[en] ("[en] The COVID-19 pandemic forced dental professionals to cope with an unexpected challenge and caused an abrupt cessation of conventional care practices. The high degree of contagiousness as well as the diffusion of the virus through the air and droplets via respiratory transmission placed dental professionals at top-level risk of contracting and spreading the disease. General recommendations were announced in different countries, including patient distancing, air ventilation, surface and instrument sanitization, and the wearing of suitable masks and shields. However, many dental treatments are performed using lasers, and some specific precautions must be added to conventional procedures to ensure the advantages of this technology to patients because of the particular tissue–matter interaction effects of laser wavelengths. Based on the literature, the authors evaluated all of using laser wavelengths to analyze the risk and the benefits of using lasers in daily dental practice, and to provide safety recommendations during pandemic. An unrestricted search of indexed databases was performed. Laser use effects were categorized into: 1) explosive processes that produce tissue ablation and aerosol formation; 2) thermal actions that create vaporization and smoke plume; 3) photobiomodulation of the cells; and 4) enhanced chemical activity.
Knowledge of the device functions and choice of adequate parameters will reduce aerosol and plume formation, and the application of suction systems with high flow volume and good filtration close to the surgical site will avoid virus dissemination during laser use. In the categories that involve low energy, the beneficial effects of lasers are available and sometimes preferable during this pandemic because only conventional precautions are required. Lasers maintain the potential to add benefits to dental practice even in the COVID-19 era, but it is necessary to know how lasers work to utilize these advantages. The great potential of laser light, with undiscovered limits, may provide a different path to face the severe health challenges of this pandemic.","[en] ","")
Disciplines :
Dentistry & oral medicine
Author, co-author :
Arnabat-Dominguez, Josep ; Oral and Maxillofacial Surgery Unit, University of Barcelona, Spain
Vecchio, Alessandro Del; Department of Oral Sciences and Maxillofacial Surgery, Sapienza University of Rome, Italy
Todea, Carmen ; School of Dentistry, Victor Babes University of Medicine and Pharmacy, Timișoara, Romania
Grzech-Leśniak, Kinga ; Laser Laboratory, Department of Oral Surgery, Wroclaw Medical University, Poland
Vescovi, Paolo ; Department of Medicine and Surgery, Oral Medicine and Laser Surgery Unit, Centro Universitario di Odontoiatria, University of Parma, Italy
Romeo, Umberto ; Department of Oral Sciences and Maxillofacial Surgery, Sapienza University of Rome, Italy
Namour, Samir ; Université de Liège - ULiège > Département des sciences dentaires
Language :
English
Title :
Laser dentistry in daily practice during the COVID-19 pandemic: Benefits, risks and recommendations for safe treatments.
Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak: An update on the status. Mil Med Res. 2020;7(1):1–10. doi:10.1186/s40779-020-00240-0
Dominiak M, Różyło-Kalinowska I, Gedrange T, et al. COVID-19 and professional dental practice. The Polish Dental Association Working Group recommendations for procedures in dental office during an increased epidemiological risk. J Stomatol. 2020;73(1):1–10. doi:10.5114/jos.2020.94168
Matys J, Grzech-Leśniak K, Dominiak M. Disinfectants and devices for surface and air disinfection in dental offices. J Stomatol. 2020; 73(4):200–205. doi:10.5114/jos.2020.98267
van Doremalen N, Bushmaker T, Morris D, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. NEnglJMed. 2020:382(16):1564–1567. doi:10.1056/NEJMc2004973 %0A
Anfinrud P, Stadnytskyi V, Bax CE, Bax A. Visualizing speech-generated oral fluid droplets with laser light scattering. N Engl J Med. 2020: 382(21):2061–2063. doi:10.1056/nejmc2007800
Li RWK, Leung KWC, Sun FCS, Samaranayake LP. Severe acute respiratory syndrome (SARS) and the GDP. Part II: Implications for GDPs. Br Dent J. 2004;197(3):130–134. doi:10.1038/sj.bdj.4811522
Hayden C, Bowler JO, Chambers S, et al. Obesity and dental caries in children: A systematic review and meta-analysis. Commun Dent Oral Epidemiol. 2013;41(4):289–308. doi:10.1111/cdoe.12014
Wax RS, Christian MD. Practical recommendations for critical care and anesthesiology teams caring for novel coronavirus (2019-nCoV) patients. Can J Anesth. 2020;67(5):568–576. doi:10.1007/s12630-020-01591
Romeo U, Libotte F, Palaia G, Tenore G, Galanakis A, Annibali S. Is erbium:yttrium-aluminum-garnet laser versus conventional rotary osteotomy better in the postoperative period for lower third molar surgery? Randomized split-mouth clinical study. JOralMaxillofacSurg. 2015;73(2):211–218. doi:10.1016/j.joms.2014.08.013
Nahen K, Vogel A. Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation. J Biomed Opt. 2002;7(2):165. doi:10.1117/1.1463047
Van As G. Erbium lasers in dentistry. DentClinNorthAm. 2004;48(4): 1017–1059. doi:10.1016/j.cden.2004.06.001
Garden JM, Kerry O’Banion M, Bakus AD, Olson C. Viral disease transmitted by laser-generated plume (aerosol). Arch Dermatol. 2002; 138(10):1303–1307. doi:10.1001/archderm.138.10.1303
Ziegler BL, Thomas CA, Meier T, Müller R, Fliedner TM, Weber L. Generation of infectious retrovirus aerosol through medical laser irradiation. Lasers Surg Med. 1998;22(1):37–41. doi:10.1002/(SICI)1096-9101 (1998)22:1<37:AID-LSM9>3.0.CO;2-Y
Palaia G, Pergolini D, D’Alessandro L, et al. Histological effects of an innovative 445 Nm blue laser during oral soft tissue biopsy. IntJEnviron Res Public Health. 2020;17(8):2651. doi:10.3390/ijerph17082651
Miyazaki H, Ohshiro T, Romeo U, et al. Retrospective study on laser treatment of oral vascular lesions using the “leopard technique”: The multiple spot irradiation technique with a single-pulsed wave. PhotomedLaserSurg. 2018;36(6):320–325. doi:10.1089/pho.2017.4410 16. Garden JM, O’Banion MK, Shelnitz LS, et al. Papillomavirus in the vapor of carbon dioxide laser-treated Verrucae. JAMA. 1988;259(8); 1199–1202.
Sawchuk WS, Weber PJ, Lowy DR, Dzubow LM. Infectious papillomavirus in the vapor of warts treated with carbon dioxide laser or electrocoagulation: Detection and protection. JAmAcadDermatol. 1989; 21(1):41–49. doi:10.1016/s0190-9622(89)70146-8
Hallmo P, Naess O. Laryngeal papillomatosis with human papillomavirus DNA contracted by a laser surgeon. Eur Arch Otorhinolaryngol. 1991;248(7):425–427. doi:10.1007/BF01463570
Hughes PSH, Hughes AP. Absence of human papillomavirus DNA in the plume of erbium: YAG laser-treated warts. J Am Acad Dermatol. 1998;38(3):426–428. doi:10.1016/S0190-9622(98)70500-6
Hamblin MR. Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol. 2018;94(2):199–212. doi:10. 1111/php.12864
Grzech-Leśniak K, Nowicka J, Pajączkowska M, et al. Effects of Nd:YAG laser irradiation on the growth of Candidaalbicansand Streptococcus mutans: In vitro study. LasersMedSci. 2019;34(1):129–137. doi:10.1007/s10103-018-2622-6
Dompe C, Moncrieff L, Matys J, et al. Photobiomodulation-underlying mechanism and clinical applications. J Clin Med. 2020;9(6):1724. doi:10.3390/jcm906172421
Enwemeka CS, Bumah VV, Masson-Meyers DS. Light as a potential treatment for pandemic coronavirus infections: A perspective. JPhotochem Photobiol B. 2020;207:111891. doi:10.1016/j.jphotobiol.2020. 111891
Tsen S, Chapa T, Beatty W, Xu B, Tsen K, Achilefu S. Ultrashort pulsed laser treatment inactivates viruses by inhibiting viral replication and transcription in the host nucleus. AntiviralRes. 2014;110:70–76. doi:10. 1016/j.antiviral.2014.07.012
Zupin L, Caracciolo I, Tricarico PM, Ottaviani G, D’Agaro P, Crovella S. PhotobiomodulationtherapyreducesviralloadandcelldeathinZIKVinfected glioblastoma cell line. LasersMedSci. 2018;33(9):2011–2013. doi:10.1007/s10103-018-2568-8
Domínguez A, Velásquez SA, David MA. Can transdermal photobiomodulation help us at the time of COVID-19? Photobiomodul Photomed Laser Surg. 2020;38(5):258–259. doi:10.1089/photob.2020.4870
Szymczyszyn A, Doroszko A, Szahidewicz-Krupska E, et al. Effect of the transdermal low-level laser therapy on endothelial function. LasersMedSci. 2016;31(7):1301–1307. doi:10.1007/s10103-016-1971-2
Ather A, Patel B, Ruparel NB, Diogenes A, Hargreaves KM. Coronavirus disease 19 (COVID-19): Implications for clinical dental care. J Endod. 2020;46(5):584–595. doi:10.1016/j.joen.2020.03.008
Namvar MA, Vahedi M, Abdolsamadi H, Mirzaei A, Mohammadi Y, Azizi Jalilian F. Effect of photodynamic therapy by 810 and 940 nm diode laser on Herpes Simplex Virus 1: An in vitro study. Photodiagnosis Photodyn Ther. 2019;25:87–91. doi:10.1016/j.pdpdt.2018.11.011
La Selva A, Negreiros RM, Bezerra DT, et al. Treatment of herpes labialis by photodynamic therapy. Medicine (Baltimore). 2020;99(12):e19500. doi:10.1097/md.0000000000019500
Zhang W, Zhang A, Sun W, Yue Y, Li H. Efficacy and safety of photodynamic therapy for cervical intraepithelial neoplasia and human papilloma virus infection: A systematic review and meta-analysis ofrandomizedclinicaltrials.Medicine(Baltimore).2018;97(21):e10864.doi:10.1097/MD.0000000000010864
Shikowitz MJ, Abramson AL, Freeman K, Steinberg BM, Nouri M. Efficacy of DHE photodynamic therapy for respiratory papillomatosis: Immediate and long-term results. Laryngoscope. 1998;108(7):962–967. doi:10.1097/00005537-199807000-00002
Abramson AL, Shikowitz MJ, Mullooly VM, Steinberg BM, Amella CA, Rothstein HR. Clinical effects of photodynamic therapy on recurrent laryngeal papillomas. ArchOtolaryngolNeckSurg. 1992;118(1):25–29. doi:10.1001/archotol.1992.01880010029011
Belousova IM, Kislyakov IM, Muraviova TD, et al. Photodynamic inactivation of enveloped virus in protein plasma preparations by solid-phase fullerene-based photosensitizer. Photodiagnosis Photodyn Ther. 2014;11(2):165–170. doi:10.1016/j.pdpdt.2014.02.009
Grzech-Leśniak K, Gaspirc B, Sculean A. Clinical and microbiological effects of multiple applications of antibacterial photodynamic therapy in periodontal maintenance patients: A randomized controlledclinicalstudy.PhotodiagnosisPhotodynTher.2019;27(5):44–50.doi:10.1016/j.pdpdt.2019.05.028
Grzech-Leśniak K, Matys J, Dominiak M. Comparison of the clinical and microbiological effects of antibiotic therapy in periodontal pockets following laser treatment: An in vivo study. AdvClinExpMed. 2018;27(9):1263–1270. doi:10.17219/acem/70413
Świder K, Dominiak M, Grzech-Leśniak K, Matys J. Effect of different laser wavelengths on periodontopathogens in peri-implantitis: A review of in vivo studies. Microorganisms. 2019;7(7):189. doi:10.3390/microorganisms7070189
Alves LVGL, Curylofo-Zotti FA, Borsatto MC, et al. Influence of antimicrobial photodynamic therapy in carious lesion: Randomized split-mouth clinical trial in primary molars. PhotodiagnosisPhotodynTher. 2019;26(11):124–130. doi:10.1016/j.pdpdt.2019.02.018
Bargrizan M, Fekrazad R, Goudarzi N, Goudarzi N. Effects of antibacterial photodynamic therapy on salivary mutans streptococci in 5- to 6-year-olds with severe early childhood caries. Lasers Med Sci. 2019;34(3):433–440. doi:10.1007/s10103-018-2650-2
Alberdi E, Gómez C. Efficiency of methylene blue-mediated photodynamic therapy vs intense pulsed light in the treatment of onychomycosis in the toenails. PhotodermatolPhotoimmunolPhotomed. 2019;35(2):69–77. doi:10.1111/phpp.12420
Koren A, Salameh F, Sprecher E, Artzi O. Laser-assisted photodynamic therapy or laser-assisted amorolfine lacquer delivery for treatment of toenail onychomycosis: An open-label comparative study. Acta Derm Venereol. 2018;98(4):467–468. doi:10.2340/00015555-2874
dos Santos LFM, Melo NB, de Carli ML, et al. Photodynamic inactivation of Paracoccidioides brasiliensis helps the outcome of oral paracoccidiodomycosis. Lasers Med Sci. 2017;32(4):921–930. doi:10.1007/s10103-017-2193-y
Costa L, Faustino MAF, Tomé JPC, et al. Involvement of type I and type II mechanisms on the photoinactivation of non-enveloped DNA and RNA bacteriophages. J Photochem Photobiol B. 2013;120:10–16. doi:10.1016/j.jphotobiol.2013.01.005
TsenSWD,KingsleyDH,PoweleitC,etal.Studiesofinactivationmechanism of non-enveloped icosahedral virus by a visible ultrashort pulsed laser. VirolJ. 2014;11(1):1–9. doi:10.1186/1743-422X-11-20
Costa L, Faustino MAF, Neves MGPMS, Cunha Â, Almeida A. Photodynamic inactivation of mammalian viruses and bacteriophages. Viruses. 2012;4(7):1034–1074. doi:10.3390/v4071034
Schneider K, Wronka-Edwards L, Leggett-Embrey M, et al. Psoralen inactivation of viruses: A process for the safe manipulation of viral antigen and nucleic acid. Viruses. 2015;7(11):5875–5888. doi:10.3390/v7112912
Schikora J, Hepburn J, Plavin SR. Reduction of the viral load by noninvasive photodynamic therapy in early stages of COVID-19 infection. Am J Vir Dis. 2020; 2(1):01–05.
Kampf G. Potential role of inanimate surfaces for the spread of coronaviruses and their inactivation with disinfectant agents. InfectPrev Pract. 2020;2(2):100044. doi:10.1016/j.infpip.2020.100044
Pratelli A. Action of disinfectants on canine coronavirus replication in vitro. Zoonoses Public Health. 2007;54(9–10):383–386. doi:10.1111/j.1863-2378.2007.01079.x
Deeb JG, Smith J, Belvin BR, Grzech-Leśniak K, Lewis J. Er:YAG laser irradiation reduces microbial viability when used in combination with irrigation with sodium hypochlorite, chlorhexidine, and hydrogen peroxide. Microorganisms. 2019;7(12):612. doi:10.3390/microorganisms7120612
Odor AA, Bechir ES, Violant D, Badea V. Antimicrobial effect of 940 nm diode laser based on photolysis of hydrogen peroxide in the treatment of periodontal disease. RevChim. 2018;69(8):2081–2088. doi:10. 37358/rc.18.8.6478
Kanno T, Nakamura K, Ishiyama K, et al. Adjunctive antimicrobial chemotherapy based on hydrogen peroxide photolysis for non-surgical treatment of moderate to severe periodontitis: A randomized controlled trial. Sci Rep. 2017;7(1):12247. doi:10.1038/s41598-017-12514-0
Caccianiga G, Rey G, Baldoni M, Paiusco A. Clinical, radiographic and microbiological evaluation of high level laser therapy, a new photodynamic therapy protocol, in peri-implantitis treatment: A pilot experience. Biomed Res Int. 2016;2016:6321906. doi:10.1155/2016/6321906
Grzech-Leśniak K, Belvin BR, Lewis PJ, Golob Deeb J. Treatment with Nd:YAG laser irradiation combined with sodium hypochlorite or hydrogen peroxide irrigation on periodontal pathogens: An in vitro study. Photobiomodul Photomed Laser Surg. 2021;39(1):46–52. doi:10.1089/pho.2019.4775
Nammour S, El Mobadder M, Maalouf E, et al. Clinical evaluation of diode (980nm) laser-assisted nonsurgical periodontal pocket therapy: A randomized comparative clinical trial and bacteriological study. PhotobiomodulPhotomedLaserSurg. 2021;39(1):10–22. doi:10. 1089/photob.2020.4818. doi:10.1089/photob.2020.4818
Wainwright M. Local treatment of viral disease using photodynamic therapy. Int J Antimicrob Agents. 2003;21(6):510–520. doi:10.1016/S0924-8579(03)00035-9
Ramanathan K, Antognini D, Combes A, Douthwaite S, Goldenberg SD, Weber DJ. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: The possible role of dry surface contamination. J Hosp Infect. 2020;92(3):235–250.