bond strength; bonding; dentin; laser etching; self-adhering composite; Dentistry (all); General Dentistry
Abstract :
[en] (1) Background: Bonding composite to tooth structure is still evolving with a substitute for phosphoric acid being the main challenge. Lately, a self-adhering composite (SAC) was developed, promising to simplify bonding to tooth structure. Unfortunately, retention especially to dentin, was not as good as the gold standard three steps bonding system. During the last 2 decades, lasers were used to enhance shear bond strength of composite to tooth structure. However, the literature provided limited information regarding laser efficiency in the immediate, as well as the long term, adhesion success of SACs to dentin. The purpose of our study was to define the optimal irradiation conditions to improve the adhesion of self-adhering flowable resin composite to dentin exposed to Er:YAG and Er,Cr:YSGG laser irradiation. (2) Methods: Seventy-two freshly extracted human third molars, prepared to have flat dentinal surfaces, were randomly divided into three groups (n = 24) including a control group (Group 1) in which dentin was left without laser irradiation. The other two groups (Group 2 and 3) received standardized irradiation at a speed of 1 mm/second with Er:YAG (60 mJ; SSP mode = 50 μs; 10 Hz; fluency of 9.4 J/cm2; beam diameter: 0.9 mm; air 6 mL/min; and water 4 mL/min), and Er,Cr:YSGG: 1.5 W; fluency of 17.8 J/cm2; turbo handpiece with MX5 short insert; 20 Hz under air/water spray (65% air, 55% water). Self-adhering flowable resin was applied to dentin in all groups. Half of the specimens were stored in water for 24 h while the other half underwent 3000 thermal cycles. Later, all specimens received a shear bond strength test. Fracture observation was done first under a stereomicroscope then by using a scanning electron microscope. (3) Results: The mean values of shear bond strength for both laser-treated dentin groups (Er:YAG laser: 13.10 ± 1.291, and Er,Cr:YSGG: 14.04 ± 5.233) were higher than in the control group 1 (8.355 ± 2.297) before thermocycling. After thermocycling, shear bond strength decreased in all groups as follows: 10.03 ± 1.503, 10.53 ± 2.631, and 02.75 ± 1.583 for Er:YAG, Er,Cr:YSGG, and nonirradiated dentin, respectively. Shear bond strength values showed a significant difference between the control group (Group 1) and both lasers groups (Group 2 and 3). Statistical analysis of stereomicroscope observation revealed no significant difference between laser irradiation and failure mode (p < 0.136). SEM observation of the dentin surface in both laser-irradiated groups showed opened tubules, absence of smear layer as well as an increase of resin infiltration into dentinal tubules. (4) Conclusion: Er:YAG and Er,Cr:YSGG lasers enhance self-adhering flowable resin shear bond strength values and improve its longevity by eliminating the smear layer, opening dentinal tubules and increasing resin infiltration into the microstructure.
Disciplines :
Dentistry & oral medicine
Author, co-author :
Nahas, Paul; Department of Restorative and Esthetic Dentistry, Faculty of Dental Medicine, Lebanese University, Beirut 27798, Lebanon
Namour, Samir ; Université de Liège - ULiège > Département des sciences dentaires
Gerges, Elie; Department of Prosthodontics, Faculty of Dental Medicine, Lebanese University, Beirut 27798, Lebanon
Zeinoun, Toni; Department of Oral and Maxillo-Facial Surgery, Dean of Faculty of Dental Medicine, Lebanese University, Beirut 27798, Lebanon
Language :
English
Title :
Comparison between Shear Bond Strength of Er:YAG and Er,Cr:YSGG Lasers-Assisted Dentinal Adhesion of Self-Adhering Resin Composite: An Ex Vivo Study.
Peumans, M.; De Munck, J.; Van Landuyt, K.L.; Poitevin, A.; Lambrechts, P.; Van Meerbeek, B. A 13-year clinical evaluation of two three-step etch-and-rinse adhesives in non-carious class-V lesions. Clin. Oral Investig. 2012, 16, 129-137. [CrossRef] [PubMed]
Memarpour, M.; Shafiei, F.; Razmjoei, F.; Kianimanesh, N. Effect of laser preparation on adhesion of a self-adhesive flowable composite resin to primary teeth. Microsc. Res. Tech. 2016, 79, 334-341. [CrossRef] [PubMed]
Rahimian-Imam, S.; Ramazani, N.; Fayazi, M.R. Marginal Microleakage of Conventional Fissure Sealants and Self-Adhering Flowable Composite as Fissure Sealant in Permanent Teeth. J. Dent. 2015, 12, 430-435.
Sachdeva, P.; Goswami, M.; Singh, D. Comparative evaluation of shear bond strength and nanoleakage of conventional and self-adhering flowable composites to primary teeth dentin. Contemp. Clin. Dent. 2016, 7, 326-331. [CrossRef] [PubMed]
Tuloglu, N.; Sen Tunc, E.; Ozer, S.; Bayrak, S. Shear bond strength of self-adhering flowable composite on dentin with and without application of an adhesive system. J. Appl. Biomater. Funct. Mater. 2014, 12, 97-101. [CrossRef]
Koliniotou-Koumpia, E.; Kouros, P.; Zafiriadis, L.; Koumpia, E.; Dionysopoulos, P.; Karagiannis, V. Bonding of adhesives to Er:YAG laser-treated dentin. Eur. J. Dent. 2012, 6, 16-23. [CrossRef]
Ayar, M.K.; Yildirim, T.; Yesilyurt, C. Effects of Er, Cr:YSGG laser parameters on dentin bond strength and interface morphology. Microsc. Res. Tech. 2015, 78, 1104-1111. [CrossRef]
Altunsoy, M.; Botsali, M.S.; Sari, T.; Onat, H. Effect of different surface treatments on the microtensile bond strength of two self-adhesive flowable composites. Lasers Med. Sci. 2015, 30, 1667-1673. [CrossRef]
Ozel Bektas, O.; Eren, D.; Herguner Siso, S.; Akin, G.E. Effect of thermocycling on the bond strength of composite resin to bur and laser treated composite resin. Lasers Med. Sci. 2012, 27, 723-728. [CrossRef]
Eren, D.; Dogan, C.A.; Bektas, O.O. Effect of Different Surface Treatments and Roughness on the Repair Bond Strength of Aged Nanohybrid Composite. Photobiomodulation Photomed. Laser Surg. 2019, 37, 473-482. [CrossRef]
Karadas, M.; Caglar, I. The effect of Er:YAG laser irradiation on the bond stability of self-etch adhesives at different dentin depths. Lasers Med. Sci. 2017, 32, 967-974. [CrossRef]
Erdemir, U.; Sancakli, H.S.; Sancakli, E.; Eren, M.M.; Ozel, S.; Yucel, T.; Yildiz, E. Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material. J. Adv. Prosthodont. 2014, 6, 434-443. [CrossRef] [PubMed]
Park, K.J.; Schneider, H.; Haak, R. Assessment of defects at tooth/self-adhering flowable composite interface using swept-source optical coherence tomography (SS-OCT). Dent. Mater. Off. Publ. Acad. Dent. Mater. 2015, 31, 534-541. [CrossRef] [PubMed]
Veli, I.; Akin, M.; Kucukyilmaz, E.; Uysal, T. Shear bond strength of a self-adhering flowable composite when used for lingual retainer bonding. J. Orofac. Orthop. Fortschritte der Kieferorthopadie Organ/Official Journal Deutsche Gesellschaft fur Kieferorthopadie 2014, 75, 374-383. [CrossRef] [PubMed]
Yuan, H.; Li, M.; Guo, B.; Gao, Y.; Liu, H.; Li, J. Evaluation of Microtensile Bond Strength and Microleakage of a Self-adhering Flowable Composite. J. Adhes. Dent. 2015, 17, 535-543. [CrossRef] [PubMed]
Vichi, A.; Margvelashvili, M.; Goracci, C.; Papacchini, F.; Ferrari, M. Bonding and sealing ability of a new self-adhering flowable composite resin in class I restorations. Clin. Oral Investig. 2013, 17, 1497-1506. [CrossRef] [PubMed]
Shafiei, F.; Saadat, M. Micromorphology and bond strength evaluation of adhesive interface of a self-adhering flowable composite resin-dentin: Effect of surface treatment. Microsc. Res. Tech. 2016, 79, 403-407. [CrossRef] [PubMed]
Chou, J.C.; Ding, S.J.; Chen, C.C. Dentin surface modification using the Er, Cr:YSGG laser and a meshwork mask: Light and SEM microscopic observations. Photomed. Laser Surg. 2011, 29, 433-435. [CrossRef]
Lin, S.; Pan, D.; Lin, Q.; Yin, S.; Chen, D.; Liu, Q.; Yu, L.; Lin, Z. Evaluation of phase, microstructure and composition of human dentine after Er, Cr:YSGG laser irradiation. J. Nanosci. Nanotechnol. 2011, 11, 2421-2426. [CrossRef]
Nahas, P.; Zeinoun, T.; Majzoub, Z.; Corbani, K.; Nammour, S. The Effect of Energy Densities on the Shear Bond Strength of Self-Adhering Flowable Composite to Er:YAG Pretreated Dentin. BioMed Res. Int. 2016, 2016, 6507924. [CrossRef]
Shahabi, S.; Chiniforush, N.; Bahramian, H.; Monzavi, A.; Baghalian, A.; Kharazifard, M.J. The effect of erbium family laser on tensile bond strength of composite to dentin in comparison with conventional method. Lasers Med. Sci. 2013, 28, 139-142. [CrossRef] [PubMed]
Ayar, M.K.; Erdermir, F. Bonding strength of universal adhesives to Er, Cr:YSGG Laser-Irradiated Dentin. Niger. J. Clin. Pract. 2018, 21, 93-98. [CrossRef] [PubMed]
Ostby, A.W.; Bishara, S.E.; Denehy, G.E.; Laffoon, J.F.; Warren, J.J. Effect of self-etchant pH on the shear bond strength of orthodontic brackets. Am. J. Orthod. Dentofac. Orthop. Off. Publ. Am. Assoc. Orthod. Its Const. Soc. Am. Board Orthod. 2008, 134, 203-208. [CrossRef] [PubMed]
Poitevin, A.; De Munck, J.; Van Ende, A.; Suyama, Y.; Mine, A.; Peumans, M.; Van Meerbeek, B. Bonding effectiveness of self-adhesive composites to dentin and enamel. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2013, 29, 221-230. [CrossRef]
Jordehi, A.Y.; Shahabi, M.S.; Akbari, A. Comparison of self-adhering flowable composite microleakage with several types of bonding agent in class V cavity restoration. Dent. Res. J. 2019, 16, 257-263.
Fu, J.; Kakuda, S.; Pan, F.; Hoshika, S.; Ting, S.; Fukuoka, A.; Bao, Y.; Ikeda, T.; Nakaoki, Y.; Selimovic, D.; et al. Bonding performance of a newly developed step-less all-in-one system on dentin. Dent. Mater. J. 2013, 32, 203-211. [CrossRef]
Van Landuyt, K.L.; Mine, A.; De Munck, J.; Jaecques, S.; Peumans, M.; Lambrechts, P.; Van Meerbeek, B. Are one-step adhesives easier to use and better performing? Multifactorial assessment of contemporary one-step self-etching adhesives. J. Adhes. Dent. 2009, 11, 175-190. [PubMed]
Ribeiro, C.F.; Goncalves, S.E.; Yui, K.C.; Borges, A.B.; Barcellos, D.C.; Brayner, R. Dentin bond strength: Influence of Er:YAG and Nd:YAG lasers. Int. J. Periodontics Restor. Dent. 2013, 33, 373-377. [CrossRef]
Yazici, A.R.; Agarwal, I.; Campillo-Funollet, M.; Munoz-Viveros, C.; Antonson, S.A.; Antonson, D.E.; Mang, T. Effect of laser preparation on bond strength of a self-adhesive flowable resin. Lasers Med. Sci. 2013, 28, 343-347. [CrossRef]
Moretto, S.G.; Azambuja, N., Jr.; Arana-Chavez, V.E.; Reis, A.F.; Giannini, M.; Eduardo Cde, P.; De Freitas, P.M. Effects of ultramorphological changes on adhesion to lased dentin-Scanning electron microscopy and transmission electron microscopy analysis. Microsc. Res. Tech. 2011, 74, 720-726. [CrossRef] [PubMed]
El-Araby, A.M.; Talic, Y.F. The effect of thermocycling on the adhesion of self-etching adhesives on dental enamel and dentin. J. Contemp. Dent. Pract. 2007, 8, 17-24. [CrossRef] [PubMed]
Huang, M.S.; Li, M.T.; Huang, F.M.; Ding, S.J. The effect of thermocycling and dentine pre-treatment on the durability of the bond between composite resin and dentine. J. Oral Rehabil. 2004, 31, 492-499. [CrossRef]
Kawazu, M.; Takamizawa, T. Comparison of dentin bond durability of a universal adhesive and two etch-and-rinse adhesive systems. Clin. Oral Investig. 2019. [CrossRef] [PubMed]
Delme, K.I.; Deman, P.J.; De Moor, R.J. Microleakage of class V resin composite restorations after conventional and Er:YAG laser preparation. J. Oral Rehabil. 2005, 32, 676-685. [CrossRef] [PubMed]
Saraceni, C.H.; Liberti, E.; Navarro, R.S.; Cassoni, A.; Kodama, R.; Oda, M. Er:YAG-laser and sodium hypochlorite influence on bond to dentin. Microsc. Res. Tech. 2013, 76, 72-78. [CrossRef]
Juloski, J.; Goracci, C.; Rengo, C.; Giovannetti, A.; Vichi, A.; Vulicevic, Z.R.; Ferrari, M. Enamel and dentin bond strength of new simplified adhesive materials with and without preliminary phosphoric acid-etching. Am. J. Dent. 2012, 25, 239-243.
Saberi, S.; Seyed Jabbari Doshanlo, S.; Bagheri, H.; Mir Mohammad Rezaei, S.; Shahabi, S. Evaluation of Tooth Surface IrradiatedWith Erbium: Yttrium Aluminum Garnet and Carbon Dioxide Lasers by Atomic Force Microscopy. J. Lasers Med. Sci. 2018, 9, 188-193. [CrossRef]
Sharafeddin, F.; Salehi, R.; Feizi, N. Effect of Dimethyl Sulfoxide on Bond Strength of a Self-Etch Primer and an Etch and Rinse Adhesive to Surface and Deep Dentin. J. Dent. 2016, 17, 242-249.
Matsumoto, K.; Hossain, M.; Tsuzuki, N.; Yamada, Y. Morphological and compositional changes of human dentin after Er:YAG laser irradiation. J. Oral Laser Appl. 2003, 3, 15-19.
Ekworapoj, P.; Sidhu, S.K.; McCabe, J.F. Effect of different power parameters of Er, Cr:YSGG laser on human dentine. Lasers Med. Sci. 2007, 22, 175-182. [CrossRef]
Sarr, M.; Kane, A.W.; Vreven, J.; Mine, A.; Van Landuyt, K.L.; Peumans, M.; Lambrechts, P.; Van Meerbeek, B.; De Munck, J. Microtensile bond strength and interfacial characterization of 11 contemporary adhesives bonded to bur-cut dentin. Oper. Dent. 2010, 35, 94-104. [CrossRef] [PubMed]
Ritter, A.V.; Swift, E.J., Jr.; Heymann, H.O.; Sturdevant, J.R.; Wilder, A.D., Jr. An eight-year clinical evaluation of filled and unfilled one-bottle dental adhesives. J. Am. Dent. Assoc. (1939) 2009, 140, 28-37. [CrossRef] [PubMed]
Cardoso, M.V.; de Almeida Neves, A.; Mine, A.; Coutinho, E.; Van Landuyt, K.; De Munck, J.; Van Meerbeek, B. Current aspects on bonding effectiveness and stability in adhesive dentistry. Aust. Dent. J. 2011, 56 (Suppl. 1), 31-44. [CrossRef]
Taşar, S.; Ulusoy, M.M.; Meriç, G. Microshear bond strength according to dentin cleansing methods before recementation. J. Adv. Prosthodont. 2014, 6, 79-87. [CrossRef] [PubMed]