Physics and Astronomy (all); General Physics and Astronomy
Abstract :
[en] Several authors (including myself) have made claims, none of which has been convincingly rebutted, that the flatness problem, as formulated by Dicke and Peebles, is not really a problem but rather a misunderstanding. In particular, we all agree that no fine-tuning in the early Universe is needed in order to explain the fact that there is no strong departure from flatness, neither in the early Universe nor now. Nevertheless, the flatness problem is still widely perceived to be real, since it is still routinely mentioned as an outstanding (in both senses) problem in cosmology in papers and books. Most of the arguments against the idea of a flatness problem are based on the change with time of the density parameter Ω and normalized cosmological constant λ (often assumed to be zero before there was strong evidence that it has a non-negligible positive value) and, since the Hubble constant H is not considered, are independent of time scale. In addition, taking the time scale into account, it is sometimes claimed that fine-tuning is required in order to produce a Universe which neither collapsed after a short time nor expanded so quickly that no structure formation could take place. None of those claims is correct, whether or not the cosmological constant is assumed to be zero. I briefly review the literature disputing the existence of the flatness problem, which is not as well known as it should be, compare it with some similar persistent misunderstandings, and wonder about the source of confusion.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Helbig, Phillip ; Université de Liège - ULiège > Faculté des Sciences > Form. doct. sc. (sc. spatiales - paysage)
Language :
English
Title :
Arguments against the flatness problem in classical cosmology: a review
Publication date :
December 2021
Journal title :
European Physical Journal H. Historical Perspectives on Contemporary Physics
ISSN :
2102-6459
eISSN :
2102-6467
Publisher :
Springer Science and Business Media Deutschland GmbH
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abdel-Rahman, A.-M.M. 1997. Modified general relativity and cosmology. General Relativity and Gravitation 29: 1329–1343. DOI: 10.1023/A:1018872015607
Adams, F.C. 2019. The degree of fine-tuning in our universe - and others. Physics Reports 807: 1–111. DOI: 10.1016/j.physrep.2019.02.001
Adler, R.J., and J.M. Overduin. 2005. The nearly flat universe. General Relativity and Gravitation 37: 1491–1503. DOI: 10.1007/s10714-005-0189-6
Barnes, L.A., and G.F. Lewis. 2020. The cosmic revolutionary’s handbook (or: how to beat the big bang). Cambridge, UK: Cambridge Univ. Press.
Barrow, J.D., G.F.R. Ellis, R. Maartens, and C.G. Tsagas. 2003. On the stability of the Einstein static universe. Classical and Quantum Gravity 20: L155–L164. DOI: 10.1088/0264-9381/20/11/102
Barrow, J.D., and J. Magueijo. 1999. Solutions to the Quasi-flatness and Quasi-lambda problems. Physics Letters B 447: 246–250. DOI: 10.1016/S0370-2693(99)00008-8
Barrow, J.D., H.B. Sandvik, and J. Magueijo. 2002. Anthropic reasons for nonzero flatness and Λ. Physical Review D 65: 123501.
Barrow, J.D., and F.J. Tipler. 1988. The anthropic cosmological principle. Oxford: Oxford Univ. Press.
Bernstein, J., and G. Feinberg, eds. 1986. Cosmological constants: Papers in modern cosmology. New York: Columbia Univ. Press.
Bondi, H. 1961. Cosmology. Cambridge, UK: Cambridge Univ. Press.
Brawer, R. 1996. Master’s thesis, MIT, Boston. http://hdl.handle.net/1721.1/38370.
Burbidge, G. 1988. In Highlights in gravitation and cosmology, proceedings of the International Conference on Gravitation and Cosmology, Goa, India, 14–19 December, 1987, eds. B.R. Iyer, A. Kembhavi, J.V. Narlikar, and C.V. Vishweshwara, 215. Cambridge, UK: Cambridge Univ. Press.
Carlberg, R.G. 1998. In Fundamental parameters in cosmology, Proceedings of the XXXIIIrd Rencontres de Moriond, eds. J.T. Thanh, Y. Giraud-Heraud, F. Bouchet, T. Damour, and Y. Mellier, 423–427. Paris: Éditions Frontiers.
Carroll, S.M. 2014. In what sense is the early universe fine-tuned? arXiv:1406.3057.
Carroll, S.M., and H. Tam 2010. Unitary evolution and cosmological fine-tuning. arXiv:1007.1417.
Carter, B. 1974. In Confrontation of cosmological theories with observational data, ed. M.S. Longair, 291–298. Dordrecht: Reidel Publishing Co.
Charlton, J.C., and M.S. Turner. 1987. Kinematic tests of exotic flat cosmological models. The Astrophysical Journal 313: 494–505. DOI: 10.1086/164989
Cho, H.T., and R. Kantowski. 1994. Measure on a subspace of FRW solutions and the “flatness problem” of standard cosmology. Physical Review D 50: 6144–6149. DOI: 10.1103/PhysRevD.50.6144
Coles, P. 2009. The cosmic tightrope. https://telescoper.wordpress.com/2009/05/03/the-cosmic-tightrope/.
Coles, P., and G.F.R. Ellis. 1997. Is the universe open or closed? Cambridge lecture notes in physics No. 7. Cambridge, UK: Cambridge Univ. Press.
Coley, A.A. 2003. Dynamical systems and cosmology, Astrophysics and Space Science Library,Vol. 291. Dordrecht: Springer Netherlands.
Collins, C.B., and S.W. Hawking. 1973. Why is the universe isotropic. The Astrophysical Journal 180: 317–334. DOI: 10.1086/151965
Coule, D.H. 1995. Canonical measure and the flatness of a FRW universe. Classical and Quantum Gravity 12: 455–470. DOI: 10.1088/0264-9381/12/2/015
Coule, D.H. 1996. Comparison of the mininal and canonical measures. Classical and Quantum Gravity 13: 2029–2032. DOI: 10.1088/0264-9381/13/7/026
Dabrowski, Y., A. Lasenby, and R. Saunders. 1995. Testing the angular-size versus redshift relation with compact radio sources. Monthly Notices of the Royal Astronomical Society 277: 753–757. DOI: 10.1093/mnras/277.3.753
DeWitt, B. 1967. Quantum theory of gravity. I. The canonical theory. Physical Review 160: 1113–1148. DOI: 10.1103/PhysRev.160.1113
Dicke, R.H. 1970. Mem. Am. Philos. Soc., Vol. 78, Gravitation and the Universe: Jayne Lectures for 1969. Philadelphia: APS.
Dicke, R.H. 1990. In Origins: The lives and words of modern cosmologists, eds. A.P. Lightman and R. Brawer, 201–213. Cambridge, USA: Harvard Univ. Press.
Dicke, R.H., and Peebles, P. J. E. 1979. In General relativity: An Einstein Centenary Survey, eds. S.W. Hawking and W. Israel, 504–517. Cambridge, UK: Cambridge Univ. Press.
Eddington, A.S. 1930. On the stability of Einstein’s spherical world. Monthly Notices of the Royal Astronomical Society 90: 668–678. DOI: 10.1093/mnras/90.7.668
Eddington, A.S. 1931. The end of the world: from the standpoint of mathematical physics. Nature 127: 447–453. DOI: 10.1038/127447a0
Eddington, A.S. 1940a. The expanding universe. Hammondsworth, Middlesex, England: Penguin.
Eddington, A.S. 1940b. Background to modern science, 128. Cambridge, UK: Cambridge Univ. Press.
Ehlers, J., and W. Rindler. 1989. A phase-space representation of Friedmann-Lemaître universes containing both dust and radiation and the inevitability of a big bang. Monthly Notices of the Royal Astronomical Society 238: 503–521. DOI: 10.1093/mnras/238.2.503
Einstein, A. 1917. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsb. Kön. Pr. Akad. Wiss. VI: 142–152.
Einstein, A. 1931. Zum kosmologischen Problem der allgemeinen Relativitätstheorie. Sitzungsb. Kön. Pr. Akad. Wiss. XII: 235–237.
Einstein, A. 1933. La fondements de la théorie de la relativité générale; Théorie unitaire de la gravitation et d’electricité; Sur la structure cosmologique de l’espace. Paris: Hermann et Compagnie.
Einstein, A., and W. de Sitter. 1932. On the relation between the expansion and the mean density of the universe. Proceedings of the National Academy of Sciences of the United States of America 18: 213–214. DOI: 10.1073/pnas.18.3.213
Ellis, G.F.R., R. Maartens, and M.A.H. MacCallum. 2012. Relativistic cosmology. Cambridge, UK: Cambridge Univ. Press. DOI: 10.1017/CBO9781139014403
Ellis, G.F.R., and T. Rothman. 1987. The epoch of observational cosmology. The Observatory 107: 24–29.
Evrard, G., and P. Coles. 1995. Getting the measure of the flatness problem. Classical and Quantum Gravity 12: L93–L98. DOI: 10.1088/0264-9381/12/10/001
Friedmann, A.A. 1922. Über die Krümmung des Raumes. Zeitschrift für Physik. 1: 377–386. DOI: 10.1007/BF01332580
Friedmann, A.A. 1924. Über die Möglichkeit einer Welt mit konstanter negativer Krümmung. Zeitschrift für Physik 21: 326–332. DOI: 10.1007/BF01328280
García-Salcedo, R., T. Gonzalez, F.A. Horta-Rangel, I. Quiros, and D. Sanchez-Guzmán. 2015. Introduction to the application of dynamical systems theory in the study of the dynamics of cosmological models of dark energy. European Journal of Physics 36: 025008.
Gibbons, G.W., S.W. Hawking, and J.M. Stewart. 1987. A natural measure on the set of all universes. Nuclear Physics B 281: 736–751. DOI: 10.1016/0550-3213(87)90425-1
Gibbons, G.W., and N. Turok. 2008. Measure problem in cosmology. Physical Review D 77: 063516.
Goliath, M., and G.F.R. Ellis. 1999. Homogeneous cosmologies with a cosmological constant. Physical Review D 60: 023502.
Gott III, J.R., J.E. Gunn, D.N. Schramm, and B. Tinsley. 1974. An unbound universe? The Astrophysical Journal 194: 543–553. DOI: 10.1086/153273
Guth, A.H. 1981. Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D 23: 347–356. DOI: 10.1103/PhysRevD.23.347
Harrison, E.R. 1965. Olbers’ Paradox and the background radiation density in an isotropic homogeneous universe. Monthly Notices of the Royal Astronomical Society 131: 1–12. DOI: 10.1093/mnras/131.1.1
Harrison, E.R. 1967. Classification of uniform cosmological models. Monthly Notices of the Royal Astronomical Society 137: 69–79. DOI: 10.1093/mnras/137.1.69
Harrison, E.R. 1970. Fluctuations at the threshold of classical cosmology. Physical Review D 1: 2726–2730. DOI: 10.1103/PhysRevD.1.2726
Harrison, E.R. 1974. Why the sky is dark at night. Physics Today 27: 30–36.
Harrison, E.R. 1977. The dark night sky paradox. American Journal of Physics 45: 119–124. DOI: 10.1119/1.10974
Harrison, E.R. 1980. The Paradox of the night sky. Mercury 9: 83–93.
Harrison, E.R. 1984a. In Astrophysics Today, ed. A.G.W Cameron, 296. Melville, New York: American Institute of Physics.
Harrison, E.R. 1984b. In Astrophysics Today, ed. A.G.W Cameron, 333. Melville, New York: American Institute of Physics.
Harrison, E.R. 1986. Kelvin on an old, celebrated hypothesis. Nature 322: 417–418. DOI: 10.1038/322417a0
Harrison, E.R. 1987. Darkness at night: A riddle of the universe. Cambridge, USA: Harvard Univ. Press.
Harrison, E.R. 1990a. The galactic and extragalactic background radiation. In Proceedings of the 138th Symposium of the International Astronomical Union, held in Heidelberg, FRG, June 12–16, 1989, eds. S. Bowyer and C. Leinert, 3–17. Dordrecht, Boston: Kluwer Academic Publishers.
Harrison, E.R. 1990b. In Modern cosmology in retrospect, eds. B. Bertotti, R. Balbinot, and S. Bergia, 33. Cambridge, UK: Cambridge Univ. Press.
Harrison, E.R. 1993. The redshift-distance and velocity-distance laws. The Astrophysical Journal 403: 28–31. DOI: 10.1086/172179
Harrison, E.R. 2000. Cosmology, the science of the universe, 2nd edn. Cambridge, UK: Cambridge Univ. Press.
Hawking, S.W. 1990. In Origins: The Lives and Words of Modern Cosmologists, eds. A. P. Lightman and R. Brawer, 395–398. Cambridge, USA: Harvard Univ. Press.
Hawking, S.W., and W. Israel, eds. 1979. General relativity: An Einstein centenary survey. Cambridge, UK: Cambridge Univ. Press.
Hawking, S.W., and D.N. Page. 1988. How probable is inflation? Nuclear Physics B 298: 789–809. DOI: 10.1016/0550-3213(88)90008-9
Heacox, W.D. 2015. The expanding universe: A primer on relativistic cosmology. Cambridge, UK: Cambridge Univ. Press. DOI: 10.1017/CBO9781316338674
Helbig, P. 2012. Is there a flatness problem in classical cosmology? Monthly Notices of the Royal Astronomical Society 421: 561–569.
Helbig, P. 2017. A formula for confusion. The Observatory 137: 22–25.
Helbig, P. 2020. The flatness problem and the age of the Universe. Monthly Notices of the Royal Astronomical Society 495: 3571–3575. DOI: 10.1093/mnras/staa1082
Holman, M. 2018. How problematic is the near-Euclidean spatial geometry of the large-scale universe? Foundations of Physics 48: 1617–1647. DOI: 10.1007/s10701-018-0218-4
Jaynes, E.T. 1968. Prior probabilities. IEEE Transactions on Systems Science and Cybernetics 4: 227–241. DOI: 10.1109/TSSC.1968.300117
Jones, B.J.T. 2017. Precision cosmology: The first half million years. Cambridge, UK: Cambridge Univ. Press. DOI: 10.1017/CBO9781139027809
Jones, M.H., R.J.A. Lambourne, and S. Serjeant. 2015. An introduction to galaxies and cosmology, 2nd edn. Cambridge, UK: Cambridge Univ. Press.
Kayser, R. 1995. A cosmological test with compact radio sources. Astronomy and Astrophysics 294: L21–L23.
Kayser, R., P. Helbig, and T. Schramm. 1997. A general and practical method for calculating cosmological distances. Astronomy and Astrophysics 318: 680–686.
Kellermann, K.I. 1993. The cosmological deceleration parameter estimated from the angular-size/redshift relation for compact radio sources. Nature 361: 134–135. DOI: 10.1038/361134a0
Kirchner, U., and G.F.R. Ellis. 2003. A probability measure for FLRW models. Classical Quantum Gravity 20: 1199–1213. DOI: 10.1088/0264-9381/20/6/311
Kolb, E.W. 1998. In Fundamental parameters in cosmology, eds. J.T. Thanh, Y. Giraud-Heraud, F. Bouchet, T. Damour, and Y. Mellier, 429–432. Paris: Éditions Frontiers.
Kragh, H., and M.S. Longair, eds. 2019. The Oxford handbook of the history of modern cosmology. Oxford: Oxford Univ. Press.
Kragh, H.S. 2007. Conceptions of cosmos: From myths to the accelerating universe: A history of cosmology. Oxford: Oxford Univ. Press.
Krauss, L.M. 1998. The end of the age problem, and the case for a cosmological constant revisited. The Astrophysical Journal 501: 461–466. DOI: 10.1086/305846
Krauss, L.M., and M.S. Turner. 1995. The cosmological constant is back. General Relativity and Gravitation 27: 1137–1144. DOI: 10.1007/BF02108229
Lake, K. 2005. The flatness problem and Λ. Physical Review Letters 94: 201102.
Leahy, J.P. 2003. Solutions of the friedman equation. http://www.jb.man.ac.uk/~jpl/cosmo/friedman.html#solution.
Lemaître, G. 1927. Un univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Annales de la Societé scientifique de Bruxelles 47: 49–59.
Lemaître, G. 1931a. A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebuæ. Monthly Notices of the Royal Astronomical Society 91: 483–490. DOI: 10.1093/mnras/91.5.483
Lemaître, G. 1931b. The expanding universe. Monthly Notices of the Royal Astronomical Society 91: 490–501. DOI: 10.1093/mnras/91.5.490
Lemaître, G. 1933. L’Univers en expansion. Annales de la Societé scientifique de Bruxelles A53: 51–85.
Lemaître, G. 1934. Evolution of the expanding universe. Proceedings of the National Academy of Sciences of the United States of America 20: 12–17. DOI: 10.1073/pnas.20.1.12
Lewis, G.F., and L.A. Barnes. 2017. A fortunate universe: Life in a fnely tuned cosmos. Cambridge, UK: Cambridge Univ. Press.
Lightman, A.P., and R. Brawer, eds. 1990. Origins: The lives and words of modern cosmologists. Cambridge, USA: Harvard Univ. Press.
Linde, A. 1982. A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters B 108: 389–393. DOI: 10.1016/0370-2693(82)91219-9
Linde, A. 1986. Eternally existing self-reproducing chaotic inflationary universe. Physics Letters B 175: 395–400. DOI: 10.1016/0370-2693(86)90611-8
Linde, A. 2007. In Universe or Multiverse? ed. B. Carr, 127–149. Cambridge, UK: Cambridge Univ. Press.
Longair, M.S. and C. Smeenk. 2019. In The Oxford Handbook of the History of Modern Cosmology, eds. H. Kragh and M.S. Longair, 433–435. Oxford: Oxford Univ. Press.
Madsen, M.S., and G.F.R. Ellis. 1988. The evolution of Ω in inflationary universes. Monthly Notices of the Royal Astronomical Society 234: 67–77. DOI: 10.1093/mnras/234.1.67
Madsen, M.S., J.P. Mimoso, J.A. Butcher, and G.F.R. Ellis. 1992. Evolution of the density parameter in inflationary cosmology reexamined. Physical Review D 46: 1399–1415. DOI: 10.1103/PhysRevD.46.1399
Malhotra, S., and E.L. Turner. 1995. Quasar populations in a cosmological constant-dominated flat universe. The Astrophysical Journal 445: 538–553. DOI: 10.1086/175720
Martel, H. 1995. Nonlinear structure formation in flat cosmological models. The Astrophysical Journal 445: 537–552. DOI: 10.1086/175719
McCoy, C.D. 2015. Does inflation solve the hot big bang model’s fine-tuning problems? Studies in History and Philosophy of Science 51: 23–36. DOI: 10.1016/j.shpsb.2015.06.002
McCoy, C.D. 2016. PhD thesis, University of California at San Diego, San Diego.
McCoy, C.D. 2017. Can typicality arguments dissolve cosmology’s flatness problem. Philosophy of Science 84: 1239–1252. DOI: 10.1086/694109
McCoy, C.D. 2018a. Epistemic justification and methodological luck in inflationary cosmology. British Journal for the Philosophy of Science 70: 1003–1028. DOI: 10.1093/bjps/axy014
McCoy, C.D. 2018b. The implementation, interpretation, and justification of likelihoods in cosmology. Studies in History and Philosophy of Science 62: 19–35. DOI: 10.1016/j.shpsb.2017.05.002
McCoy, C.D. 2020. In Einstein Studies, Vol. 15, Thinking About Space and Time: 100 Years of Applying and Interpreting General Relativity, eds. C. Beisbart, T. Sauer, & C. Wüthrich, 67–87. Basel: Birkhäuser.
McCrea, W.H. 1971. The cosmical constant. The Quarterly Journal of the Royal Astronomical Society 12: 140–153.
Narlikar, J.V., and T. Padmanabhan. 1991. Inflation for astronomers. Annual Review of Astronomy and Astrophysics 29: 325–362. DOI: 10.1146/annurev.aa.29.090191.001545
Nussbaumer, H. 2014. Einstein’s conversion from his static to an expanding universe. European Physical Journal H 39: 37–62. DOI: 10.1140/epjh/e2013-40037-6
Nussbaumer, H., and L. Bieri. 2009. Discovering the expanding universe. Cambridge, UK: Cambridge Univ. Press.
Olbers, H.W.M. 1823. In Astronomisches Jahrbuch für das Jahr 1826, Vol. 51, ed. J.E. Bode, 110–131. Berlin: Späthen.
Olbers, H.W.M. 1826. On the transparency of space. Edinburgh New Philosophical Journal 1: 141–150.
O’Raifeartaigh, C., and B. McCann. 2014. Einstein’s cosmic model of 1931 revisited: An analysis and translation of a forgotten model of the universe. European Physical Journal H 39: 63–85. DOI: 10.1140/epjh/e2013-40038-x
O’Raifeartaigh, C., M. O’Keeffe, W. Nahm, and S. Mitton. 2015. Einstein’s cosmology review of 1933: A new perspective on the Einstein-de Sitter model of the cosmos. European Physical Journal H 40: 301–335. DOI: 10.1140/epjh/e2015-50061-y
O’Raifeartaigh, C., M. O’Keeffe, W. Nahm, and S. Mitton. 2017. Einstein’s 1917 static model of the universe: A centennial review. European Physical Journal H 42: 431–474. DOI: 10.1140/epjh/e2017-80002-5
O’Raifeartaigh, C., M. O’Keeffe, W. Nahm, and S. Mitton. 2018. One hundred years of the cosmological constant: from “superfluous stunt” to dark energy. European Physical Journal H 43: 73–117. DOI: 10.1140/epjh/e2017-80061-7
Ostriker, J.P., and P.J. Steinhardt. 1995. The observational case for a low density universe with a non-zero cosmological constant. Nature 377: 600–602. DOI: 10.1038/377600a0
O’Toole, G. 2011. Everything should be made as simple as possible, but not simpler. https://quoteinvestigator.com/2011/05/12/einstein-simple/.
Pasachoff, J.M., and A. Filippenko 2018. The cosmos: Astronomy in the new millennium, 5th edn. Cambridge, UK: Cambridge Univ. Press.
Peacock, J.A. 1999. Cosmological physics. Cambridge, UK: Cambridge Univ. Press.
Peebles, P.J.E. 2020. Cosmology’s Century: An inside history of our modern understanding of the universe. Princeton: Princeton Univ. Press. DOI: 10.2307/j.ctvss3zt8
Peebles, P.J.E., and B. Ratra. 2003. The cosmological constant and dark energy. Reviews of Modern Physics 75: 559–606. DOI: 10.1103/RevModPhys.75.559
Perlmutter, S., G. Aldering, G. Goldhaber, et al. 1999. Measurements of Ω and Λ from 42 high-redshift super. The Astrophysical Journal 517: 565–586. DOI: 10.1086/307221
Planck, Collaboration. 2020. Planck 2018 results. VI. Cosmological parameters. Astronomy and Astrophysics 641: A6. DOI: 10.1051/0004-6361/201833910
Poe, E.A. 1848. Eureka: A prose poem. New York: Putnam.
Raine, D.J., and E.G. Thomas. 2001. An introduction to the science of cosmology. Bristol: Institute of Physics. DOI: 10.1887/0750304057
Rees, M.J. 1969. The collapse of the universe: an eschatological study. The Observatory 89: 193–198.
Rees, M.J. 1984. Is the universe flat? Journal of Astrophysics and Astronomy 5: 331–348. DOI: 10.1007/BF02714464
Remmen, G.N., and S.M. Carroll. 2013. Attractor solutions in scalar-field cosmology. Physical Review D 88: 083518.
Remmen, G.N., and S.M. Carroll. 2014. How many e -Folds Should We Expect from High-Scale Inflation. Physical Review D 90: 063517.
Riess, A.G., A.V. Filippenko, P. Challis, et al. 1998. Observational Evidence from supernovae for an accelerating universe and a cosmological constant. Astronomical Journal 116: 1009–1038. DOI: 10.1086/300499
Rindler, W. 1956. Visual horizons in world models. Monthly Notices of the Royal Astronomical Society 116: 662–677. DOI: 10.1093/mnras/116.6.662
Rindler, W. 2001. Relativity: special, general, and cosmological. Oxford: Oxford Univ. Press.
Rindler, W. 2013. Roundtable discussion: Recollections of the astrophysics revolution. Special event at the 27th Texas Symposium on Relativistic Astrophysics, Dallas, Texas. https://youtube.com/watch?v=iH8btReqv4c.
Robertson, H.P. 1935. Kinematics and world-structure. The Astrophysical Journal 82: 284–301. DOI: 10.1086/143681
Robertson, H.P. 1936. Kinematics and world-structure II. The Astrophysical Journal 83: 187–201. DOI: 10.1086/143716
Rothman, T., and G.F.R. Ellis. 1987. Has cosmology become metaphysical? Astronomy 15: 6–22.
Roukema, B.F., and V. Blanlœil. 2010. A measure on the set of compact Friedmann-Lemaître-Robertson-Walker models. Classical and Quantum Gravity 27: 245001.
Rowan-Robinson, M., and E.R. Harrison. 1979. A Composite Review of some recent books on gravitation and cosmology at the undergraduate level. American Journal of Physics 47: 205–206. DOI: 10.1119/1.11945
Ryden, B. 2017. Introduction to Cosmology, 2nd edn. Cambridge, UK: Cambridge Univ. Press.
Sandage, A.R. 1968. Observational Cosmology. The Observatory 88: 91–106.
Sandage, A.R. 1995. In eds. B. Binggeli and R. Buser, The Deep Universe, Vol. 23 (pp. 1–36). Berlin: Springer.
Schiffrin, J.S., and R.M. Wald. 2012. Measure and probability in cosmology. Physical Review D 86: 023521.
Schmidt, M. 1989. Interview of Maarten Schmidt by Alan Lightman on 1989 March 28, Niels Bohr Library & Archives. College Park, MD USA: American Institute of Physics. https://www.aip.org/history-programs/niels-bohr-library/oral-histories/33967.
Schneider, P. 2015. Extragalactic Astronomy and cosmology: An introduction, 2nd edn. Heidelberg: Springer.
Smeenk, C. 2019. In The Oxford handbook of the history of modern cosmology, eds. H. Kragh and M.S. Longair, 517–518. Oxford: Oxford Univ. Press.
Spergel, D., and U.-L. Pen. 1997. Cosmology in a String-dominated universe. The Astrophysical Journal 491: L67–L71. DOI: 10.1086/311074
Stabell, R., and S. Refsdal. 1966. Classification of general relativistic world models. Monthly Notices of the Royal Astronomical Society 132: 379–388. DOI: 10.1093/mnras/132.2.379
Stepanas, P.G., and P. Saha. 1995. Estimating q from angular size statistics. Monthly Notices of the Royal Astronomical Society 272: L13–L15. DOI: 10.1093/mnras/272.1.L13
Tangherlini, F.R. 1993. The flatness problem and the pulsating universe. Il Nuevo Cimento 108 B: 1253–1273.
Tegmark, M. 2014. Our mathematical universe. London: Allen Lane.
Tegmark, M., A. Vilenkin, and L. Pogosian. 2005. Anthropic predictions for neutrino masses. Physical Review D 71: 103523.
Thanh, J.T., Y. Giraud-Heraud, F. Bouchet, T. Damour, and Y. Mellier, eds. 1998. Fundamental parameters in cosmology: Proceedings of the XXXIIIrd Rencontres de Moriond. Paris: Éditions Frontiers.
Thomson, W. 1901. Nineteenth century clouds over the dynamical theory of heat and light. Philosophical Magazine 2: 1–40.
Trimble, V.L. 2009. Multiverses of the past. Astronomische Nachrichten 330: 761–769.
Trimble, V.L. 2017. Review of The Amazing Unity of the Universe: And Its Origin in the Big Bang. The Observatory 137: 242–243.
Turner, M.S., G. Steigman, and L.M. Krauss. 1984. Flatness of the universe: Reconciling theoretical prejudices with observational data. Physical Review Letters 52: 2090. DOI: 10.1103/PhysRevLett.52.2090
Turner, M.S., and M. White. 1997. CDM models with a smooth component. Physical Review D 56: 4439–4443. DOI: 10.1103/PhysRevD.56.R4439
Turok, N., ed. 1997. Critical dialogues in cosmology: Princeton, New Jersey, USA, 24–27 June 1996: In celebration of the 250th anniversary of Princeton University. Singapore: World Scientific.
Uzan, J.-P., and R. Lehoucq. 2001. A dynamical study of the Friedmann equations. European Journal of Physics 22: 371–384. DOI: 10.1088/0143-0807/22/4/312
van den Heuvel, E.P.J. 2016. The amazing unity of the universe: And its origin in the Big Bang. Heidelberg: Springer. DOI: 10.1007/978-3-319-23543-1
van Dongen, J. 2010. Einstein’s unification. Cambridge, UK: Cambridge Univ. Press. DOI: 10.1017/CBO9780511781377
Vittorio, N., and J. Silk. 1985. Microwave background anisotropy and decaying-particle models for a flat universe. Physical Review Letters 54: 2269–2272. DOI: 10.1103/PhysRevLett.54.2269
Vittorio, N., and M.S. Turner. 1987. The large-scale peculiar velocity field in flat models of the universe. The Astrophysical Journal 316: 475. DOI: 10.1086/165217
Waga, I. 1993. Decaying vacuum flat cosmological models: Expressions for some observable quantities and their properties. Astrophysical Journal 414: 436–448. DOI: 10.1086/173090
Wainwright, J., and G.F.R. Ellis, eds. 2005. Dynamical systems in cosmology. Cambridge, UK: Cambridge Univ. Press.
Walker, A.G. 1935. On Riemannian spaces with spherical symmetry about a line, and the conditions for isotropy in general relativity. Quarterly Journal of Mathematics 6: 81–93. DOI: 10.1093/qmath/os-6.1.81
Walker, A.G. 1937. On Milne’s theory of world-structure. Proceedings of the London Mathematical Society (Series 2) 42: 90–127. DOI: 10.1112/plms/s2-42.1.90
Wesson, P.S., K. Valle, and R. Stabell. 1987. The extragalactic background light and a definitive resolution of Olbers’s paradox. The Astrophysical Journal 317: 601–606. DOI: 10.1086/165306
Whitrow, G.J. 1953. A query concerning the steady-state theory of the homogenous expanding universe. The Observatory 73: 205–206.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.