Lossouarn, B.; Laboratoire de Mécanique des Structures et des Systèmes Couplés (LMSSC), Conservatoire national des arts et métiers (Cnam), 292 Rue Saint-Martin, Paris, 75003, France
Kerschen, Gaëtan ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Deü, J.-F.; Laboratoire de Mécanique des Structures et des Systèmes Couplés (LMSSC), Conservatoire national des arts et métiers (Cnam), 292 Rue Saint-Martin, Paris, 75003, France
Language :
English
Title :
An analogue twin for piezoelectric vibration damping of multiple nonlinear resonances
Foasso, C., Quand l'informatique était analogique [When computing was analog]. Pour la Science(522), 2021.
MacNeal, R.H., The Solution of Partial Differential Equations by Means of Electrical Networks. (Ph.D. thesis), 1949, California Institute of Technology.
McCann, G., The California Institute of Technology electric analog computer. Math. Tables Other Aids Comput. 3:28 (1949), 501–513.
MacNeal, R., McCann, G., Wilts, C., The solution of aeroelastic problems by means of electrical analogies. J. Aeronaut. Sci. 18:12 (1951), 777–789.
MacNeal, R., McCormick, C., The NASTRAN computer program for structural analysis. Comput. Struct. 1:3 (1971), 389–412.
Wagg, D., Worden, K., Barthorpe, R., Gardner, P., Digital twins: state-of-the-art and future directions for modeling and simulation in engineering dynamics applications. ASCE-ASME J. Risk Uncertain. Eng. Syst Part B: Mech. Eng., 6(3), 2020.
Vidoli, S., dell'Isola, F., Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks. Eur. J. Mech. A Solids 20:3 (2001), 435–456.
Alessandroni, S., dell'Isola, F., Porfiri, M., A revival of electric analogs for vibrating mechanical systems aimed to their efficient control by PZT actuators. Int. J. Solids Struct. 39:20 (2002), 5295–5324.
Porfiri, M., dell'Isola, F., Frattale Mascioli, F., Circuit analog of a beam and its application to multimodal vibration damping, using piezoelectric transducers. Int. J. Circuit Theory Appl. 32:4 (2004), 167–198.
Lossouarn, B., Deü, J.-F., Aucejo, M., Multimodal vibration damping of a beam with a periodic array of piezoelectric patches connected to a passive electrical network. Smart Mater. Struct., 24(11), 2015, 115037.
Darleux, R., Lossouarn, B., Deü, J.-F., Broadband vibration damping of non-periodic plates by piezoelectric coupling to their electrical analogues. Smart Mater. Struct., 29(5), 2020, 054001.
Darleux, R., Development of Analogous Piezoelectric Networks for the Vibration Damping of Complex Structures. (Ph.D. thesis), 2020, HESAM Université.
Lossouarn, B., Deü, J.-F., Kerschen, G., A fully passive nonlinear piezoelectric vibration absorber. Phil. Trans. R. Soc. A, 376(2127), 2018, 20170142.
Raze, G., Lossouarn, B., Paknejad, A., Zhao, G., Deü, J.-F., Collette, C., Kerschen, G., A multimodal nonlinear piezoelectric vibration absorber. Proceedings of ISMA2018 and USD2018, 2018, KU Leuven, 63–77.
Raze, G., Jadoul, A., Guichaux, S., Broun, V., Kerschen, G., A digital nonlinear piezoelectric tuned vibration absorber. Smart Mater. Struct., 29(1), 2019, 015007.
Habib, G., Kerschen, G., A principle of similarity for nonlinear vibration absorbers. Physica D 332 (2016), 1–8.
Hagood, N.W., von Flotow, A., Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 146:2 (1991), 243–268.
Thomas, O., Ducarne, J., Deü, J.-F., Performance of piezoelectric shunts for vibration reduction. Smart Mater. Struct., 21(1), 2011, 015008.
Soltani, P., Kerschen, G., Tondreau, G., Deraemaeker, A., Piezoelectric vibration damping using resonant shunt circuits: An exact solution. Smart Mater. Struct., 23(12), 2014, 125014.
Wu, S.-Y., Method for multiple mode piezoelectric shunting with single PZT transducer for vibration control. J. Intell. Mater. Syst. Struct. 9:12 (1998), 991–998.
Raze, G., Paknejad, A., Zhao, G., Collette, C., Kerschen, G., Multimodal vibration damping using a simplified current blocking shunt circuit. J. Intell. Mater. Syst. Struct. 31:14 (2020), 1731–1747.
Fleming, A., Behrens, S., Moheimani, S., Reducing the inductance requirements of piezoelectric shunt damping systems. Smart Mater. Struct., 12(1), 2003, 57.
Ducarne, J., Thomas, O., Deü, J.-F., Placement and dimension optimization of shunted piezoelectric patches for vibration reduction. J. Sound Vib. 331:14 (2012), 3286–3303.
Lossouarn, B., Aucejo, M., Deü, J.-F., Electromechanical wave finite element method for interconnected piezoelectric waveguides. Comput. Struct. 199 (2018), 46–56.
Zhou, B., Thouverez, F., Lenoir, D., Essentially nonlinear piezoelectric shunt circuits applied to mistuned bladed disks. J. Sound Vib. 333:9 (2014), 2520–2542.
Silva, T.M., Clementino, M.A., De Marqui Jr, C., Erturk, A., An experimentally validated piezoelectric nonlinear energy sink for wideband vibration attenuation. J. Sound Vib. 437 (2018), 68–78.
Detroux, T., Habib, G., Masset, L., Kerschen, G., Performance, robustness and sensitivity analysis of the nonlinear tuned vibration absorber. Mech. Syst. Signal Process. 60 (2015), 799–809.
Gluskin, E., The use of non-linear capacitors. Int. J. Electron. 58:1 (1985), 63–81.
Gluskin, E., A nonlinear resistor and nonlinear inductor using a nonlinear capacitor. J. Franklin Inst. B 336:7 (1999), 1035–1047.
Maurini, C., Pouget, J., dell'Isola, F., On a model of layered piezoelectric beams including transverse stress effect. Int. J. Solids Struct. 41:16–17 (2004), 4473–4502.