Detroux, Thibaut ; Université de Liège - ULiège > Département d'aérospatiale et mécanique
Noël, J.-P.; Control Systems Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
Kerschen, Gaëtan ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Language :
English
Title :
Tailoring the resonances of nonlinear mechanical systems
Publication date :
2021
Journal title :
Nonlinear Dynamics
ISSN :
0924-090X
eISSN :
1573-269X
Publisher :
Springer Science and Business Media B.V.
Volume :
103
Issue :
4
Pages :
3611 - 3624
Peer reviewed :
Peer reviewed
Funding text :
The author T. Detroux is a Postdoctoral Researcher of the Fonds de la Recherche Scientifique - FNRS which is gratefully acknowledged. The authors J. P. Noël and G. Kerschen would like to acknowledge the financial support of the SPW (WALInnov grant).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Antonio, D., Zanette, D.H., Lopez, D.: Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 3, 806 (2012) DOI: 10.1038/ncomms1813
Strachan, B.S., Shaw, S.W., Kogan, O.: Subharmonic resonance cascades in a class of coupled resonators. J. Comput. Nonlinear Dyn. 8(4), 041015 (2013) DOI: 10.1115/1.4024542
Spadoni, A., Daraio, C.: Generation and control of sound bullets with a nonlinear acoustic lens. Proc. Nat. Acad. Sci. 107, 7230 (2010) DOI: 10.1073/pnas.1001514107
Karami, A., Inman, D.J.: Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesting. Appl. Phys. Lett. 100, 042901 (2012) DOI: 10.1063/1.3679102
Haxton, R.S., Barr, A.D.S.: The autoparametric vibration absorber. ASME J. Eng. Ind. 94(1), 119–125 (1972) DOI: 10.1115/1.3428100
Oueini, S.S., Nayfeh, A.H., Pratt, J.R.: A nonlinear vibration absorber for flexible structures. Nonlinear Dyn. 15, 259–282 (1998) DOI: 10.1023/A:1008250524547
Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Berlin (2009)
Habib, G., Detroux, T., Viguié, R., Kerschen, G.: Nonlinear generalization of the Den Hartog’s equal-peak method. Mech. Syst. Sig. Process. 52–53, 17–28 (2015) DOI: 10.1016/j.ymssp.2014.08.009
Kovacic, I., Rand, R.H.: About a class of nonlinear oscillators with amplitude-independent frequency. Nonlinear Dyn. 74, 455–465 (2013) DOI: 10.1007/s11071-013-0982-9
Habib, G., Grappasonni, C., Kerschen, G.: Passive linearization of nonlinear resonances. J. Appl. Phys. 120, 044901 (2016) DOI: 10.1063/1.4959814
Potekin, R., Asadi, K., Kim, S., Bergman, L.A., Vakakis, A.F., Cho, H.: Ultrabroadband microresonators with geometrically nonlinear stiffness and dissipation. Phys. Rev. Appl. 13, 014011 (2020) DOI: 10.1103/PhysRevApplied.13.014011
Petrov, E.P.: Direct parametric analysis of resonance regimes for nonlinear vibrations of bladed disks. ASME J. Turbomach. 129(3), 495–502 (2007) DOI: 10.1115/1.2720487
Renault, A., Thomas, O., Mahé, H.: Numerical antiresonance continuation of structural systems. Mech. Syst. Sig. Process. 116, 963–984 (2019) DOI: 10.1016/j.ymssp.2018.07.005
Grenat, C., Baguet, S., Larmarque, C.H., Dufour, R.: A multi-parametric recursive continuation method for nonlinear dynamical systems. Mech. Syst. Sig. Process. 127, 276–289 (2019) DOI: 10.1016/j.ymssp.2019.03.011
Moheimani, S.O.R., Fleming, A.J.: Piezoelectric Transducers for Vibration Control and Damping. Springer, Berlin (2006)
Raze, G., Jadoul, A., Guichaux, S., Broun, V., Kerschen, G.: A digital nonlinear piezoelectric tuned vibration absorber. Smart Mater. Struct. 29(1), 015007 (2019) DOI: 10.1088/1361-665X/ab5176
Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech. Syst. Sig. Process. 23(1), 170–194 (2009) DOI: 10.1016/j.ymssp.2008.04.002
Detroux, T., Renson, L., Masset, L., Kerschen, G.: The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Comput. Methods Appl. Mech. Eng. 296, 18–38 (2015) DOI: 10.1016/j.cma.2015.07.017
Seydel, R.: Practical Bifurcation and Stability Analysis. Springer, New York (2010) DOI: 10.1007/978-1-4419-1740-9
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.