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Abstract

In this work we propose a novel optimization-based methodology to tailor non-
linear resonances of mechanical systems according to specific design objectives. The
objective pursued herein is the realization of a predetermined frequency-amplitude
or frequency-energy dependence of a structural mode. The proposed methodology
consists in synthesizing the nonlinearities automatically, from low to large rela-
tive displacements, by optimizing piecewise-linear segments. The methodology is
illustrated using 2-degree-of-freedom nonlinear systems with modal interaction sup-
pression and isochronicity design applications.
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1 Introduction

The 20th century witnessed extraordinary advances in nonlinear systems theory. Today,
engineers in academia and research centers are exploiting this theory to develop modeling,
identification, simulation and control techniques. Even though important progress is yet to
be achieved toward more effective and robust nonlinear methods, the next great challenge
is to provide practitioners with methodologies to design with and for nonlinearity. This
is the challenge the present paper attempts to address.

Since the 2000s, the benefits of nonlinearity have been more and more systematically
explored in engineering. Among a variety of potential examples, the nonlinear implemen-
tation of signal processing operations is worthy of mention. In [1], tunable rectification
was achieved using a granular crystal with bifurcating dynamics leading to quasiperiodic
and chaotic states. By coupling nonlinear modes through internal resonances, Ref. [2]
proposed a frequency stabilization mechanism for micromechanical resonators. In [3], a
chain of nonlinear resonators involving a cascade of parametric resonances was also used
to passively divide frequencies. Some further examples of advanced nonlinear design stud-
ies are to be found in the literature about wave propagation in smart materials. As an
example, in [4], an array of spherical particles realized a nonlinear lens to transform an
incident sound wave into a compact pulse of high acoustic energy, with applications in
biomedical imaging and damage detection.

In the field of mechanical vibrations, intentionally utilizing nonlinearity has similarly
gathered attention over the past few years. For instance, harvesting energy from ambi-
ent vibrations is a typical subject of research entailing nonlinear design [5]. Optimizing
the nonlinear transient response by operating directly on the topology of the mechanical
structure was also performed in [6]. Beyond the former examples, nonlinearity design
in vibration engineering appears to attract most interest when it comes to shaping reso-
nances.

Achieving design objectives through resonance tailoring has been used in the area of vi-
bration absorption. The autoparametric absorber originally devised by Haxton and Barr
is an example of this kind, where linear vibrations in a primary structure are passively
attenuated by enforcing 2:1 resonance conditions with an attached beam-like absorber
[7]. Oueini and co-workers developed to a large extent this early work by implementing
quadratic feedback controllers and coupling them, in 2:1 autoparametric resonance, to the
structural modes of linear multi-degree-of-freedom systems [8]. A related and substantial
body of works concerns the mitigation of nonlinear vibrations as achieved, for example, by
the nonlinear energy sink [9] or the nonlinear tuned vibration absorber [10]. For this latter
absorber, the shaping of the two resonances of the coupled host structure-absorber system
is based on the search for their equal magnitude as inspired by Den Hartog’s linear design
rule. Besides vibration absorption, a few other recent studies leveraged resonance tuning
to meet design objectives that are less frequently addressed, like isochronicity [11], pas-
sive dynamical linearization [12] or extremely wide resonance patterns in microresonators
[13]. Generally, a key step toward optimizing (in any sense) the behavior of a nonlinear
resonance is the analysis of its parametric variability. Harmonic balance approaches are a
standard tool for this purpose. Petrov applied such an algorithmic scheme to a large-scale
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Figure 1: Schematic representation of resonance tailoring.

nonlinear bladed disk model involving complex contact interfaces [14]. Nonlinear antires-
onances and bifurcations were characterized and tracked in a numerically similar way
in Refs. [15] and [16], respectively. In the present paper, nonlinear resonance tailoring
is performed by parametrizing nonlinear restoring forces using piecewise-linear functions
and optimizing their coefficients using a harmonic balance technique.

The paper is organized as follows. Section 2 motivates the use of nonlinearity synthesis to
tailor resonances of mechanical structures. The synthesis procedure and its implemetation
are presented in Section 3, together with a numerical validation. In Section 4, the outlined
methodology is applied to suppress modal interaction and to enforce isochronicity of
nonlinear spring-mass systems. The conclusions of the study are finally drawn in the last
section of the paper.

2 Problem statement for nonlinear resonance tailor-

ing

In contrast to linear systems, the resonance frequencies of nonlinear systems depend on
motion amplitude. For instance, a nonlinear system is said to be hardening (softening)
when the resonance frequencies increase (decrease) for increasing amplitudes. The locus
of resonance frequencies as a function of the amplitude is termed backbone curve.

Depending on the design problem at hand, the dynamicist might want to tailor the back-
bone curve such that the considered system features a desired resonance frequency at
a specific amplitude. Figure 1 illustrates this idea for a nonlinear system featuring a
softening nonlinearity. From a specific amplitude at resonance, the resonance frequency
of interest enters into a zone forbidden by design, e.g., a zone where the system might
resonate with surrounding structures. The backbone curve should thus be modified such
that this problem is avoided. One possible way is to introduce an additional nonlinearity
with restoring force g(x) into the system, either at the location of the existing nonlinearity
or at another location.
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The tailoring of resonance frequencies through nonlinearity synthesis represents the main
objective of this paper. As illustrated in Fig. 2, the sought backbone curve is discretized

by target points
(

ω∗

(k), A
∗

(k)

)

with k = 1, . . . , nt. Similarly, the optimized restoring force

g(x) is discretized into 2nt + 1 intervals defined by points l(k), . . . , l0, u0, . . . , u(k). In this
work, g(x) is assumed to be odd and symmetric. It is also equal to zero in the (arbitrarily
small) interval [l0, u0] around the origin. Consequently, the optimization is to be carried
out in nt intervals [u0, u1], . . . , [unt−1, unt

].

To calculate the backbone curve, the nonlinear normal mode (NNM) theory (see, e.g.,
[17]) is used. The undamped and unforced system is considered:

Mq̈+Kq+ fnl(q) = 0 (1)

where M and K are the mass and stiffness matrices, respectively, whereas q is the dis-
placement vector. The vector fnl(q) = f̃nl(q) + g(x)ei − g(x)ej comprises the restoring
forces f̃nl and g(x) of the original and synthesized nonlinearities, respectively. x = qi−qj is
the relative displacement at the location of the additional nonlinearity, and ei and ej are
vectors of zeros with a value of one at the degree of freedom (DOF) i and j, respectively.

3 Automatic nonlinearity synthesis procedure

3.1 The optimization algorithm

The proposed algorithm is presented in Fig. 3. To greatly facilitate the process, the restor-
ing force g(x) is optimized piece by piece. Doing so, the restoring force is approximated
using piecewise-linear segments. The interval [u0, u1] is first considered, and variable g(1) is
optimized using classical Newton-Raphson iterations until the backbone curve comprises

the target point
(

ω∗

(1), A
∗

(1)

)

. When convergence is obtained, g(1) is frozen, and variable

g(2) is optimized. The process stops when the interval [unt−1, unt
] has been considered,

and the backbone curve passes through all target points.

Considering now the kth interval [uk−1, uk], the optimization problem

min
z(k),g(k)

∥

∥

∥

∥

h

∆A

∥

∥

∥

∥

(2)

is solved until the objective function is zero. As explained in the next section, ||h|| = 0
enforces a NNM motion of fundamental frequency ω∗

(k). ∆A = A(k) − A∗

(k) = 0 where

A(k) = maxt
∣

∣qm(k)(t)

∣

∣ ensures that the maximum amplitude of the NNM motion at the
selected DOF qm is equal to the target amplitude A∗

(k).

The optimization variables z(k) and g(k) correspond to the Fourier coefficients of the NNM
motion and to the value of the restoring force at u(k) = maxt

∣

∣qi(k) − qj(k)
∣

∣, respectively.
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3.2 NNM calculation

The NNMs are calculated herein using a harmonic balance approximation with NH har-
monics:

q(t) =
c
q
0√
2
+

NH
∑

k=1

(sqk sin (kωt) + c
q
k cos (kωt)) (3)

fnl(t) =
c
f
0√
2
+

NH
∑

k=1

(

s
f
k sin (kωt) + c

f
k cos (kωt)

)

(4)

The Fourier coefficients of fnl (t), c
f
k and s

f
k , depend on the Fourier coefficients of the

displacements q (t), cqk and s
q
k, and on the restoring force g (x). The Fourier coefficients

are grouped into the (2NH + 1)n× 1 vectors

z =
[

(cq0)
T (sq1)

T (cq1)
T

. . .
(

s
q
NH

)T (

c
q
NH

)T
]T

(5)

b =
[
(

c
f
0

)T (

s
f
1

)T (

c
f
1

)T

. . .
(

s
f
NH

)T (

c
f
NH

)T ]T

(6)

where the operator (·)T denotes the transpose.

Substituting Eqs. (3-4) in Eq. (1) and balancing the harmonic terms with a Galerkin
projection yields the equations of motion in the frequency domain [18]:

hNNM(z, ω, g) = A(ω)z− b(z, g) = 0 (7)

where

A =



















K

K− ω2M

K− ω2M
. . .

K− (NHω)
2
M

K− (NHω)
2
M



















(8)

describes the linear dynamics.

A phase condition [19] is imposed by setting the Fourier coefficient of a DOF qr to 0. This
condition, in addition to Eq. (7), leads to the condition defining a NNM motion:

h =

[

hNNM (z, ω, g)
zTer

]

= 0 (9)

Solving the nonlinear equations (9) involves several iterations on the Fourier coefficients
z and on the restoring force g (x). This is why condition (9) is added to the objective
function (2).
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Figure 4: Schematic representation of the 2-DOF system (validation).

3.3 Validation of the synthesis methodology

The proposed methodology is demonstrated using the 2-DOF system sketched in Fig. 4,
whose linear natural frequencies are 1 rad/s and

√
3 rad/s for the in-phase and out-of-

phase modes, respectively. A nonlinearity exists between the ground and the first DOF.
The equations of motion of this system read:

q̈1 + 2q1 − q2 + f̃nl (x) = 0 (10)

q̈2 − q1 + 2q2 = 0 (11)

Two different nonlinearities are considered, either a quintic nonlinearity f̃nl1 or a piecewise-
linear function f̃nl2,

f̃nl1 (x) = x5 (12)

f̃nl2 (x) =







2x+ 4 (x < −2)
0 (−2 ≤ x ≤ 2)

2x− 4 (x > 2)
(13)

The backbones of the first NNM computed by coupling the harmonic balance method with
a continuation strategy [18] are represented in Fig. 5. A total of 9 harmonics (NH = 9)
are retained for all calculations presented in this paper. The black dots (ω∗, A∗) in Fig.
5 serve as target points for the synthesis algorithm.

Considering now the underlying linear system, a nonlinearity with an a priori arbitrary
mathematical function g(x) is introduced. The function g(x) is optimized using the
proposed algorithm until the corresponding backbone curve passes through all target
points. The validation is successful if g(x) is equal to the nonlinearity of the original
system, i.e., either (12) or (13).

The nonlinear restoring forces synthesized by the optimizer are depicted in Fig. 6. An
excellent agreement is observed between those and the original restoring forces, which
demonstrates the effectiveness of our methodology.
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Figure 5: Backbone of the first NNM: (a) quintic and (b) piecewise nonlinearity. The
dots represents the selected target points.
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lines).
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4 Application to modal interaction suppression and

isochronicity

4.1 Modal interaction suppression

The 2-DOF system in Fig. 7 features a cubic nonlinerity between the ground and the
first mass. The backbones of the first and second modes are depicted in Fig. 8(a). In this
application, NNMs are represented in the frequency-energy plane, and target points are
defined in terms of energy. The first backbone features an α-shaped loop near 1.3 rad/s.
As explained in detail in [20], in that neighborhood, the frequency of the first mode
is a third of the frequency of the second mode, which, in turn, triggers a 3:1 modal
interaction between the two modes. The objective pursued in this section is to eliminate
this modal interaction by translating the second NNM branch to lower energies, as shown
schematically in Fig. 8(b). The 18 black dots (ω∗, E∗) serve as target points for the
synthesis algorithm.

To this end, a nonlinearity g (x) is introduced between the first and the second masses
(i.e., x = q1 − q2). The restoring force obtained after the synthesis procedure is repre-
sented in Fig. 9(a). The nonlinearity features a smooth hardening trend, which can be
approximated by the high-order polynomial function

p(x) = 0.6257x3 + 2.333x5 − 0.4619x7 + 0.03244x9 (14)

The resulting backbone for the first mode in Fig. 9(b) confirms that the modal interaction
has been successfully eliminated.

4.2 Enforcing isochronicity

We now aim at enforcing isochronicity, i.e., natural frequency invariance, for a specific
vibration mode of a nonlinear system. The system in Fig. 10 exhibits a nonlinearity
between the ground and the first mass. This softening-hardening polynomial nonlinearity
is represented in Fig. 11(a) whereas the backbone of the first mode is depicted in Fig.
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(a) First (solid line) and second (dashed line) NNM branches of the primary system;
(b) targeted second NNM branch for modal interaction suppression (dotted line) and
associated target points (dots).
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Figure 11: Nonlinear features of the 2-DOF primary system. (a) Restoring force; (b)
backbone of the first mode (line) and targets for isochronicity (dots).

11(b). The black dots (ω∗, A∗) aligned horizontally serve as target points to make the
first natural frequency invariant.

An additional nonlinearity g (x) is thus introduced between the ground and the second
mass (i.e., x = q2). The calculated restoring force g (x) is represented in Fig. 12. Inter-
estingly, the synthesized nonlinearity features a smooth hardening-softening trend, which
counterbalances the effect of the nonlinearity in the primary system.

In order to assess the performance of the optimized nonlinear system, we now study its
damped, forced response under sine excitation:

q̈1 + 0.1q̇1 − 0.05q̇2 + 2q1 − q2 − 0.6q31 + 0.2q51 = f sin (ωt) (15)

q̈2 − 0.05q̇1 + 0.1q̇2 − q1 + 2q2 + g (x) = 0 (16)

Nonlinear frequency responses of the primary system with and without the synthesized
nonlinearity are computed by combining harmonic balance and continuation [18]. Fig.
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13 compares the responses obtained at different forcing levels. The first resonance of the
primary system exhibits softening behavior up to 0.1N, followed by hardening behavior.
With the additional nonlinearity, the resonance frequency remains equal to 1 rad/s for
the considered forcing levels, confirming that isochronocity for the first mode is achieved.
Conversely, the second resonance peak does not seem to be affected by the additional
nonlinearity.

The stability of the solutions of the optimized system for f = 0.2N and 0.5N are shown
in Fig. 14. In both cases, branch point bifurcations are detected on the left side of the
resonance peak, resulting into stability changes and emanation of additional branches
of periodic solutions. Interestingly, for f = 0.5N, additional branch point and fold bi-
furcations generate another branch slightly shifting the resonance peak to 1.015Hz and
make the resonance peak unstable. This result indicates that besides the mere optimiza-
tion of the backbone, stability and bifurcation would also play a key role when designing
nonlinear systems. This will be investigated in future studies.

5 Conclusions

The objective of this study was the development of an automatic design procedure for
nonlinearity synthesis. This procedure provides the designers the freedom to tailor the
frequency-amplitude or frequency-energy dependence of a nonlinear system according to
their specific targets. Instead of optimizing the whole nonlinear restoring force at once, a
sequential methodology was proposed to synthesize the restoring force piece-by-piece from
low to large relative displacements, through the resolution of optimization subproblems
with a limited number of design variables. The methodology and the piecewise-linear
modeling of the restoring force proved successful, even to capture nonlinearities with
polynomial or nonsmooth behaviors. The nonlinearity synthesis was also demonstrated
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Figure 13: Nonlinear frequency responses for f = 0.01N, 0.02N, 0.05N, 0.1N and 0.2N.
Without (a) and with (b) the synthesized nonlinearity.
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Figure 14: Nonlinear frequency responses for (a) f = 0.2N and (b) f = 0.5N. Stable
and unstable solutions are represented with solid and dashed lines, respectively. Fold and
branch point bifurcations are represented with circle and square markers, respectively.

useful to suppress modal interactions, and impose mode isochronicity.

The perspectives of this work include the extension of the procedure to address multi-
modal objectives through the synthesis of multiple nonlinear connections. More flexi-
ble modeling of the connection will be studied, including piecewise-polynomial and non-
symmetric functions to describe the restoring forces. It is also known that several non-
linear systems may feature frequency-amplitude or frequency-energy dependance; in this
context, the unicity of the synthesized solutions will also be investigated.
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