadeh Saravi, H., Copat, C., & Oliveri Conti, G. (2016). Potential risk assessment of trace metals accumulation in food, water and edible tissue of rainbow trout (Oncorhynchus mykiss) farmed in Haraz River, northern Iran. Toxin Reviews, 35(3–4), 141–146. DOI: 10.1080/15569543.2016.1217023
Damodhar, U., & Reddy, M. (2012). Assessment of heavy metals concentrations in water and four fish species from the Uppanar River at Cuddalore (Tamil Nadu, India). Continental Journal of Environmental Sciences, 6(3), 32–41.
European Community. (2006). Setting Maximum Levels for Certain Contaminants in Foodstuffs. Commission Regulation (EC) No 1881/2006 of 19 December 2006. Brussels: The Commission of the European Community, 20.
Fallah, A. A., Saei-Dehkordi, S. S., Nematollahi, A., & Jafari, T. (2011). Comparative study of heavy metal and trace element accumulation in edible tissues of farmed and wild rainbow trout (Oncorhynchus mykiss) using ICP-OES technique. Microchemical Journal, 98(2), 275–279. 10.1016/j.microc.2011.02.007 DOI: 10.1016/j.microc.2011.02.007
FAO/WHO. (2013). Evaluation of certain food additives and contaminants: seventy-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization.
FAO/WHO. (2014). Safety evaluation of certain food additives and contaminants (Vol. 68). World Health Organization.
Faure, F., Saini, C., Potter, G., Galgani, F., De Alencastro, L. F., & Hagmann, P. (2015). An evaluation of surface micro-and mesoplastic pollution in pelagic ecosystems of the Western Mediterranean Sea. Environmental Science and Pollution Research, 22(16), 12190–12197. DOI: 10.1007/s11356-015-4453-3
Gao, Y., Qian, H., Huo, C., Chen, J., & Wang, H. (2020). Assessing natural background levels in shallow groundwater in a large semiarid drainage Basin. Journal of Hydrology, 584, 124638. 10.1016/j.jhydrol.2020.124638 DOI: 10.1016/j.jhydrol.2020.124638
Gargouri, D., Azri, C., Serbaji, M. M., Jedoui, Y., & Montacer, M. (2011). Heavy metal concentrations in the surface marine sediments of Sfax Coast Tunisia. Environmental Monitoring and Assessment, 175(1–4), 519–530. DOI: 10.1007/s10661-010-1548-7
Ghribi, F. (2020). Trace elements and oxidative stress in the Ark shell Arca noae from a Mediterranean coastal lagoon (Bizerte lagoon, Tunisia): are there health risks associated with their consumption? Environmental Science and Pollution Research, 17.
Gobert, S., Lefebvre, L., Boissery, P., & Richir, J. (2020). A non-destructive method to assess the status of Posidonia oceanica meadows. Ecological Indicators, 119, 106838. 10.1016/j.ecolind.2020.106838 DOI: 10.1016/j.ecolind.2020.106838
Gosselin, M., Bouquegneau, J.-M., Lefèbvre, F., Lepoint, G., Pergent, G., Pergent-Martini, C., & Gobert, S. (2006). Trace metal concentrations in Posidonia oceanica of North Corsica (northwestern Mediterranean Sea): Use as a biological monitor? BMC Ecology, 6(1), 1–19. DOI: 10.1186/1472-6785-6-12
Griffioen, J., Passier, H. F., & Klein, J. (2008). Comparison of selection methods to deduce natural background levels for groundwater units. Environmental Science & Technology, 42(13), 4863–4869. 10.1021/es7032586 DOI: 10.1021/es7032586
Islam, Md. S., Ahmed, Md. K., Habibullah-Al-Mamun, Md., & Raknuzzaman, M. (2015). The concentration, source and potential human health risk of heavy metals in the commonly consumed foods in Bangladesh. Ecotoxicology and Environmental Safety, 122, 462–469. 10.1016/j.ecoenv.2015.09.022 DOI: 10.1016/j.ecoenv.2015.09.022
Isoda, R., Yamane, H., Nezuo, S., Monobe, Y., Ochi, N., Honda, Y., et al. (2015). Successful palliation for an aged patient with primary pericardial mesothelioma. World Journal of Surgical Oncology, 13(1), 1–4. DOI: 10.1186/s12957-015-0692-5
JECFA. (2011). Safety evaluation of certain food additives and contaminants/prepared by the seventythird meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); Geneva. pp. 305–380.
Jović, M., & Stanković, S. (2014). Human exposure to trace metals and possible public health risks via consumption of mussels Mytilus galloprovincialis from the Adriatic coastal area. Food and Chemical Toxicology, 70, 241–251. DOI: 10.1016/j.fct.2014.05.012
Lafabrie, C., Pergent, G., Kantin, R., Pergent-Martini, C., & Gonzalez, J.-L. (2007). Trace metals assessment in water, sediment, mussel and seagrass species–validation of the use of Posidonia oceanica as a metal biomonitor. Chemosphere, 68(11), 2033–2039. DOI: 10.1016/j.chemosphere.2007.02.039
Lafabrie, C., Pergent, G., & Pergent-Martini, C. (2009). Utilization of the seagrass Posidonia oceanica to evaluate the spatial dispersion of metal contamination. Science of the Total Environment, 407(7), 2440–2446. DOI: 10.1016/j.scitotenv.2008.11.001
Lahondère, D. (1991). Les schistes bleus et les éclogites à lawsonite des unités continentales et océaniques de la Corse alpine: nouvelles données pétrologiques et structurales. Montpellier 2.
Li, H., Kang, X., Li, X., Li, Q., Song, J., Jiao, N., & Zhang, Y. (2017). Heavy metals in surface sediments along the Weihai coast, China: Distribution, sources and contamination assessment. Marine Pollution Bulletin, 115(1–2), 551–558. DOI: 10.1016/j.marpolbul.2016.12.039
Li, X.-H., Faure, M., & Lin, W. (2014). From crustal anatexis to mantle melting in the Variscan orogen of Corsica (France): SIMS U-Pb zircon age constraints. Tectonophysics, 634, 19–30. 10.1016/j.tecto.2014.07.021 DOI: 10.1016/j.tecto.2014.07.021
Luy, N., Gobert, S., Sartoretto, S., Biondo, R., Bouquegneau, J.-M., & Richir, J. (2012). Chemical contamination along the Mediterranean French coast using Posidonia oceanica (L.) Delile above-ground tissues: A multiple trace element study. Ecological Indicators, 18, 269–277. DOI: 10.1016/j.ecolind.2011.11.005
MAFF. (2000). Monitoring and Surveillance of Non-radioactive Contaminants in the Aquatic Environment and Activities Regulating the Disposal of Wastes At Sea. (No. 52), Aquatic Environment Monitoring. Center for Environment, Fisheries and Aquaculture Science, Lowestoft, UK.
Magott, R. (2016). Propagation de la rupture sismique dans la lithosphère océanique: une étude basée sur l’analyse structurale des cataclasites et pseudotachylytes jalonnant les failles dans les roches mafiques et ultramafiques accrétées ou obductées sur les continents: l’exemple de la Corse. Besançon.
Marengo, M., Durieux, E. D. H., Ternengo, S., Lejeune, P., Degrange, E., Pasqualini, V., & Gobert, S. (2018). Comparison of elemental composition in two wild and cultured marine fish and potential risks to human health. Ecotoxicology and Environmental Safety, 158, 204–212. 10.1016/j.ecoenv.2018.04.034 DOI: 10.1016/j.ecoenv.2018.04.034
Medeiros, R. J., dos Santos, L. M. G., Freire, A. S., Santelli, R. E., Braga, A. M. C., Krauss, T. M., Jacob, S., & do C. (2012). Determination of inorganic trace elements in edible marine fish from Rio de Janeiro State Brazil. Food Control, 23(2), 535–541. DOI: 10.1016/j.foodcont.2011.08.027
Merciai, R., Guasch, H., Kumar, A., Sabater, S., & García-Berthou, E. (2014). Trace metal concentration and fish size: Variation among fish species in a Mediterranean River. Ecotoxicology and Environmental Safety, 107, 154–161. 10.1016/j.ecoenv.2014.05.006 DOI: 10.1016/j.ecoenv.2014.05.006
Mertz, W. (1993). Chromium in human nutrition: A review. The Journal of Nutrition, 123(4), 626–633. DOI: 10.1093/jn/123.4.626
Metian, M. (2013). Trace element bioaccumulation in reef fish from New Caledonia: Influence of trophic groups and risk assessment for consumers. Marine Environmental Research, 11.
Minganti, V., Drava, G., De Pellegrini, R., & Siccardi, C. (2010). Trace elements in farmed and wild gilthead seabream Sparus Aurata. Marine Pollution Bulletin, 60(11), 2022–2025. DOI: 10.1016/j.marpolbul.2010.07.023
Moore, M. N., Depledge, M. H., Readman, J. W., & Leonard, D. P. (2004). An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. Mutation Research/fundamental and Molecular Mechanisms of Mutagenesis, 552(1–2), 247–268. DOI: 10.1016/j.mrfmmm.2004.06.028
Morrison, L., Bennion, M., McGrory, E., Hurley, W., & Johnson, M. P. (2017). Talitrus saltator as a biomonitor: An assessment of trace element contamination on an urban coastline gradient. Marine Pollution Bulletin, 120(1–2), 232–238. DOI: 10.1016/j.marpolbul.2017.05.019
Plessl, C., Gilbert, B. M., Sigmund, M. F., Theiner, S., Avenant-Oldewage, A., Keppler, B. K., & Jirsa, F. (2019). Mercury, silver, selenium and other trace elements in three cyprinid fish species from the Vaal Dam, South Africa, including implications for fish consumers. Science of the Total Environment, 659, 1158–1167. 10.1016/j.scitotenv.2018.12.442 DOI: 10.1016/j.scitotenv.2018.12.442
Pluquet, F. (2006). Evolution récente et sédimentation des plates-formes continentales de la Corse. Université Pascal Paoli.
Richir, J., & Gobert, S. (2014). A reassessment of the use of Posidonia oceanica and Mytilus galloprovincialis to biomonitor the coastal pollution of trace elements: New tools and tips. Marine Pollution Bulletin, 89(1), 390–406. DOI: 10.1016/j.marpolbul.2014.08.030
Richir, J., & Gobert, S. (2016). Trace elements in marine environments: occurrence, threats and monitoring with special focus on the Costal Mediterranean. Journal of Environmental and Analytical Toxicology, 6(1).
Richir, J., Luy, N., Lepoint, G., Rozet, E., Azcarate, A. A., & Gobert, S. (2013). Experimental in situ exposure of the seagrass Posidonia oceanica (L.) Delile to 15 trace elements. Aquatic Toxicology, 140–141, 157–173. 10.1016/j.aquatox.2013.05.018 DOI: 10.1016/j.aquatox.2013.05.018
Richir, J., Salivas-Decaux, M., Lafabrie, C., & y Royo, C. L., Gobert, S., Pergent, G., & Pergent-Martini, C. (2015). Bioassessment of trace element contamination of Mediterranean coastal waters using the seagrass Posidonia oceanica. Journal of Environmental Management, 151, 486–499. DOI: 10.1016/j.jenvman.2014.11.015
Rumbold, D., Wasno, R., Hammerschlag, N., & Volety, A. (2014). Mercury accumulation in sharks from the coastal waters of southwest Florida. Archives of Environmental Contamination and Toxicology, 67(3), 402–412. DOI: 10.1007/s00244-014-0050-6
Sacchi, E., Bergamini, M., Lazzari, E., Musacchio, A., Mor, J.-R., & Pugliaro, E. (2021). Natural background levels of potentially toxic elements in groundwater from a former asbestos mine in Serpentinite (Balangero, North Italy). Water, 13(5), 735. 10.3390/w13050735 DOI: 10.3390/w13050735
Schuster, L., White, C. R., & Marshall, D. J. (2019). Influence of food, body size, and fragmentation on metabolic rate in a sessile marine invertebrate. Invertebrate Biology, 138(1), 55–66. DOI: 10.1111/ivb.12241
Sellerino, M., Forte, G., & Ducci, D. (2019). Identification of the natural background levels in the Phlaegrean fields groundwater body (Southern Italy). Journal of Geochemical Exploration, 200, 181–192. 10.1016/j.gexplo.2019.02.007 DOI: 10.1016/j.gexplo.2019.02.007
Storelli, M. M., Barone, G., Piscitelli, G., & Marcotrigiano, G. O. (2007). Mercury in fish: concentration vs. fish size and estimates of mercury intake. Food Additives and Contaminants, 24(12), 1353–1357.
Tang, W.-L., Evans, D., Kraemer, L., & Zhong, H. (2017). Body size-dependent Cd accumulation in the zebra mussel Dreissena polymorpha from different routes. Chemosphere, 168, 825–831. DOI: 10.1016/j.chemosphere.2016.10.128
Tchounwou, P. B., Newsome, C., Williams, J., & Glass, K. (2008). Copper-induced cytotoxicity and transcriptional activation of stress genes in human liver carcinoma (HepG2) cells. In Metal ions in biology and medicine: proceedings of the.. International Symposium on Metal Ions in Biology and Medicine held..= Les ions metalliques en biologie et en medecine:.. Symposium international sur les ions metalliques. (Vol. 10, p. 285). NIH Public Access.
Ternengo, S., Marengo, M., El Idrissi, O., Yepka, J., Pasqualini, V., & Gobert, S. (2018). Spatial variations in trace element concentrations of the sea urchin, Paracentrotus lividus, a first reference study in the Mediterranean Sea. Marine Pollution Bulletin, 129(1), 293–298. 10.1016/j.marpolbul.2018.02.049 DOI: 10.1016/j.marpolbul.2018.02.049
USEPA. (2010). Risk-based concentration table. Region 3. Philadelphia, PA. http://www.epa.gov/reg3hwmd/risk/human/index.htm
Waalkes, M. P., Misra, R. R., & Chang, L. W. (1996). Toxicology of metals. CRC.
Wei, Y., Zhang, J., Zhang, D., Tu, T., & Luo, L. (2014). Metal concentrations in various fish organs of different fish species from Poyang Lake, China. Ecotoxicology and Environmental Safety, 104, 182–188. DOI: 10.1016/j.ecoenv.2014.03.001
Xiao, J., Wang, L., Chai, N., Liu, T., Jin, Z., & Rinklebe, J. (2021). Groundwater hydrochemistry, source identification and pollution assessment in intensive industrial areas, eastern Chinese loess plateau. Environmental Pollution, 278, 116930. DOI: 10.1016/j.envpol.2021.116930
Yi, Y., Wang, Z., Zhang, K., Yu, G., & Duan, X. (2008). Sediment pollution and its effect on fish through food chain in the Yangtze River. International Journal of Sediment Research, 23(4), 338–347. 10.1016/S1001-6279(09)60005-6 DOI: 10.1016/S1001-6279(09)60005-6
Yılmaz, F., Özdemir, N., Demirak, A., & Tuna, A. L. (2007). Heavy metal levels in two fish species Leuciscus cephalus and Lepomis gibbosus. Food Chemistry, 100(2), 830–835. DOI: 10.1016/j.foodchem.2005.09.020
Zhang, L., & Wang, W.-X. (2006). Significance of subcellular metal distribution in prey in influencing the trophic transfer of metals in a marine fish. Limnology and Oceanography, 51(5), 2008–2017. DOI: 10.4319/lo.2006.51.5.2008