Propofol; Animals; Brain; Unconsciousness; Wakefulness; Consciousness; Brain dynamics; Cognitive functions; Electrocorticography; Entropy production; Functional magnetic resonance imaging; Non equilibrium; Non-human primate; Probability flux; Statistical and Nonlinear Physics; Statistics and Probability; Condensed Matter Physics; Quantitative Biology - Neurons and Cognition
Abstract :
[en] The cognitive functions of human and nonhuman primates rely on the dynamic interplay of distributed neural assemblies. As such, it seems unlikely that cognition can be supported by macroscopic brain dynamics at the proximity of equilibrium. We confirmed this hypothesis by investigating electrocorticography data from nonhuman primates undergoing different states of unconsciousness (sleep, and anesthesia with propofol, ketamine, and ketamine plus medetomidine), and functional magnetic resonance imaging data from humans, both during deep sleep and under propofol anesthesia. Systematically, all states of reduced consciousness unfolded at higher proximity to equilibrium compared to conscious wakefulness, as demonstrated by the computation of entropy production and the curl of probability flux in phase space. Our results establish nonequilibrium macroscopic brain dynamics as a robust signature of consciousness, opening the way for the characterization of cognition and awareness using tools from statistical mechanics.
Disciplines :
Neurology
Author, co-author :
Sanz Perl, Yonatan ; Universidad de San Andrés, Buenos Aires, B1644BID, Argentina ; Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina ; Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona 08002, Spain
Bocaccio, Hernán ; Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina
Pallavicini, Carla; Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina
Pérez-Ipiña, Ignacio; Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina
LAUREYS, Steven ; Centre Hospitalier Universitaire de Liège - CHU > > Centre du Cerveau²
Laufs, Helmut ; Department of Neurology, Christian Albrechts University Kiel, 24118 Kiel, Germany
Kringelbach, Morten ; Department of Psychiatry, University of Oxford, Oxford OX12JD, United Kingdom
Deco, Gustavo; Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona 08002, Spain
Tagliazucchi, Enzo; Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina ; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago 7910000, Chile
Language :
English
Title :
Nonequilibrium brain dynamics as a signature of consciousness.
F. Gnesotto, F. Mura, J. Gladrow, and C. P. Broedersz, Broken detailed balance and non-equilibrium dynamics in living systems: a review, Rep. Prog. Phys. 81, 066601 (2018) RPPHAG 0034-4885 10.1088/1361-6633/aab3ed.
X. Fang, K. Kruse, T. Lu, and J. Wang, Nonequilibrium physics in biology, Rev. Mod. Phys. 91, 045004 (2019) RMPHAT 0034-6861 10.1103/RevModPhys.91.045004.
C. Battle, C. P. Broedersz, N. Fakhri, V. F. Geyer, J. Howard, C. F. Schmidt, and F. C. MacKintosh, Broken detailed balance at mesoscopic scales in active biological systems, Science 352, 604 (2016) SCIEAS 0036-8075 10.1126/science.aac8167.
D. A. Egolf, Equilibrium regained: from nonequilibrium chaos to statistical mechanics, Science 287, 101 (2000) SCIEAS 0036-8075 10.1126/science.287.5450.101.
J. Wang, Landscape and flux theory of non-equilibrium dynamical systems with application to biology, Adv. Phys. 64, 1 (2015) ADPHAH 0001-8732 10.1080/00018732.2015.1037068.
H. Yan, L. Zhao, L. Hu, X. Wang, E. Wang, and J. Wang, Nonequilibrium landscape theory of neural networks, Proc. Natl. Acad. Sci. 110, E4185 (2013) PNASA6 0027-8424 10.1073/pnas.1310692110.
S. de Franciscis, J. J. Torres, and J. Marro, Unstable dynamics, nonequilibrium phases, and criticality in networked excitable media, Phys. Rev. E 82, 041105 (2010) PLEEE8 1539-3755 10.1103/PhysRevE.82.041105.
M. Esposito, Stochastic thermodynamics under coarse graining, Phys. Rev. E 85, 041125 (2012) PLEEE8 1539-3755 10.1103/PhysRevE.85.041125.
C. W. Lynn, E. J. Cornblath, L. Papadopoulos, M. A. Bertolero, and D. S. Bassett, Non-equilibrium dynamics and entropy production in the human brain, arXiv:2005.02526.
A. G. Casali, O. Gosseries, M. Rosanova, M. Boly, S. Sarasso, K. R. Casali, S. Casarotto, M.-A. Bruno, S. Laureys, G. Tononi, A theoretically based index of consciousness independent of sensory processing and behavior, Sci. Transl. Med. 5, 198ra105 (2013) 1946-6234 10.1126/scitranslmed.3006294.
J.-R. King, J. D. Sitt, F. Faugeras, B. Rohaut, I. El Karoui, L. Cohen, L. Naccache, and S. Dehaene, Information sharing in the brain indexes consciousness in noncommunicative patients, Curr. Biol. 23, 1914 (2013) CUBLE2 0960-9822 10.1016/j.cub.2013.07.075.
D. Mateos, R. G. Erra, R. Wennberg, and J. P. Velazquez, Measures of entropy and complexity in altered states of consciousness, Cognitive Neurodynamics 12, 73 (2018) 1871-4080 10.1007/s11571-017-9459-8.
M. Schartner, A. Seth, Q. Noirhomme, M. Boly, M.-A. Bruno, S. Laureys, and A. Barrett, Complexity of multi-dimensional spontaneous eeg decreases during propofol induced general anaesthesia, PloS one 10, e0133532 (2015) 1932-6203 10.1371/journal.pone.0133532.
M. Oizumi, L. Albantakis, and G. Tononi, From the phenomenology to the mechanisms of consciousness: integrated information theory 3.0, PLoS Comput. Biol. 10, e1003588 (2014) 1553-7358 10.1371/journal.pcbi.1003588.
http://neurotycho.org/.
S. Sarasso, M. Boly, M. Napolitani, O. Gosseries, V. Charland-Verville, S. Casarotto, M. Rosanova, A. G. Casali, J.-F. Brichant, P. Boveroux, Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine, Curr. Biol. 25, 3099 (2015) CUBLE2 0960-9822 10.1016/j.cub.2015.10.014.
F. Siclari, B. Baird, L. Perogamvros, G. Bernardi, J. J. LaRocque, B. Riedner, M. Boly, B. R. Postle, and G. Tononi, The neural correlates of dreaming, Nat. Neurosci. 20, 872 (2017) NANEFN 1097-6256 10.1038/nn.4545.
É. Roldán and J. M. R. Parrondo, Estimating Dissipation From Single Stationary Trajectories, Phys. Rev. Lett. 105, 150607 (2010) PRLTAO 0031-9007 10.1103/PhysRevLett.105.150607.
C. Koch, M. Massimini, M. Boly, and G. Tononi, Neural correlates of consciousness: progress and problems, Nat. Rev. Neurosci. 17, 307 (2016) 1471-003X 10.1038/nrn.2016.22.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevE.104.014411 for the correlation between entropy and spectral power; differences in spectral power between states of consciousness; entropy production computation using 3 pca; entropy production in surrogate series; the experimental procedures followed to obtain and analyze the neuroimaging data; hopf whole-brain model and comparison between empirical and simulated correlation matrices which includes Refs. [23,27,33-42].
R. Cofré, R. Herzog, P. A. Mediano, J. Piccinini, F. E. Rosas, Y. Sanz Perl, and E. Tagliazucchi, Whole-brain models to explore altered states of consciousness from the bottom up, Brain Sci. 10, 626 (2020) 2076-3425 10.3390/brainsci10090626.
N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot, Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain, Neuroimage 15, 273 (2002) NEIMEF 1053-8119 10.1006/nimg.2001.0978.
I. P. Ipiña, P. D. Kehoe, M. Kringelbach, H. Laufs, A. Ibañez, G. Deco, Y. S. Perl, and E. Tagliazucchi, Modeling regional changes in dynamic stability during sleep and wakefulness, NeuroImage 215, 116833 (2020) 10.1016/j.neuroimage.2020.116833.
Y. S. Perl, H. Bocaccio, I. Pérez-Ipiña, F. Zamberlán, J. Piccinini, H. Laufs, M. Kringelbach, G. Deco, and E. Tagliazucchi, Generative Embeddings Of Brain Collective Dynamics Using Variational Autoencoders, Phys. Rev. Lett. 125, 238101 (2020) PRLTAO 0031-9007 10.1103/PhysRevLett.125.238101.
G. A. Mashour, P. Roelfsema, J.-P. Changeux, and S. Dehaene, Conscious processing and the global neuronal workspace hypothesis, Neuron 105, 776 (2020) NERNET 0896-6273 10.1016/j.neuron.2020.01.026.
G. Tononi and G. M. Edelman, Consciousness and complexity, Science 282, 1846 (1998) 10.1126/science.282.5395.1846.
E. Tagliazucchi, D. R. Chialvo, M. Siniatchkin, E. Amico, J.-F. Brichant, V. Bonhomme, Q. Noirhomme, H. Laufs, and S. Laureys, Large-scale signatures of unconsciousness are consistent with a departure from critical dynamics, J. R. Soc., Interface 13, 20151027 (2016) 1742-5689 10.1098/rsif.2015.1027.
A. G. Hudetz, C. J. Humphries, and J. R. Binder, Spin-glass model predicts metastable brain states that diminish in anesthesia, Front. Syst. Neurosci. 8, 234 (2014) 1662-5137 10.3389/fnsys.2014.00234.
J. R. Riehl, B. J. Palanca, and S. Ching, High-energy brain dynamics during anesthesia-induced unconsciousness, Network Neuroscience 1, 431 (2017) 2472-1751 10.1162/NETN_a_00023.
G. Solovey, L. M. Alonso, T. Yanagawa, N. Fujii, M. O. Magnasco, G. A. Cecchi, and A. Proekt, Loss of consciousness is associated with stabilization of cortical activity, J. Neurosci. 35, 10866 (2015) JNRSDS 0270-6474 10.1523/JNEUROSCI.4895-14.2015.
T. Bayne, J. Hohwy, and A. M. Owen, Are there levels of consciousness? Trends Cognit. Sci. 20, 405 (2016) 1364-6613 10.1016/j.tics.2016.03.009.
A. Maksimow, M. Särkelä, J. Långsjö, E. Salmi, K. Kaisti, A. Yli-Hankala, S. Hinkka-Yli-Salomäki, H. Scheinin, and S. Jääskeläinen, Increase in high frequency eeg activity explains the poor performance of eeg spectral entropy monitor during s-ketamine anesthesia, Clin. Neurophysiol. 117, 1660 (2006) 1388-2457 10.1016/j.clinph.2006.05.011.
R. B. Berry, R. Brooks, C. E. Gamaldo, S. M. Harding, C. Marcus, B. V. Vaughn, The AASM Manual for the Scoring of Sleep and Associated events, Rules, Terminology and Technical Specifications (American Academy of Sleep Medicine, Darien, Illinois, 2012), Vol. 176.
E. Tagliazucchi and H. Laufs, Decoding wakefulness levels from typical fmri resting-state data reveals reliable drifts between wakefulness and sleep, Neuron 82, 695 (2014) NERNET 0896-6273 10.1016/j.neuron.2014.03.020.
R. MacLaren, J. M. Plamondon, K. B. Ramsay, G. M. Rocker, W. D. Patrick, and R. I. Hall, A prospective evaluation of empiric versus protocol-based sedation and analgesia, Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 20, 662 (2000) PHPYDQ 0277-0008 10.1592/phco.20.7.662.35172.
M. Jenkinson, P. Bannister, M. Brady, and S. Smith, Improved optimization for the robust and accurate linear registration and motion correction of brain images, NeuroImage 17, 825 (2002) NEIMEF 1053-8119 10.1006/nimg.2002.1132.
T. E. Behrens, H. J. Berg, S. Jbabdi, M. F. Rushworth, and M. W. Woolrich, Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage 34, 144 (2007) NEIMEF 1053-8119 10.1016/j.neuroimage.2006.09.018.
B. M. Jobst, R. Hindriks, H. Laufs, E. Tagliazucchi, G. Hahn, A. Ponce-Alvarez, A. B. Stevner, M. L. Kringelbach, and G. Deco, Increased stability and breakdown of brain effective connectivity during slow-wave sleep: mechanistic insights from whole-brain computational modelling, Sci. Rep. 7, 4634 (2017) 2045-2322 10.1038/s41598-017-04522-x.
G. Deco, M. L. Kringelbach, V. K. Jirsa, and P. Ritter, The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core, Sci. Rep. 7, 3095 (2017) 2045-2322 10.1038/s41598-017-03073-5.
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing 13, 600 (2004) IIPRE4 1057-7149 10.1109/TIP.2003.819861.
C. Reveley, A. K. Seth, C. Pierpaoli, A. C. Silva, D. Yu, R. C. Saunders, D. A. Leopold, and Q. Y. Frank, Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion mr tractography, Proc. Natl. Acad. Sci. 112, E2820 (2015) PNASA6 0027-8424 10.1073/pnas.1418198112.
A. Messé, D. Rudrauf, H. Benali, and G. Marrelec, Relating structure and function in the human brain: Relative contributions of anatomy, stationary dynamics, and non-stationarities, PLoS Comput. Biol. 10, e1003530 (2014) 1553-7358 10.1371/journal.pcbi.1003530.