Abundances; ExoMars ESA mission; Mars, atmosphere; NOMAD instrument; Radiative transfer; ExoMars; High-resolution spectrometer; Methane concentrations; Parts per trillion; Radiometric model; Solar occultation; Visible spectrometers; Astronomy and Astrophysics; Space and Planetary Science
Abstract :
[en] NOMAD (Nadir and Occultation for MArs Discovery) is one of the four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in March 2016. It consists of a suite of three high-resolution spectrometers - SO (Solar Occultation), LNO (Limb, Nadir and Occultation) and UVIS (Ultraviolet and Visible Spectrometer). Based upon the characteristics of the channels and the values of Signal-to-Noise Ratio obtained from radiometric models discussed in (Vandaele et al., 2015a, 2015b; Thomas et al., 2016), the expected performances of the instrument in terms of sensitivity to detection have been investigated. The analysis led to the determination of detection limits for 18 molecules, namely CO, H 2 O, HDO, C 2 H 2 , C 2 H 4 , C 2 H 6 , H 2 CO, CH 4 , SO 2 , H 2 S, HCl, HCN, HO 2 , NH 3 , N 2 O, NO 2 , OCS, O 3 . NOMAD should have the ability to measure methane concentrations < 25 parts per trillion (ppt) in solar occultation mode, and 11 parts per billion in nadir mode. Occultation detections as low as 10 ppt could be made if spectra are averaged (Drummond et al., 2011). Results have been obtained for all three channels in nadir and in solar occultation.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Robert, S.; Belgian Institute for Space Aeronomy, Brussels, Belgium
Vandaele, A.C.; Belgian Institute for Space Aeronomy, Brussels, Belgium
Thomas, I.; Belgian Institute for Space Aeronomy, Brussels, Belgium
Willame, Y.; Belgian Institute for Space Aeronomy, Brussels, Belgium
Daerden, F.; Belgian Institute for Space Aeronomy, Brussels, Belgium
Delanoye, S.; Belgian Institute for Space Aeronomy, Brussels, Belgium
Depiesse, C.; Belgian Institute for Space Aeronomy, Brussels, Belgium
Drummond, R.; Belgian Institute for Space Aeronomy, Brussels, Belgium ; IndoSpace Ltd, Abingdon, United Kingdom
Neefs, E.; Belgian Institute for Space Aeronomy, Brussels, Belgium
Neary, L.; Belgian Institute for Space Aeronomy, Brussels, Belgium
Ristic, B.; Belgian Institute for Space Aeronomy, Brussels, Belgium
Mason, J.; Open University, United Kingdom
Lopez-Moreno, J.-J.; Instituto de Astrofisica de Andalucia CSIC, Granada, Spain
Rodriguez-Gomez, J.; Instituto de Astrofisica de Andalucia CSIC, Granada, Spain
Patel, M.R.; Open University, United Kingdom ; Rutherford Appleton Laboratory, Harwell, United Kingdom
Bellucci, G.; Istituto di Astrofisica e Planetologia Spaziali, Roma, Italy
Patel, M.
Allen, M.
Altieri, F.
Aoki, S.
Bolsée, D.
Clancy, T.
Cloutis, E.
Fedorova, A.
Formisano, V.
Funke, B.
Fussen, D.
Garcia-Comas, M.
Geminale, A.
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
FP7 - 607177 - CROSS DRIVE - Collaborative Rover Operations and Planetary Science Analysis System based on Distributed Remote and Interactive Virtual Environments
Name of the research project :
ESA Prodex Office “Interuniversity Attraction Poles” programme Planet TOPERS BRAIN
Funders :
BELSPO - Belgian Federal Science Policy Office EU - European Union UK Space Agency
Funding text :
NOMAD has been made possible thanks to funding by the Belgian Science Policy Office (BELSPO) and financial and contractual coordination by the ESA Prodex Office (PlanetADAM no 4000107727) . The research was performed as part of the “Interuniversity Attraction Poles” programme financed by the Belgian Government (Planet TOPERS no P7-15) and a BRAIN Research Grant BR/143/A2/SCOOP . The research leading to these results has received funding from the European Community׳s Seventh Framework Programme ( FP7/2007-2013 ) under Grant Agreement no. 607177 CrossDrive. UK funding is acknowledged under the UK Space Agency Grant ST/I003061/1 .
Brion, J., et al., 1993. High-resolution laboratory absorption cross section of O 3 . Temperature effect. Chem. Phys. Lett. 213 (5/6), 610-612.
Bolsée, D., 2012. Métrologie de la Spectrophotométrie Solaire Absolue: Principes, Mise en œuvre et Résultats. Instrument SOLSPEC à bord de la Station Spatiale Internationale. Univ. Brussels.
D. Bolsée, and et al. SOLAR/SOLSPEC mission on ISS: in-flight performances for SSI measurements in the UV Astron. Astrophys. 2016 (in preparation)
Chance, K., Orphal, J., 2011. Revised ultraviolet absorption cross sections of H 2 CO for the HITRAN database. J. Quant. Spectrosc. Radiat. Transf. 112, 1509-1510.
Cheng, B.-M., et al., 2006. Absorption cross sections of NH 3 , NH 2 D, NHD 2 , and ND 3 in the spectral range 140-220 nm and implications for planetary isotopic fractionation. Astrophys. J. 647, 1535-1542.
Drummond, R., et al., 2011. Studying methane and other trace species in the Mars atmosphere using a SOIR instrument. Planet. Space Sci. 59, 292-298.
Daerden, F., et al., 2015. A solar escalator on Mars: self-lifting of dust layers by radiative heating. Geophys. Res. Lett. 42 (18), 7319-7326.
Danielache, S.O., et al., 2008. High-precision spectroscopy of 32 S, 33 S, and 34 S sulfur dioxide: ultraviolet absorption cross sections and isotope effects. J. Geophys. Res. 113 (D17314), 1-14. http://dx.doi.org/10.1029/2007JD009695.
Daumont, D., et al., 1992. Ozone UV spectroscopy I: absorption cross-sections at room temperature. J. Atmos. Chem. 15 (2), 145-155.
Encrenaz, T., et al., 2011. A stringent upper limit to SO 2 in the Martian atmosphere. Astron. Astrophys. 530, A37.
Fedorova, A., et al., 2009. Solar infrared occultation observations by SPICAM experiment on Mars-Express: simultaneous measurements of the vertical distributions of H 2 O, CO 2 and aerosol. Icarus 200 (1), 96-117.
Formisano, V., et al., 2004. Detection of methane in the atmosphere of Mars. Science 306, 1758-1761.
W.O. Gallery, F.X. Kneizys, and S.A. Clough Air Mass Computer Program for Atmospheric Transmittance/Radiance Calculation: FSCATM 1983 H.A. Air Force Geophysical Laboratory MA Air Force
Huestis, D.L., Berkowitz, J., 2011. Critical evaluation of the photoabsorption cross section of CO2 from 0.125 to 201.6 nm at room temperature. Adv. Geosci.: Planet. Sci. 25, 229-242. http://dx.doi.org/10.1142/9789814355377_0018.
Hartogh, P., et al., 2010. Herschel/HIFI observations of Mars: first detection of O 2 at submillimetre wavelengths and upper limits on HCl and H 2 O 2 . Astron. Astrophys. 521 (L49). http://dx.doi.org/10.1051/0004-6361/201015160.
Hermans, C., Vandaele, A.C., Fally, S., 2009. Fourier Transform measurements of SO 2 absorption cross sections: I. Temperature dependence in the 24,00029,000 cm -1 (345-420nm) region. J. Quant. Spectrosc. Radiat. Transf. 110, 756-765.
Hase, F., et al., 2010. The ACE-FTS atlas of the infrared solar spectrum. J. Quant. Spectrosc. Radiat. Transf. 111 (4), 521-528.
Kochenova, S., et al., 2011. ALVL 1.0: an advanced line-by-line radiative transfer model for the retrieval of atmospheric constituents from satellite and ground-based measurements. In: Proceedings of International Symposium "Atmospheric Radiation and Dynamics". St. Petersbourg, Russia.
Krasnopolsky, V.A., Maillard, J.P., Owen, T.C., 2004. Detection of methane in the Martian atmosphere: evidence for life? Icarus 172 (2), 537-547.
Krasnopolsky, V.A., 2005. A sensitive search for SO 2 in the martian atmosphere: implications for seepage and origin of methane. Icarus 178 (2), 487-492.
Krasnopolsky, V.A., 1997. High-resolution spectroscopy of Mars at 3.7 and 8 microm: a sensitive search for H 2 O 2 , H 2 CO, HCl, and CH 4 , and detection of HDO. J. Geophys. Res. 102 (E3), 6525-6534.
Lefevre, F., et al., 2004. Three-dimensional modeling of ozone on Mars. J. Geophys. Res. 109. http://dx.doi.org/10.1029/2004JE002268.
Lodders, K., Fegley, B., 1997. An oxygen isotope model for the composition of mars. Icarus 126 (2), 373-394.
Maguire, W.C., 1977. Martian isotopic ratios and upper limits for possible minor constituents as derived from Mariner 9 infrared spectrometer data. Icarus 32 (1), 85-97.
Mahieux, A., et al., 2009. A new method for determining the transfer function of an acousto optical tunable filter. Opt. Express 17, 2005-2014.
Mishchenko, M.I., Travis, L.D., 1998. Capabilities and limitations of a current Fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transf. 60 (3), 309-324.
Meller, R., Moortgat, G.K., 2000. Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225-375 nm. J. Geophys. Res. 105 (D6), 7089-7101.
Mahaffy, P.R., et al., 2013. Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity Rover. Science 341, 263-266.
Malicet, J., et al., 1995. Ozone UV spectroscopy. II. Absorption cross-sections and temperature dependence. J. Atmos. Chem. 21 (3), 263-273.
Mumma, M.J., et al., 2009. Strong release of methane on Mars in Northern Summer 2003. Science 323 (5917), 1041-1045.
Nakagawa, H., et al., 2009. Search of SO 2 in the Martian atmosphere by ground- based submillimeter observation. Planet. Space Sci. 57 (14-15), 2123-2127.
Neefs, E., et al., 2015. NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 1—design, manufacturing and testing of the infrared channels. Appl. Opt. 54 (28), 8494-8520.
Owen, T., et al., 1977. The composition of the atmosphere at the surface of Mars. J. Geophys. Res. 82, 4635-4639.
Patel, M.R., et al., 2007. UVIS: the UV-vis spectrometer for the ExoMars mission. In: Proceedings of European Mars Science and Exploration Conference: Mars Express & ExoMars. ESTEC, Noordwijk, The Netherlands.
Parkinson, W.H., Rufus, J., Yoshino, K., 2003. Absolute absorption cross section measurements of CO 2 in the wavelength region 163-200 nm and the temperature dependence. Chem. Phys. 290 (2-3), 251-256.
Perrier, S., et al., 2006. Global distribution of total ozone on Mars from SPICAM/ MEX UV measurements. J. Geophys. Res. 11. http://dx.doi.org/10.1029/2006JE002681.
C.D. Rodgers Inverse methods for atmospheric sounding: theory and practice N.J. Hackensack, World Scientific 2000 University of Oxford Oxford
Rothman, L.S., et al., 2013. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 130, 4.
Spurr, R.J.D., 2006. VLIDORT: a linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media. J. Quant. Spectrosc. Radiat. Transf. 102, 316-342.
Serdyuchenko, A., et al., 2014. High spectral resolution ozone absorption crosssections - Part 2: temperature dependence. Atmos. Meas. Tech. 7, 625-636.
Sander, S.P., et al., 2011. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation no. 17, J.P.L. JPL Publication 10-6, Pasadena, USA. (http://jpldataeval.jpl.nasa.gov).
Smith, M.D., 2004. Interannual variability in TES atmospheric observations of Mars during 1999-2003. Icarus 167 (1), 148-165.
Smith, M., et al., 2009. Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide. J. Geophys. Res. 114. http://dx.doi.org/10.1029/2008JE003288.
Sneep, M., Ubachs, W., 2005. Direct measurement of the Rayleigh scattering cross section in various gases. J. Quant. Spectrosc. Radiat. Transf. 92 (3), 293-310.
Thomas, I.R., Vandaele, A.C., Robert, S., Neefs, E., Drummond, R., Daerden, F., Delanoye, S., Ristic, B., Berkenbosch, S., Clairquin, R., Maes, J., Bonnewijn, S., Depiesse, C., Mahieux, A., Trompet, L., Neary, L., Willame, Y., Wilquet, V., Nevejans, D., Aballea, L., Moelans, W., De Vos, L., Lesschaeve, S., Van Vooren, N., Lopez-Moreno, J.-J., Patel, M.R., Bellucci, G., 2016. the NOMAD Team, Optical and radiometric models of the NOMAD instrument part II: the infrared channels- SO and LNO. Opt. Express 24 (4), 3790-3805.
Vandaele, A.C., Neefs, E., Drummond, R., Thomas, I.R., Daerden, F., Lopez-Moreno, J.- J., Rodriguez, J., Patel, M.R., Bellucci, G., Allen, M., Altieri, F., Bolsée, D., Clancy, T., Delanoye, S., Depiesse, C., Cloutis, E., Fedorova, A., Formisano, V., Funke, B., Fussen, D., Géminale, A., Gerard, J.-C., Giuranna, M., Ignatiev, N., Kaminski, J., Karatekin, O., Lefèvre, F., López-Puertas, M., López-Valverde, M., Mahieux, A., McConnell, J., Mumma, M., Neary, L., Renotte, E., Ristic, B., Robert, S., Smith, M., Trokhimovsky, S., Vander Auwera, J., Villanueva, G., Whiteway, J., Wilquet, V., Wolff, M., 2015a. and The NOMAD Team, Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planet. Space Sci. 119, 233-249.
Vandaele, A.C., et al., 2015b. Optical and radiometric models of the NOMAD instrument part I: the UVIS channel. Opt. Express 23 (23), 30028-30042.
Vandaele, A.C., et al., 2008. Composition of the Venus mesosphere measured by SOIR on board Venus Express. J. Geophys. Res. 113. http://dx.doi.org/10.1029/2008JE003140.
Vandaele, A.C., Kruglanski, M., De Mazière, M., 2006. Modeling and retrieval of atmospheric spectra using ASIMUT. In: Proceedings of the First Atmospheric Science Conference. ESRIN, Frascati, Italy.
Vandaele, A.C., Hermans, C., Fally, S., 2009. Fourier Transform measurements of SO 2 absorption cross sections: II. temperature dependence in the 29,000- 44,000cm -1 (227-345 nm) region. J. Quant. Spectrosc. Radiat. Transf. 110, 2115-2126.
Villanueva, G.L., et al., 2013. A sensitive search for organics (CH 4 , CH 3 OH, H 2 CO, C 2 H 6 , C 2 H 2 , C 2 H 4 ), hydroperoxyl (HO 2 ), nitrogen compounds (N 2 O, NH 3 , HCN) and chlorine species (HCl, CH 3 Cl) on Mars using ground-based high-resolution infrared spectroscopy. Icarus 223 (1), 11-27.
Wilquet, V., et al., 2009. Preliminary characterization of the upper haze by SPICAV/ SOIR solar occultation in UV to mid-IR onboard Venus Express. J. Geophys. Res. 114, E00B42.
Wilquet, V., et al., 2012. Optical extinction due to aerosols in the upper haze of Venus: Four years of SOIR/VEX observations from 2006 to 2010. Icarus 217 (2), 875-881.
Webster, C., et al., 2015. Mars methane detection and variability at Gale crater. Science 347 (6220), 415-417.