Wechsler, M.E.; Department of Medicine, National Jewish Health, Denver, CO, United States
Munitz, A.; Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
Ackerman, S.J.; Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago
Drake, M.G.; Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland
Jackson, D.J.; Guy's Severe Asthma Centre, Guy's and St Thomas’ NHS Trust, London, United Kingdom, Asthma UK Centre, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
Wardlaw, A.J.; Institute for Lung Health, University of Leicester, Leicester, United Kingdom
Dougan, S.K.; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
Berdnikovs, S.; Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
Schleich, FLorence ; Centre Hospitalier Universitaire de Liège - CHU > > Service de pneumologie - allergologie
Matucci, A.; Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
Chanez, P.; Department of Respiratory Diseases, C2VN INSERM INRAE Aix-Marseille University, Marseille, France
Prazma, C.M.; Respiratory Therapeutic Area, GSK, Research Triangle Park, NC, United States
Howarth, P.; Respiratory Medical Franchise, GSK, Brentford, United Kingdom
Weller, P.F.; Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
Merkel, P.A.; Division of Rheumatology, Department of Medicine, and Division of Clinical Epidemiology, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia
Eosinophils in Health and Disease: A State-of-the-Art Review
Publication date :
2021
Journal title :
Mayo Clinic Proceedings
ISSN :
0025-6196
Publisher :
Elsevier Ltd
Volume :
96
Issue :
10
Pages :
2694 - 2707
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
Editorial support (in the form of writing assistance, including preparation of the draft manuscript under the direction and guidance of the authors, collating and incorporating authors’ comments for each draft, assembling tables and figures, grammatical editing, and referencing) was provided by Laura Gardner, PhD, CMPP, at Fishawack Indicia Ltd, United Kingdom, part of Fishawack Health, and was funded by GlaxoSmithKline .
Klion, A.D., Ackerman, S.J., Bochner, B.S., Contributions of eosinophils to human health and disease. Annu Rev Pathol 15 (2020), 179–209.
Abdala-Valencia, H., Coden, M.E., Chiarella, S.E., et al. Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease. J Leukoc Biol 104:1 (2018), 95–108.
McBrien, C.N., Menzies-Gow, A., The biology of eosinophils and their role in asthma. Front Med (Lausanne), 4, 2017, 93.
Robinson, D., Humbert, M., Buhl, R., et al. Revisiting type 2–high and type 2–low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy 47:2 (2017), 161–175.
Klion, A., Recent advances in understanding eosinophil biology. F1000Res, 6, 2017, 1084.
Acharya, K.R., Ackerman, S.J., Eosinophil granule proteins: form and function. J Biol Chem 289:25 (2014), 17406–17415.
Loktionov, A., Eosinophils in the gastrointestinal tract and their role in the pathogenesis of major colorectal disorders. World J Gastroenterol 25:27 (2019), 3503–3526.
Ueki, S., Tokunaga, T., Melo, R.C.N., et al. Charcot-Leyden crystal formation is closely associated with eosinophil extracellular trap cell death. Blood 132:20 (2018), 2183–2187.
Melo, R.C., Weller, P.F., Piecemeal degranulation in human eosinophils: a distinct secretion mechanism underlying inflammatory responses. Histol Histopathol 25:10 (2010), 1341–1354.
Persson, E.K., Verstraete, K., Heyndrickx, I., et al. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science, 364(6442), 2019, eaaw4295.
Ackerman, S.J., Kephart, G.M., Francis, H., Awadzi, K., Gleich, G.J., Ottesen, E.A., Eosinophil degranulation. An immunologic determinant in the pathogenesis of the Mazzotti reaction in human onchocerciasis. J Immunol 144:10 (1990), 3961–3969.
Flores-Torres, A.S., Salinas-Carmona, M.C., Salinas, E., Rosas-Taraco, A.G., Eosinophils and respiratory viruses. Viral Immunol 32:5 (2019), 198–207.
Brigger, D., Riether, C., van Brummelen, R., et al. Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age. Nat Metab 2:8 (2020), 688–702.
Drake, M.G., Lebold, K.M., Roth-Carter, Q.R., et al. Eosinophil and airway nerve interactions in asthma. J Leukoc Biol 104:1 (2018), 61–67.
Lavin, Y., Winter, D., Blecher-Gonen, R., et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:6 (2014), 1312–1326.
Hartl, S., Breyer, M.K., Burghuber, O.C., et al. Blood eosinophil count in the general population: typical values and potential confounders. Eur Respir J, 55(5), 2020, 1901874.
Castro, M., Corren, J., Pavord, I.D., et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med 378:26 (2018), 2486–2496.
Castro, M., Zangrilli, J., Wechsler, M.E., et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials [erratum appears in Lancet Respir Med. 2015;3(4):e15]. Lancet Respir Med 3:5 (2015), 355–366.
FitzGerald, J.M., Bleecker, E.R., Nair, P., et al. Benralizumab, an anti–interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 388:10056 (2016), 2128–2141.
Ortega, H.G., Liu, M.C., Pavord, I.D., et al. Mepolizumab treatment in patients with severe eosinophilic asthma [erratum appears in N Engl J Med. 2015;372(18):1777]. N Engl J Med 371:13 (2014), 1198–1207.
Humbert, M., Beasley, R., Ayres, J., et al. Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy 60:3 (2005), 309–316.
Bachert, C., Han, J.K., Desrosiers, M., et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials [erratum appears in Lancet. 2019;394(10209):1618]. Lancet 394:10209 (2019), 1638–1650.
Gevaert, P., Omachi, T.A., Corren, J., et al. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials [erratum appears in J Allergy Clin Immunol. 2021;147(1):416]. J Allergy Clin Immunol 146:3 (2020), 595–605.
Hopkins, C., Bachert, C., Fokkens, W., et al. Add-on mepolizumab for chronic rhinosinusitis with nasal polyps: SYNAPSE study. Eur Respir J, 56(suppl 64), 2020, 4616.
Pavord, I.D., Chanez, P., Criner, G.J., et al. Mepolizumab for eosinophilic chronic obstructive pulmonary disease. N Engl J Med 377:17 (2017), 1613–1629.
Criner, G.J., Celli, B.R., Singh, D., et al. Predicting response to benralizumab in chronic obstructive pulmonary disease: analyses of GALATHEA and TERRANOVA studies. Lancet Respir Med 8:2 (2020), 158–170.
Wechsler, M.E., Akuthota, P., Jayne, D., et al. Mepolizumab or placebo for eosinophilic granulomatosis with polyangiitis. N Engl J Med 376:20 (2017), 1921–1932.
Guntur, V.P., Manka, L., Denson, J.L., et al. Benralizumab as a steroid-sparing treatment option in eosinophilic granulomatosis with polyangiitis. J Allergy Clin Immunol Pract 9:3 (2021), 1186–1193.e1.
Roufosse, F., Kahn, J.E., Rothenberg, M.E., et al. Efficacy and safety of mepolizumab in hypereosinophilic syndrome: a phase III, randomized, placebo-controlled trial. J Allergy Clin Immunol 146:6 (2020), 1397–1405.
Kuang, F.L., Legrand, F., Makiya, M., et al. Benralizumab for PDGFRA-negative hypereosinophilic syndrome. N Engl J Med 380:14 (2019), 1336–1346.
Straumann, A., Conus, S., Grzonka, P., et al. Anti–interleukin-5 antibody treatment (mepolizumab) in active eosinophilic oesophagitis: a randomised, placebo-controlled, double-blind trial. Gut 59:1 (2010), 21–30.
Spergel, J.M., Rothenberg, M.E., Collins, M.H., et al. Reslizumab in children and adolescents with eosinophilic esophagitis: results of a double-blind, randomized, placebo-controlled trial. J Allergy Clin Immunol 129:2 (2012), 456–463 463.e1-3.
Hirano, I., Dellon, E.S., Hamilton, J.D., et al. Efficacy of dupilumab in a phase 2 randomized trial of adults with active eosinophilic esophagitis. Gastroenterology 158:1 (2020), 111–122.e10.
Hirano, I., Collins, M.H., Assouline-Dayan, Y., et al. RPC4046, a monoclonal antibody against IL13, reduces histologic and endoscopic activity in patients with eosinophilic esophagitis. Gastroenterology 156:3 (2019), 592–603.e10.
Hirano, I., Peterson, K., Murray, J., et al. AK002, an anti–siglec-8 antibody, depletes tissue eosinophils and improves dysphagia symptoms in patients with eosinophilic esophagitis. J Allergy Clin Immunol, 145(2, suppl), 2020, AB167.
Dellon, E.S., Peterson, K.A., Murray, J.A., et al. Anti–siglec-8 antibody for eosinophilic gastritis and duodenitis. N Engl J Med 383:17 (2020), 1624–1634.
Pelaia, C., Paoletti, G., Puggioni, F., et al. Interleukin-5 in the pathophysiology of severe asthma. Front Physiol, 10, 2019, 1514.
Khatri, S., Moore, W., Gibson, P.G., et al. Assessment of the long-term safety of mepolizumab and durability of clinical response in patients with severe eosinophilic asthma. J Allergy Clin Immunol 143:5 (2019), 1742–1751.e7.
Murphy, K., Jacobs, J., Bjermer, L., et al. Long-term safety and efficacy of reslizumab in patients with eosinophilic asthma [erratum appears in J Allergy Clin Immunol Pract. 2018;6(3):1095]. J Allergy Clin Immunol Pract 5:6 (2017), 1572–1581.e3.
Kung, T.T., Stelts, D.M., Zurcher, J.A., et al. Involvement of IL-5 in a murine model of allergic pulmonary inflammation: prophylactic and therapeutic effect of an anti–IL-5 antibody. Am J Respir Cell Mol Biol 13:3 (1995), 360–365.
Mauser, P.J., Pitman, A.M., Fernandez, X., et al. Effects of an antibody to interleukin-5 in a monkey model of asthma. Am J Respir Crit Care Med 152:2 (1995), 467–472.
O'Connell, A.E., Hess, J.A., Santiago, G.A., et al. Major basic protein from eosinophils and myeloperoxidase from neutrophils are required for protective immunity to Strongyloides stercoralis in mice. Infect Immun 79:7 (2011), 2770–2778.
Swartz, J.M., Dyer, K.D., Cheever, A.W., et al. Schistosoma mansoni infection in eosinophil lineage–ablated mice. Blood 108:7 (2006), 2420–2427.
Chung, K.F., Wenzel, S.E., Brozek, J.L., et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma [erratum appears in Eur Respir J. 2014;43(4):1216]. Eur Respir J 43:2 (2014), 343–373.
Yancey, S.W., Keene, O.N., Albers, F.C., et al. Biomarkers for severe eosinophilic asthma. J Allergy Clin Immunol 140:6 (2017), 1509–1518.
Price, D.B., Rigazio, A., Campbell, J.D., et al. Blood eosinophil count and prospective annual asthma disease burden: a UK cohort study. Lancet Respir Med 3:11 (2015), 849–858.
Szefler, S.J., Wenzel, S., Brown, R., et al. Asthma outcomes: biomarkers. J Allergy Clin Immunol 129:3, suppl (2012), S9–S23.
Pavord, I.D., Blood eosinophil-directed management of airway disease. The past, present, and future. Am J Respir Crit Care Med 202:5 (2020), 637–639.
Harvey, E.S., Langton, D., Katelaris, C., et al. Mepolizumab effectiveness and identification of super-responders in severe asthma. Eur Respir J, 55(5), 2020, 1902420.
Schleich, F.N., Chevremont, A., Paulus, V., et al. Importance of concomitant local and systemic eosinophilia in uncontrolled asthma. Eur Respir J 44:1 (2014), 97–108.
Nyenhuis, S.M., Alumkal, P., Du, J., Maybruck, B.T., Vinicky, M., Ackerman, S.J., Charcot-Leyden crystal protein/galectin-10 is a surrogate biomarker of eosinophilic airway inflammation in asthma. Biomark Med 13:9 (2019), 715–724.
Mukherjee, M., Aleman Paramo, F., Kjarsgaard, M., et al. Weight-adjusted intravenous reslizumab in severe asthma with inadequate response to fixed-dose subcutaneous mepolizumab. Am J Respir Crit Care Med 197:1 (2018), 38–46.
Howarth, P., Quirce, S., Papi, A., et al. Eosinophil-derived neurotoxin and clinical outcomes with mepolizumab in severe eosinophilic asthma. Allergy 75:8 (2020), 2085–2088.
Wardlaw, A., Howarth, P.H., Israel, E., et al. Fungal sensitization and its relationship to mepolizumab response in patients with severe eosinophilic asthma. Clin Exp Allergy 50:7 (2020), 869–872.
Schleich, F., Vaia, E.S., Pilette, C., et al. Mepolizumab for allergic bronchopulmonary aspergillosis: report of 20 cases from the Belgian Severe Asthma Registry and review of the literature. J Allergy Clin Immunol Pract 8:7 (2020), 2412–2413.e2.
Brenard, E., Pilette, C., Dahlqvist, C., et al. Real-life study of mepolizumab in idiopathic chronic eosinophilic pneumonia. Lung 198:2 (2020), 355–360.
Grozdanovic, M.M., Doyle, C.B., Liu, L., et al. Charcot-Leyden crystal protein/galectin-10 interacts with cationic ribonucleases and is required for eosinophil granulogenesis. J Allergy Clin Immunol 146:2 (2020), 377–389.e10.
Dunican, E.M., Elicker, B.M., Gierada, D.S., et al. Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J Clin Invest 128:3 (2018), 997–1009.
Wu, D., Yan, B., Wang, Y., Zhang, L., Wang, C., Charcot-Leyden crystal concentration in nasal secretions predicts clinical response to glucocorticoids in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 144:1 (2019), 345–348.e8.
Furuta, S., Iwamoto, T., Nakajima, H., Update on eosinophilic granulomatosis with polyangiitis. Allergol Int 68:4 (2019), 430–436.
Gioffredi, A., Maritati, F., Oliva, E., Buzio, C., Eosinophilic granulomatosis with polyangiitis: an overview. Front Immunol, 5, 2014, 549.
Steinfeld, J., Bradford, E.S., Brown, J., et al. Evaluation of clinical benefit from treatment with mepolizumab for patients with eosinophilic granulomatosis with polyangiitis. J Allergy Clin Immunol 143:6 (2019), 2170–2177.
Latorre, M., Novelli, F., Baldini, C., et al. Different disease subtypes in allergic eosinophilic granulomatosis with polyangiitis (EGPA). Eur Respir J, 42(suppl), 2013, 1797.
Egan, M., Furuta, G.T., Eosinophilic gastrointestinal diseases beyond eosinophilic esophagitis. Ann Allergy Asthma Immunol 121:2 (2018), 162–167.
Varricchi, G., Galdiero, M.R., Loffredo, S., et al. Eosinophils: the unsung heroes in cancer?. Oncoimmunology, 7(2), 2018, e1393134.
Grisaru-Tal, S., Itan, M., Klion, A.D., Munitz, A., A new dawn for eosinophils in the tumour microenvironment. Nat Rev Cancer 20:10 (2020), 594–607.
Reichman, H., Itan, M., Rozenberg, P., et al. Activated eosinophils exert antitumorigenic activities in colorectal cancer. Cancer Immunol Res 7:3 (2019), 388–400.
Carretero, R., Sektioglu, I.M., Garbi, N., Salgado, O.C., Beckhove, P., Hämmerling, G.J., Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8+ T cells [erratum appears in Nat Immunol. 2016;17(2):214]. Nat Immunol 16:6 (2015), 609–617.
Dougan, M., Dranoff, G., Dougan, S.K., GM-CSF, IL-3, and IL-5 family of cytokines: regulators of inflammation. Immunity 50:4 (2019), 796–811.
Schuijs, M.J., Png, S., Richard, A.C., et al. ILC2-driven innate immune checkpoint mechanism antagonizes NK cell antimetastatic function in the lung. Nat Immunol 21:9 (2020), 998–1009.
Sabogal Piñeros, Y.S., Bal, S.M., Dijkhuis, A., et al. Eosinophils capture viruses, a capacity that is defective in asthma. Allergy 74:10 (2019), 1898–1909.
Sabogal Piñeros, Y.S., Bal, S.M., van de Pol, M.A., et al. Anti–IL-5 in mild asthma alters rhinovirus-induced macrophage, B-cell, and neutrophil responses (MATERIAL). A placebo-controlled, double-blind study. Am J Respir Crit Care Med 199:4 (2019), 508–517.
Hatchwell, L., Collison, A., Girkin, J., et al. Toll-like receptor 7 governs interferon and inflammatory responses to rhinovirus and is suppressed by IL-5–induced lung eosinophilia. Thorax 70:9 (2015), 854–861.
Broadhurst, R., Peterson, R., Wisnivesky, J.P., et al. Asthma in COVID-19 hospitalizations: an overestimated risk factor?. Ann Am Thorac Soc 17:12 (2020), 1645–1648.
Godar, M., Deswarte, K., Vergote, K., et al. A bispecific antibody strategy to target multiple type 2 cytokines in asthma. J Allergy Clin Immunol 142:4 (2018), 1185–1193.e4.
Lee, J.J., Jacobsen, E.A., Ochkur, S.I., et al. Human versus mouse eosinophils: "that which we call an eosinophil, by any other name would stain as red". J Allergy Clin Immunol 130:3 (2012), 572–584.