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Abstract

The objective of this study is to extend the concept of analogous piezoelectric
networks to vibration mitigation of multiple nonlinear resonances. First, the
undamped linear part of the electrical network is designed so as to possess similar
modal characteristics as those of the underlying linear mechanical structure.
Then, nonlinear electrical components possessing the same mathematical form
as that of the mechanical nonlinearities are added to the network. Because both
modal and nonlinear analogies are enforced, the electrical network can be seen as
an analogue twin of the mechanical structure. When the network is coupled to
the structure via an array of piezoelectric elements, it is shown numerically and
experimentally that such an analogue twin offers important benefits for vibration
mitigation over a broad range of frequencies and excitation amplitudes.

Keywords: Vibration damping, Piezoelectric coupling, Broadband control,
Nonlinear resonances

1. Introduction

Looking back over the origins of analogue electronics offers the opportunity
to remember that, initially, the word analogue was not related to a continuously
variable signal but to a real analogy between physical quantities. Indeed, before
the appearance of digital computers in the 1960s, analogue computers based
on electrical networks were able to simulate the dynamics of complex systems
ruled by differential equations [1]. In structural dynamics, the ”Cal Tech Electric
Analog Computer” [2] was used to build a reduced-order model of an airplane
in order to simulate flutter instabilities [3]. McNeal contributed significantly
to this prolific field of research before the increasing power of digital computers
finally encouraged him to develop the finite element (FE) method for structural
analysis, which resulted in the NASTRAN computer program [4].
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The FE method enabled the creation of what was later called a digital twin [5]
capable of reproducing the dynamics of a real structure in a virtual domain syn-
thesized by a digital computer. The paradigm was different with the analogue
case because the computer and the twin were actually the same physical object
allowing real-time measurements of the simulated physical quantities. Analogue
computers became obsolete before the 1970s, but the corresponding analogous
electrical networks were revived in the 2000s for the purpose of vibration ab-
sorption [6–8]. Indeed, coupling a mechanical structure to an electrical network
possessing similar modal properties can achieve broadband vibration mitigation.

Based on recent developments with analogous piezoelectric networks [9–11]
and with piezoelectric nonlinear vibration absorbers [12–15], the central contri-
bution of this paper is to develop an analogue twin of a nonlinear mechanical
structure, i.e., a fully passive analogous electrical network that mimics the dy-
namics of the host structure. We note that the word analogue recovers herein its
present meaning, i.e. a continuously variable signal, whereas the word twin refers
to the analogy. The electromechanical analogy beyond the linear regime is en-
sured by adopting the principle of similarity proposed in [16], i.e., a nonlinearity
possessing the same mathematical form as that of the mechanical nonlinearity is
introduced in the analogous electrical network. Doing so, vibration mitigation
of nonlinear resonances can be achieved over a broad range of frequencies and
excitation amplitudes.

The paper is organized as follows. The main principles of piezoelectric shunt
damping of a single linear resonance are first recalled in Section 2. The ex-
tension to vibration mitigation of multiple linear resonances through the use
of analogous electrical networks is then discussed. The concept was recently
applied to various linear structures [11], but another contribution of the paper
is to provide a clear framework for optimizing modal damping over a broad fre-
quency range by the introduction of adequate electrical resistances. Section 3
introduces the concept of an analogue twin of a nonlinear host structure and
validates it numerically using a piezoelectric beam with a cubic nonlinearity.
The experimental demonstration of the proposed developments is carried out in
Section 4. The electromechanical parameters of the experimental piezoelectric
beam are first identified before an analogous electrical network with a nonlin-
ear capacitor is coupled to the beam. The conclusions of the present study are
drawn in Section 5.

2. Vibration mitigation based on analogous piezoelectric coupling

2.1. Single mode damping with a linear piezoelectric tuned vibration absorber

The resonant piezoelectric shunt [17], also called piezoelectric tuned vibra-
tion absorber, is used to reduce the vibration amplitude of a single linear res-
onance. It generally comprises a piezoelectric transducer of capacitance C? at
zero strain connected to an inductance L? and a series resistance R?. Consid-
ering a single-degree-of-freedom mechanical system coupled to such a resonant
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shunt, the governing equations of motion are
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where u represents the mechanical displacement, q is the electrical charge dis-
placement and f is the excitation force. The constants m?, c?, k?, and e are
the modal mass, damping coefficient, stiffness in short circuit and coupling co-
efficient, respectively. A piezoelectric coupling factor is commonly defined as
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=
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, (2)

ωs and ωo being the natural angular frequencies in short and open circuit. The
inductance and resistance values

L? =
1

C?ω2
o

and R? =

√
3

2

kc
C?ωo

(3)

minimize the maximum of the receptance frequency response function (FRF)
[18, 19]. We note that Eq. (3) provides a sufficient approximation of the optimal
resistance when dealing with reasonable values of the coupling factor kc ≤ 0.2.

2.2. Vibration mitigation of multi-resonant structures

The extension of resonant piezoelectric shunts to multimodal structures con-
sists in designing a multi-resonant circuit whose electrical natural frequencies
are sufficiently close to the mechanical resonances to be controlled. By analogy
with a mechanical structure, one can define for each electrical mode i a modal
inductance L?i , a modal capacitance C?i and a modal damping ratio ξei. In order
to be tuned to the natural angular frequencies in open circuit ωoi, the electrical
network has to satisfy

L?iC
?
i =

1

ωo
2
i

and ξei =

√
3

8
kci (4)

for all the mechanical resonances to be damped. These two optimal conditions
directly come from Eq. (3) and the definition of an optimal quality factor

1

2ξei
=
L?iωoi

R?i
=

√
2

3

1

kci
. (5)

With a single piezoelectric transducer, the most direct approach is the so-
called multi-branch shunt [14, 20, 21] made of inductors and capacitors organized
with just as many branches as the number of targeted mechanical resonances.
Because the addition of external capacitors in the shunt decreases electrome-
chanical coupling [22] and because the positioning of a single piezoelectric patch
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Beam (Steel) Patches (PZT 5A)
Length lb = na = 700 mm lp = 67 mm
Width b = 14 mm b = 14 mm

Thickness hb = 14 mm hp = 2 mm

Second moment of area Ib =
bh3

b

12 = 3201 mm4 Ip =
b((hb+2hp)

3−h3
b)

24 = 1801 mm4

Density ρb = 7850 kg/m3 ρp = 7800 kg/m3

Young’s modulus Yb = 210 GPa Y Ep = 66 GPa
End stiffness kend = 3810 N/m -
Permittivity - εσ33 = 1800ε0 = 16 nF/m

Charge constant - d31 = −190 pC/N

Table 1: Dimensions and properties for the beam and the piezoelectric patches.

is generally not optimal for different mode shapes [23], this solution does not
provide the best coupling factors kci for all the considered modes.

Another solution for multimodal damping is based on analogous piezoelectric
coupling [7–11]. This technique requires several piezoelectric transducers that
are interconnected with electrical components so as to build a multi-resonant
network with modal properties similar to those of the considered structure.
The analogy is no more restrained to the natural frequencies (as with the multi-
branch shunts) but similar mode shapes are also ensured, which justifies the
denomination as an analogue twin. We note that the analogy is strictly valid
only for the undamped dynamics because large damping is to be deliberately
introduced in the electrical network to cause vibration mitigation.

2.3. Analogous electrical network for a beam

The structure under consideration in this paper is a beam whose dimensions
and material properties are given in Table 1. One end of the beam is fully
clamped whereas the other end is equipped with a thin lamina that generates
an additional stiffness kend. The design of an electrical analogue for beam
structures is fully described in [9] but the main steps of the method are recalled
in this section for completeness.

First, the fourth-order partial differential equation that defines the dynamics
of an Euler-Bernoulli beam is considered :

Y I
∂4qw
∂x4

+ ρS q̈w = 0, (6)

where qw is the transverse displacement, q̈w its second time derivative, x corre-
sponds to the longitudinal direction and t to the time. ρ is the density of the
beam, S is the cross-section, Y is the Young’s modulus, and I is the second
moment of area. Three new variables qθ, Vθ and Vw are introduced to obtain
an equivalent formulation with first-order spatial derivatives:

qθ =
∂qw
∂x

, Vθ = −Y I ∂qθ
∂x

and Vw = −∂Vθ
∂x

, (7)
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Figure 1: Electrical beam unit cell with damping components.

Figure 2: Electrical analogue of a cantilever beam made of n = 10 unit cells.

which implies

ρSq̈w = −∂Vw
∂x

. (8)

These continuous equations can be spatially discretized with a finite difference
scheme, leading to

L ¨qwI = VwL − VwR, VθI =
1

C
(qθL − qθR),

â
2 VwL = VθL − VθI, â

2 qθL = qwI − qwL,
â
2 VwR = VθI − VθR, â

2 qθR = qwR − qwI.

(9)

where â is the discretization step between the left and the right sides, denoted
’L’ and ’R’ respectively, and ’I’ corresponds to the internal equidistant position.
The set of equations (9) is represented by the electrical unit cell drawn in Fig. 1
(with RL = RC = RT = 0), which is finally equivalent to a discrete beam
segment. The analogous electrical unit cell is made of an inductance L = ρSâ
representing the analogue of a point mass and the capacitance C = â/Y I rep-
resents a bending compliance. There is also a transformer of ratio â that is
analogous to a mechanical lever having the length of the discretization step.

The complete analogous network is built by reproducing this unit cell along
one direction, taking into account that the number of unit cells per wavelength
has to be sufficiently large to approximate the continuous mechanical medium.
The electrical analogue of a beam with n = 10 unit cells is represented in Fig. 2.
In order to approximate the mode shapes of a cantilever beam, we also need to
ensure analogous boundary conditions. This is realized by short-circuiting one
end of the network (equivalent to zero force and moment) while leaving open
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Figure 3: Beam coupled to its electrical analogue through an array of piezoelectric patches.

the other end (equivalent to zero displacement and angle). Another critical
condition is the tuning of the dispersion relation in the electrical waveguide.
From the discrete model, it can be shown that the electrical parameters do not
necessarily have to be equal to their electrical analogues as long as they satisfy

1

â2
1

LC
=

1

a2
kθ
m
, (10)

where kθ is the bending stiffness of the mechanical unit cell, m is its mass and
a its length [9].

The following step is to couple the considered mechanical beam to its anal-
ogous electrical network with an array of piezoelectric patches. Thanks to the
inherent capacitance C of the piezoelectric patches, there is no need for exter-
nal capacitors for the analogue of the bending stiffness. Only transformers and
inductors satisfying Eq. (10) are required for the analogue of a clamped beam.
In the present case, however, one has to take into account the clamping through
the thin lamina. In the linear regime, the lamina can be modeled by a spring of
stiffness kend. So, its analogue is a capacitor to be placed at the end of the elec-
trical network, as shown in Fig. 3. The next question is to determine the value
of the capacitance that ensures the analogy with the mechanical stiffness. First
considering a purely mechanical case, identical eigenfrequencies are obtained for
two structures having the same nondimensionalized dynamic equations. In the
present example, a nondimensionalized parameter involving the end stiffness
is a2kend/kθ. The analogous electrical parameter is â2C/Cend because of the
equivalence between a capacitance and a compliance and between a lever and
a transformer. A relation linking the end capacitance to its analogous linear
stiffness is thus given by

Cend =
kθ
kend

â2

a2
C. (11)

This end capacitance stiffens the electrical network in a similar way that the
lamina stiffens the mechanical structure. As shown by the following numerical
results, the additional capacitance in Eq. (11) ensures the frequency condition
in Eq. (4) so as to generate a real analogy in the electrical domain.

2.4. Linear model for the electromechanical structure

As seen in Fig. 3, the considered beam is covered with a piezoelectric network
in such a way that the electromechanical system consists of a periodic layout
of electromechanical unit cells coupling mechanical and electrical degrees of
freedom. Focusing on a single unit cell of the one-dimensional waveguide in
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Figure 4: Interconnected array of piezoelectric patches and corresponding unit cell with left
and right electromechanical degrees of freedom [24].

Fig. 4, the mechanical displacement vector is denoted qm =
[
qmL qmR

]T
and

the electrical charge displacement vector is qe =
[
qeL qeR

]T
, where the letters

’L’ and ’R’ refer the the left and right sides of the unit cell. Similarly, a force

vector Fm =
[
FmL FmR

]T
is defined together with a vector containing the

electrical voltages on both sides of the unit cell, Fe =
[
FeL FeR

]T
. Then,

as detailed in [24], the mechanical and electrical degrees of freedom can be
combined thanks to the following matrix formulation :

[
Mm 0

0 Me

] [
q̈m
q̈e

]
+

[
Cm 0
0 Ce

] [
q̇m
q̇e

]
+

Km +
1

C
KcKc

T 1

C
KcS

T

1

C
SKT

c Ke

[qmqe
]

=

[
Fm

Fe

]
,

(12)
where q̇ and q̈ are the first and second time derivatives of the displacement
vectors q, the matrices Km, Cm and Mm are the mechanical stiffness, damping
and mass matrices, respectively, whereas Ke, Ce and Me are their electrical
analogues. The constant C is the capacitance of the unit cell at zero mechanical
displacement, Kc is a coupling vector and S is a matrix that only depends on
the internal connections of the electrical network:

qI = ST qe, (13)

where qI is the electrical charge flowing through the piezoelectric patches as seen
in Fig. 4. With the proposed formulation, the coupled problem is organized
like any mechanical problem involving mass, damping and stiffness symmetric
matrices. The only difference is that the displacement and force vectors contain
both mechanical and electrical contributions.

First focusing on the mechanical degrees of freedom, Appendix A provides
all the details required to build the matrices Mm, Km and Kc in Eq. (12)
for the case of homogenized piezoelectric beam unit cells. The constants used
for the numerical calculations are given in Table 1. No mechanical damping is
considered (Cm = 0) and 100 elements are employed to discretize the whole
cantilever beam. This is largely sufficient because the focus is on the first three
modes of the beam. Concerning the electrical matrices in Eq. (12), the topology
of the electrical network has to be considered. The purely electrical unit cell in
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Transformer ratio â = 2
Piezoelectric capacitance C = 5.08 nF

Inductance L = 0.247 mH
Resistance (in inductor) RL = 8.21 mΩ
Resistance (in capacitor) RC = 18.2 kΩ

Resistance (in transformer) RT = 76.1 Ω
End capacitance Cend = 14.5 mF

Table 2: Values of the electrical components for the model with n = 100 unit cells.

Fig. 1 leads to the electrical charge displacement and voltage vectors:

qe =


qwL

qθL
qwR

qθR

 and Fe =


VwL

VθL
−VwR

−VθR

 , (14)

where the electrical charge displacements qw and qθ are the analogues of the
linear and angular mechanical displacements W and θ, whereas the opposite
of the voltage contributions Vw and Vθ are the analogues of the shear force
and bending moment, respectively [9]. The set of discrete equations obtained
from Fig. 1 gives the electrical matrices S, Me, Ce and Ke that are detailed in
Appendix A. The numerical values used for the electrical components are given
in Table 2. The constant â depends on the transformer ratio that is selected
for the realization of the electrical network, and the inductance L can then be
tuned from Eq. (10).

2.5. Piezoelectric coupling factors

The stiffness of the thin lamina kend and its analogous capacitance Cend

can be added to the model by introducing diagonal terms in the final stiffness
matrix at the positions of the corresponding two degrees of freedom. In the
end, analogous boundary conditions are applied to the mechanical and electrical
degrees of freedom: W , θ, qw, qθ are all fixed at the clamped end, whereas
the other degrees of freedom are free from external loads. The resulting finite
element model of the n = 100 electromechanical unit cells is only made of 400
degrees of freedom which allows fast and sufficiently accurate computing of the
low-frequency dynamics.

To compute the short- and open-circuit eigenfrequencies of the electrome-
chanical model, L is set to 0 or to a very large value compared to the nominal
one, respectively. This means that, if there are additional capacitors in the
electrical network, the so-called short-circuit eigenfrequency is not necessarily
the same as when short-circuiting all the piezoelectric patches. The first short-
circuit eigenfrequency with an infinite end-capacitance is employed to update
kend from available experimental data [13]. The analogous capacitance Cend

can then be calculated from Eq. (11). The eigenfrequencies of the first three
modes are given in Table 3 together with the corresponding coupling factors.
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fs (Hz) fo (Hz) kc
Mode 1 29.72 30.03 0.144
Mode 2 154.14 157.37 0.206
Mode 3 429.27 438.43 0.208

Table 3: Eigenfrequencies and coupling factors for the first three modes of the ideal beam.
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Figure 5: Simulated FRF with open-circuited patches (· · · ) and after coupling to the piezo-
electric network with RL only (−−), with RL and RC (− · −) and with RT only (—).

The first coupling factor is smaller because of the influence of both the addi-
tional capacitance and the end stiffness due to the lamina. While having an
important contribution in the modal stiffness of the first mode, the lamina does
not participate to the piezoelectric coupling because the patches are only placed
along the main beam. Conversely, the lamina and the additional capacitance
do not have a strong influence on the higher modes so that the coupling factors
are very similar to those obtained with a cantilever beam.

2.6. Optimal resistance for multimodal damping

Although the tuning of the network inductance from Eq. (10) ensures similar
natural frequencies in the mechanical and electrical domains, damping is also
required in the electrical network. Because it corresponds to what is usually
observed in practice, the first case considered is a resistance in series with the
inductance, i.e., RL 6= 0 and RC = RT = 0, see Fig. 1. According to Eq. (5),
the optimal damping for the first mode requires

RL =

√
3

2
kc1ωO1L. (15)

The FRF at the end of the beam in Fig. 5 depicts that approximately equal
peaks are obtained for the first mode. However, the second and third modes
require more damping, as evidenced by the dependence on ωO1 in Eq. (15).

When a resistance is in series with the capacitance, i.e., RC 6= 0 and RL =
RT = 0, the electrical quality factor is 1/(ωCRC) and the optimal resistance is

RC =

√
3

2

kc
ωOC

. (16)
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The inverse dependence on ωO means that lower-frequency modes require a
greater resistance value. A good trade-off would thus tune RL on the first mode
with Eq. (15) and RC on the third mode with Eq. (16). Figure 5 shows that
the first and third modes are now well damped, but the second mode is still
underdamped.

Another option is to introduce damping through the resistance in series with
the transformer winding, i.e., RT in Fig. 1, as considered by Porfiri et al. [8].
In this study, they showed that the optimal resistance for a simply supported
beam

RSS
T =

√
2eθ

â

C

√
L

kDθ
(17)

does no longer depend on frequency. Even if there is no analytical formulation
available for a cantilever beam, the numerical results in Fig. 5 shows that a
resistance RT ≈ 0.6RSS

T is close to the optimum. We note that it remains a
theoretical solution as the resistance in series with the inductance cannot be
neglected in practice.

In summary, the results in Fig. 5 confirm that an analogous electrical network
can effectively provide effective multimodal vibration mitigation.

3. Piezoelectric vibration mitigation of a nonlinear structure

3.1. Single mode damping with a nonlinear piezoelectric tuned vibration absorber

Resonant piezoelectric shunting ensures that the electrical resonance at angu-
lar frequency 1/

√
L?C? matches the open-circuit natural frequency ωo. Because

it alters this latter frequency, mechanical nonlinearity results in the detuning of
the piezoelectric shunt, which eventually alters damping performance [13].

To overcome the adverse effect of nonlinearities, as opposed to piezoelectric
energy sinks [25, 26], a solution is to introduce subtle nonlinearities in the elec-
trical circuit according to a principle of similarity, i.e. the added nonlinearity
should possess the same mathematical form as that in the mechanical system
[16]. This tuning strategy was validated experimentally on a single mode
thanks to a fully passive nonlinear inductor exploiting the saturation
in the magnetic circuit [13]. It was then shown in [15] that similar
results can be obtained with a digital impedance able to synthesize an
adequate nonlinear capacitance. For example, if the nonlinear mechanical
force is a cubic function of the displacement u, fNL = kNLu

3, the required ad-
ditional voltage in the shunt should be a cubic function of the electrical charge
q [12, 13]:

vNL =
1

CNL
q3 with

1

CNL
= 2

(
L?

m?

)2

kNL. (18)

Adding this nonlinear capacitance in series with the inductor maintains an
equal-peak condition over a much broader range of excitation amplitudes.
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3.2. Extension to mitigation of multiple nonlinear resonances

Targeting now the mitigation of multiple nonlinear resonances, the objective
is to find the adequate nonlinearity to be introduced in the electrical network.
For a cubic nonlinear stiffness, Eq. (18) gives

1

CNLi

= 2

(
L?i
m?
i

)2

kNL, (19)

where L?i is the modal inductance of the network for electrical mode i. Because
there is a priori no specific relation between the modal inductance L?i and the
modal mass m?

i , the optimal electrical nonlinearity necessarily depends on mode
number, as seen in Eq. (19).

To address this issue, our objective is to develop a nonlinear analogous elec-
trical network which combines the modal analogy used for linear multimodal
damping and the principle of similarity used for nonlinear damping. The modal
analogy implies that the mechanical and electrical systems have the same natural
frequencies ωoi =

√
k?i /m

?
i = 1/

√
L?iC

?
i and the same mode shapes. Identical

eigenvalue problems for the two systems means that the modal ”mass ratio”
r = L?i /m

?
i is the same for all modes. As a consequence, the optimal value for

the nonlinear capacitance
1

CNL
= 2r2kNL, (20)

becomes independent of the mode number.
For the beam example, the load applied by the lamina can be modeled by

a nonlinear force f = kendu+ kNLu
3 where u is the displacement at the end of

the main beam [13]. The voltage v = 1
Cend q+ 1

CNL
q3 is thus required in the end

capacitor which is the analogue of the thin lamina. For the beam, the mass ratio
is r = L/m, where m is the mass of the unit cell and L is the corresponding
inductance in the network. The numerical value for the nonlinear capacitance
is then obtained from Eq. (20):

1

CNL
= 2

(
L

m

)2

kNL. (21)

3.3. Numerical validation of the nonlinear analagous electrical network

A nonlinearity kNL = 2.5 × 109 N·m−3 is introduced in the linear model
developed in Section 2 to account for the geometrically nonlinear effect of the
thin lamina. The nonlinear frequency responses in Fig. 6 were obtained using
numerical continuation and the harmonic balance method with 5 harmonics. As
shown in Fig. 7, above a forcing amplitude F = 0.67 N, vibration mitigation
of the first mode is severely affected by the mechanical nonlinearity. The
same distortions appear for the second and third modes for F = 130 N and
2400 N, respectively1. According to Eq. (21), whose constants are obtained

1Note that those latter force levels are impractical for the experimental demonstration
discussed later.
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Figure 6: Simulated frequency responses with the optimal resistance RT and the nonlinear
mechanical stiffness but no nonlinear capacitance for F = 0.67 N from 15 Hz to 700 Hz (−−),
F = 130 N around 160 Hz (−·−) and F = 2400 N around 440 Hz (· · · ) and with the nonlinear
capacitance for F = 0.67 N from 15 Hz to 700 Hz (—).
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Figure 7: Frequency (a) and amplitude (b) of the local maxima around mode 1 as
a function of the forcing amplitude without nonlinear capacitor (· · · ) and with a nonlinear
capacitor (—). Both diamond and circle markers appear when the considered FRF
offers two local maxima.

from Tables 1 and 2, a nonlinear capacitor 1/CNL = 1.63 × 106 V·C−3
is introduced in the electrical circuit. Figures 6 and 7 evidences that the
vibration amplitudes are maintained at levels similar to those obtained in the
purely linear case in Fig. 5.

Figure 8 offers a closer look around the three modes for slightly lower forcing
amplitudes, i.e., for amplitudes just below the merging of the right resonance
peak with a detached resonance curve when no nonlinearity is introduced in the
electrical network [27]. It is clear that the nonlinear network connected to the
nonlinear beam has a behavior very close to the linear network connected to the
linear beam, hence demonstrating the effectiveness of the concept.

The evolution of the frequency response around the first mode for different
values of the nonlinear capacitance and of the resistance is displayed in Fig. 9.
Figure 9(a) confirms that the tuning rule (21) provides the optimal value of the
electrical nonlinearity in terms of the H∞ norm. However, Figs. 9(b-c) shows
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Figure 8: Simulated responses for the first three modes of the nonlinear beam connected
to a network without nonlinear capacitance (· · · ), with optimal nonlinear capacitance (—)
and for a linear beam connected to a linear network (−−): (a) mode 1 for F = 0.66
N, (b) mode 2 for F = 120 N, (c) mode 3 for F = 2350 N.
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Figure 9: Simulated nonlinear responses around the mode 1 for F = 0.66 N with the nominal
nonlinear capacitance (—), with twice the nonlinear capacitance (· · · ) and with half of the
nonlinear capacitance (−−): (a) nominal resistance (RT = 0.6RSS

T ), (b) underdamped (RT =

0.3RSS
T ), (c) overdamped (RT = RSS

T ).

that Eq. (21) requires appropriate electrical damping. Specifically, the damping
in the electrical analogue needs to be as close as possible to the values given in
Eq. (5).

4. Experimental validation with the piezoelectric analogue twin

4.1. Piezoelectric beam

The experimental set-up in Fig. 10 corresponds to the beam previously de-
scribed (Table 1). Twenty piezoelectric stacks with two layers were glued on
each side of the beam. The beam end was excited with an electrodynamic shaker
whereas an impedance head measured the input force and the acceleration. A

13



(a)

(b) (c)

Figure 10: Experimental setup : (a) cantilever piezoelectric beam with the thin lamina at its
left end [13], (b) one of the 2-layer piezoelectric stacks, (c) close-up of the thin lamina and of
the impedance head.

rational fraction polynomial (RFP) method was used to extract the experimen-
tal natural frequencies and the modal damping ratios of the short-circuit and
open-circuit FRFs.

Nelder-Mead simplex optimization algorithm was used to update the nu-
merical model from the available experimental data. The objective function is
the norm of the vector including the errors on the first and second short-circuit
eigenfrequencies as well as the first modal coupling factor. The updating pa-
rameters are the flexural rigidity Y I, the stiffness of the thin lamina kend and
the piezoelectric coupling coefficient eθ. The clamped boundary condition is
considered perfect during the optimization because it was observed that it did
not strongly influence the results compared to the loss of flexural rigidity. The
initial and updated values are listed in Table 4.

We remark that a 12% decrease of the homogenized bending stiffness is re-
quired to match the experimental results. This is partly due to the fact that the
considered homogenized unit cells do not precisely model the 3D effects around
the strong steps induced by the piezoelectric patches (almost 30% increase of the
beam thickness). Another reason is that the layers of the home-made piezoelec-
tric stacks are not perfectly glued together. Both reasons also probably explain
the decrease in the global piezoelectric coupling coefficient.
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Initial Updated Correction factor
Y I (N·m2) 896 789 0.88
kend (N/m) 3810 4789 1.26
eθ (N·m/kV) 5.30 4.19 0.79

Table 4: Updated parameters and correction factors when compared to the numerical model
developed in the previous section.

Exp. fs Num. fs Err. fs Exp. ξs Exp. kc Num. kc Err. kc

Mode 1 29.54 29.54 0.0% 0.25% 0.137 0.137 0.0%
Mode 2 144.96 144.96 0.0% 0.20% 0.158 0.171 8.3%
Mode 3 397.28 402.93 1.4% 0.48% 0.163 0.169 3.8%

Table 5: Short-circuit eigenfrequencies, modal damping ratios and coupling factors of the
piezoelectric beam (experimental data and updated numerical model).

The short-circuit natural frequencies, modal damping ratios and coupling
factors of the updated model are compared to the experimental values in Table 5.
The errors on three quantities are identically zero, because there were three
updating parameters. The other errors stay within reasonable limits. Note that
the piezoelectric coupling factors cannot be directly compared to those in Table 3
that are calculated with an end capacitance in the network. However, they all
remains above 10% which can be qualified as a good piezoelectric coupling
for laboratory experiments. The good correlation between experiments and
simulations over the frequency range of interest is confirmed in Fig. 11 where
modal damping was added to the numerical model according to the experimental
damping ratios in Table 5.

4.2. Development of the multi-resonant electrical network

Assembling the analogous network in Fig. 3 requires nine inductors, ten
transformers and one capacitor. The transformers offer a ratio â = 2 and
a winding capacitance around 2 nF [9]. As the piezoelectric capacitance was
evaluated to 50.8 nF, the total capacitance C = 52.8 nF. Equations (10) and (11)
were used to calculate the required electrical components. Eventually, the target
values for the inductance and end capacitance are L = 277 mH and Cend =
104 µF.

The magnetic components were specifically designed for piezoelectric damp-
ing applications. For the inductors, RM14 magnetic cores of permeance 1000 nH
were wound with 530 turns of copper wire of 0.4 mm diameter. For the trans-
formers, we used the same ungapped nanocrystalline toroids as the ones in [10].
The presence of the thin lamina was implemented in the electrical domain by
the addition of a bipolar electrolytic capacitor of value Cend = 103 µF . To
validate the electrical dynamics, the ten piezoelectric patches were replaced by
47.2 nF ceramic capacitors. The resulting passive network is shown in Fig. 12.

To validate the sought modal analogy, an impedance meter measured the
admittance at the end of the network. Considering an infinite end capacitance,
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Figure 11: Experimental (· · · ) and simulated (−−) short-circuit FRFs of the piezoelectric
beam.

Figure 12: Electrical analogue of the cantilever beam with passive inductors, transformers
and capacitors.

i.e., a short circuit, the distributions of the electrical current in Fig. 13 are
plotted at frequencies corresponding to the first three maxima of the admit-
tance. It is seen that the distributions are similar to the mode shapes of a
clamped beam, which confirms that the electrical network has an adequate spa-
tial behavior. To validate its frequency behavior, the infinite capacitance was
replaced by the appropriate end capacitance. The identified natural frequencies
and modal damping ratios are listed in Table 6. The end capacitance induces a
first resonance around 30 Hz, as required by the mechanical structure.

Because direct measurements on the isolated electrical components have to
be performed at a specific frequency and amplitude, we preferred to resort to
model updating to take into account the real electrical dynamics including the
potential effect of unmodeled parasitic elements. For example, the copper wire
resistance in the inductors and transformers was added to the model because
of its strong influence on the electrical quality factors. This is also true for
the additional resistors in series with the capacitors. However, the magnetizing
inductance of the transformers [9] was not taken into account so it may have
a slight influence on the equivalent inductance obtained from the first natural
frequency. The model of the electrical network was thus updated using param-
eters for the inductance L, its series resistance RL and the resistance of the
transformer RT . The objective function is the norm of the vector including
the error on the first natural frequency as well as the errors on the first and
second damping ratios, as illustrated in Table 6. The electrical parame-
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(a) (b) (c)

Figure 13: Experimental distributions of the electrical current: (a) mode 1, (b) mode 2 and
(c) mode 3.
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Figure 14: Experimental (—) and simulated (−−) FRFs of the electrical network.

ters resulting from this model updating are given in Table 7. Figure 14
shows the good agreement between the experimental results and the numerical
simulations computed from the updated model of the electrical circuit.

The optimal modal damping ratios listed in Table 7 were obtained from
Eq. (4). Note that the first damping ratio of the actual network is slightly
above its optimal value, because the resistance RL of the inductors could not
be reduced to a sufficiently low value with the chosen magnetic components.
Thanks to the addition of resistors RC = 1 kΩ in series with the capacitors, the
third damping ratio is very close to its optimum. The second damping ratio is
deliberately left below its optimal value to avoid the deterioration of the other
damping ratios.

4.3. Linear multimodal damping

The full setup can be seen in Fig. 15 where the electrical network in Fig. 12
is coupled with the beam through the array of piezoelectric patches. The com-
parison between the FRFs with open-circuited patches and with the electrical
network in Fig. 16 evidences that effective multimodal damping is achieved for
the first three modes of the beam. The vibration amplitude is reduced by factors
of 14, 32 and 9 for modes 1, 2 and 3, respectively. As anticipated in Table 7, the
first mode is, however, overdamped. A very good agreement between the experi-
mental and numerical FRFs can also be noticed. Note that the piezoelectric
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Exp. fe Num. fe Err. fe Exp. ξe Num. ξe Err. ξe

Mode 1 30.49 30.49 0.0% 8.15% 8.15% 0.0%
Mode 2 153.78 151.92 1.2% 5.74% 5.74% 0.0%
Mode 3 420.25 414.22 1.4% 8.58% 8.71% 1.5%

Table 6: Natural frequencies and damping ratios of the electrical network (experimental data
and updated numerical model).

L (mH) RL (Ω) RC (Ω) RT (Ω) ξe1 (%) ξe2 (%) ξe3 (%) Cend (µF)
Optimal 277 0 0 659 6.91 10.28 8.82 104
Actual 277 6.82 1000 137 8.15 5.74 8.58 103

Table 7: Parameters of the optimal and actual electrical networks.

capacitance is considered constant in the present study although ex-
periments in [13] suggest that the introduction of a linear variation of
the capacitance with respect to the voltage amplitude may improve
the model.

4.4. Nonlinearity in the analogous electrical network

To guarantee satisfactory performance when the mechanical nonlinearity
induced by the thin lamina is activated at greater forcing levels, a nonlinear
capacitor satisfying Eq. (18) is to be incorporated in the electrical network. The

first-harmonic approximation is VNL =
3

4CNL
Q3, where VNL is the amplitude

of the nonlinear voltage contribution and Q is the amplitude of the electrical
charge. If this nonlinear component is in series with the linear capacitor Cend,
the equivalent variable capacitance is defined as

Cend
NL (Q) =

1

1

Cend
+

3Q2

4CNL

. (22)

We attempted to implement this law using a capacitor excited beyond its
nominal voltage range [28, 29], i.e., a 100 µF chip multilayer ceramic capacitor
with a 2.5 V maximum voltage for conventional use. To characterize its non-
linear behavior, a 30 Hz harmonic voltage with a variable amplitude from 0 to
22 V was applied to a 100 Ω resistance in series with the capacitor. The time
series of the voltage across the nonlinear capacitor v is depicted in Fig. 17(a).
Integrating the current q̇ flowing through the capacitor gives a way to plot the
hysteresis curve q as a function of v, as in Fig. 17(b). This figure displays that
the selected ceramic capacitor can exhibit a significant nonlinear behavior.

The equivalent capacitance and resistance values at 30 Hz are defined from

v? =
1

Ceq
q? +Reqq̇

?, (23)
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Figure 15: The piezoelectric beam coupled to its analogous electrical network.
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Figure 16: FRFs with open-circuited patches (· · · ) and with the analogous electrical network
(model: −− and experiment: —).

where the time signals filtered with a passband filter between 20 Hz and 40 Hz
are

v? = V cos(ωt+ δv), q? = Q sin(ωt+ δq̇) and q̇? = Q̇ cos(ωt+ δq̇). (24)

Consequently,

Ceq = −Q
V

sin(δv − δq̇) and Req =
V

Q̇
cos(δv − δq̇). (25)

The equivalent values were computed by extracting the amplitudes V , Q and
Q̇, as well as the phase shifts δv and δq̇. The equivalent resistance Req was
found to be negligible with respect to the other dissipative components. The
variation of the capacitance as a function of the electrical charge amplitude
is plotted in Fig. 17(c). For comparison, the figure also displays the theoret-
ical capacitance (22). A curve fitting was applied to extract the approximate
end capacitance Cend and nonlinear capacitance 1/CNL in Table 8. The curve
fitting was performed over a limited range of the electrical charge amplitudes
approximated from the linear model for input forces ranging from 0.2 N to 1 N.
Comparing the values in Table 8 shows that the nonlinearity of the experimen-
tal capacitor is greater than the optimal nonlinearity. However, since the first
vibration mode is overdamped, an increase of the electrical nonlinearity can be
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Cend (µF) 1/CNL (V·C−3)
Optimal 104 2.05×1010

Actual 105 3.12×1010

Table 8: Optimal and actual values for the nonlinear capacitor.
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Figure 17: Measurement of the equivalent capacitance: (a) voltage applied across the capac-
itor, (b) electrical charge as a function of the voltage (experiments: —, and curve fitting:
−−), (c) theoretical nonlinear capacitance (· · · ), equivalent capacitance (experiments: —,
and curve fitting: −−).

beneficial for maintaining an adequate tuning in the nonlinear range, as illus-
trated in Fig. 9(c). The chosen capacitor was thus considered as a sufficiently
good candidate for the experimental validation.

4.5. Vibration mitigation with the nonlinear analogous electrical network

Two important limitations arose when carrying out experiments with the
nonlinear analogous electrical network. First, as shown in Figs. 8(b-c), acti-
vating the nonlinearity for the second and third modes demands forcing am-
plitudes that are well beyond the capabilities of the electrodynamic shaker.
Second, forcing levels above 0.2 N generate an unforeseen magnetic saturation
in some of the electrical transformers, leading to a decrease in the magnetizing
inductance of the transformers. This means that, even without the nonlinear ca-
pacitor, the first resonance exhibits a non-negligible nonlinear behaviour, which
prevented us from demonstrating the anticipated performance of the network.
Figure 18 actually shows the largest difference observed between the
nonlinear and the supposedly linear networks before entering a fully
nonlinear regime with bistable solutions. The experiment with the
nonlinear capacitor shows the expected behavior but the unexpected
results concern the case with the linear capacitor that should nor-
mally demonstrate larger amplitudes if the electrical resonance were
at a constant frequency.

A technical solution could be to manufacture a new series of trans-
formers of slightly larger dimensions. A larger magnetic cross section
would increase the saturation limit and thus extend the linear range
of the electrical network to higher excitation levels. However, since the

20



25 30 35

Frequency (Hz)

0

10

20

30

40

50

In
e

rt
a

n
c
e

 (
m

/s
²/

N
)

Figure 18: Experimental FRFs around mode 1 with the nonlinear capacitor for F = 0.2 N
(−−) and F = 0.35 N (—), and with the linear capacitor for F = 0.35 N (· · · ).

production of a fully new electrical network was not feasible, we propose herein
to benefit from the developments in Sections 3 and 4 to carry out realistic simu-
lations in order to, at least partially, validate the nonlinear analogous network.
The advantage of such simulations is that the parasitic effect of magnetic sat-
uration in the transformers is obviously not present. Specifically, a nonlinear
electromechanical model considering the experimental parameters in Tables 4, 7
and 8 was built.

Figure 19(a) presents the first resonance at a forcing level of 0.4N for three
different configurations, namely the nonlinear beam coupled to either the linear
or the nonlinear network and the linear beam coupled to the linear network.
When the linear network is coupled to the nonlinear beam, the mechanical
nonlinearity induced by the thin lamina leads to an important detuning as well as
a clear hardening of the resonance peak. The addition of the nonlinear capacitor
decreases the amplitude at resonance to a level which is almost identical to that
of the linear beam coupled to the linear network, hence confirming that a proper
nonlinear capacitor was selected.

Figure 19(b) gives the results of a simulation for which the first mode is
no longer overdamped. To this end, a 30% decrease of the resistance RL in
series with the inductors was considered; this can be envisioned in practice by
selecting other magnetic cores for the passive inductors. The benefit of the
nonlinear capacitor is again evident. We note that a strict equal peak condition
cannot be achieved, because the parameters of the selected nonlinear capacitor
deviate away from the optimal parameters in Table 8.

The comparison between cases with and without nonlinear ca-
pacitor is extended to different forcing amplitude through the results
in Fig. 20. The electrical parameters used to plot Fig. 19(a) lead to
Figs. 20(a) and (c). The jump of the single maxima to higher vibra-
tion amplitudes occurs at F = 0.41 N with the linear network and at
F = 0.71 N with the nonlinear capacitor. This limit forcing amplitude
was above 1 N with the theoretical model as illustrated in Fig. 7.
The main reason for such a decrease is the fact that the resistance
is above its optimal value in the realistic simulations that represent
the experimental setup. Indeed, with a lower resistance, Figs. 20(b)
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Figure 19: Realistic simulations using an electromechanical model considering the experimen-
tal parameters. Response around mode 1 for F = 0.4 N when the nonlinear beam is coupled
to the linear (· · · ) or nonlinear (—) electrical network. Linear beam coupled to the linear
network (−−). (a) Resistance values in Table 7, (b) 30% decrease of RL.

and (d) show that a behavior close to the one observed in Fig. 7 is
retrieved with the appearance of two local maxima. The remaining
difference is the unequal amplitude of the two maxima that is again
due to the slightly imprecise tuning of the chosen nonlinear capacitor.

5. Conclusions

The objective of this study was to show that multimodal vibration mitigation
of nonlinear systems can be achieved with fully passive piezoelectric networks.
To this end, we proposed to couple a mechanical structure to its nonlinear
electrical analogue, realizing in essence what we call an analogue twin of the
mechanical structure.

Linear multi-resonant networks offer vibration mitigation over a wide fre-
quency range. However, the presence of a mechanical nonlinearity can sub-
stantially increase the vibration amplitudes because of the increasing detuning
between the mechanical and electrical resonances. The numerical simulations
carried out in this paper evidenced that adding to the network an electrical non-
linearity similar to the mechanical one (both in mathematical form and spatial
positioning) leads to effective broadband attenuation, similar to that obtained
in the purely linear case. An experimental analogous network was also built and
led to the selection of an adequate electrical nonlinearity. Magnetic saturation
in the transformers did not allow an explicit experimental validation with the
proposed setup but simulations with realistic parameters approved the choice
of the considered nonlinear capacitor.

An interesting perspective of this research is to realise the required electrical
nonlinearities (or even parts of the linear network) with digital components,
leading to a hybrid, semi-passive piezoelectric network that can adapt itself to,
e.g., changing environmental conditions.
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Figure 20: Characteristics of the local maxima around mode 1 as functions of the forcing
amplitude without nonlinear capacitor (· · · ) and with a nonlinear capacitor (—): (a) frequency
and (c) amplitude of the single local maximum when considering the resistance values in
Table 7, (b) frequency and (d) amplitude of the local maxima with a 30% decrease of RL.
Both diamond and circle markers appear when the considered FRF offers two local maxima.

Appendix A.

The objective of this Appendix is to provide the technical details required to
build the piezoelectric beam model. While the following elements have already
been introduced in previous papers [9, 24], they are here summarized in order
to offer to any interested reader the possibility of a full implementation of the
proposed electromechanical model.

For an Euler-Bernoulli beam, the finite element model based on cubic shape
functions for the transverse displacement involves the stiffness matrix

Km =
Y I

a3


12 6a −12 6a
6a 4a2 −6a 2a2

−12 −6a 12 −6a
6a 2a2 −6a 4a2

 , (A.1)

where Y is the Young’s modulus and I is the second moment of area of the
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beam element of length a. Moreover, the mass matrix is

Mm =
ρSa

420


156 22a 54 −13a
22a 4a2 13a −3a2

54 13a 156 −22a
−13a −3a2 −22a 4a2

 (A.2)

where ρ is the density and S the cross-sectional area of the beam. Consid-
ering that each element is a laminated structure, homogenized quantities are
used in the finite element model. The homogenized flexural rigidity Y I of the
piezoelectric bimorph is obtained from the bending compliance of the unit cell,

a

Y I
=

lp
YsIs + 2Y Ep Ip

+
a− lp
YsIs

, (A.3)

and the mass is ρSa = ρbhbba + 2ρphpblp, where the constants are given in
Table 1.

The mechanical displacement vector for the homogenized segment of Euler-

Bernoulli beam is qm =
[
WL θL WR θR

]T
. Because the poling direction of

the piezoelectric patches have been chosen so that coupling occurs for bending
motion, the coupling vector is defined as

Kc = eθ
[

0 1 0 −1
]T
, (A.4)

where

eθ =
√
C
(
kDθ − kEθ

)
(A.5)

is the piezoelectric coupling coefficient related to bending motion [9]. The con-

stant kEθ =
Y I

a
corresponds to the bending stiffness of a unit cell in short

circuit, which can be obtained directly from Eq. (A.3). On the other hand, kDθ
is the open-circuited bending stiffness that is calculated from the same equation
after replacing the Young’s modulus at zero electric field, Y Ep , by the Young’s
modulus at zero electric charge displacement,

Y Dp =
1

1

Y Ep
− d231
εσ33

. (A.6)

In Eq. (A.5) also appears the constant C that represents the piezoelectric capac-
itance of a unit cell when the mechanical displacements are blocked (qm = 0).
The blocked capacitance of a single piezoelectric patch is calculated from

Ĉ = εε33
blp

ĥp
, (A.7)

where εε33 is the equivalent permittivity of the piezoelectric material when no
bending of the unit cell. While a precise estimation of this permittivity requires
3D calculations [30], it can still be approximated from a 1D model with

εε33 = εσ33 − Y Ep d231. (A.8)
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In the present paper, as described in the experimental section, each unit cell
of the considered setup involves four piezoelectric patches of thickness ĥp =
hp/2 = 1 mm. Each pair of patches makes a two-layer stack of thickness hp and
the two stacks are connected in parallel. The blocked capacitance of a single
unit cell is thus C = 4Ĉ.

Concerning the electrical network, Eq. (13) and the relation between the
external electric charge displacements and the charge on the electrodes of the
piezoelectric patches qI = qθL − qθR gives

S =
[

0 1 0 −1
]T
. (A.9)

Furthermore, symbolic computations based on the discrete equations describing
the unit cell in Fig. 1 give the mass, damping and stiffness matrices for the
electrical network :

Me =
L

2


1 â/2 0 0
â/2 â2/4 0 0
0 0 1 −â/2
0 0 −â/2 â2/4

 , (A.10)

Ce =
RL
2


1 â/2 0 0
â/2 â2/4 0 0
0 0 1 −â/2
0 0 −â/2 â2/4

+
RT
2


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

+RC


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1


(A.11)

and

Ke =
4

â2C0



1
â

2
−1

â

2
â

2

â2

4

C + 2C0

C + C0
− â

2

â2

4

C

C + C0

−1 − â
2

1 − â
2

â

2

â2

4

C

C + C0
− â

2

â2

4

C + 2C0

C + C0


. (A.12)

Note that a capacitance C0 appears in Eq. (A.12) while it is not shown in Fig. 1.
As fully explained in [24], C0 is a numerical parameter that is required to relax
some constrains in the electrical network in order to allow the definition of a
stiffness matrix. To limit the influence of this additional degree of freedom on
the results, C0 that has to be small compared to C. A deeper analysis on the
influence of this numerical parameter is out of the scope of this work but it can
be shown that a value C0 = C× 10−3 is adequate for the following calculations.

Once all the matrices in Eq. (12) have been defined, a last step consists in a
reorganizing the degrees of freedom from the following permutation that collect
left and right degrees of freedom (qL and qR) without separating mechanical
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and electrical ones:

[
qL
qR

]
=



WL

θL
qwL

qθL
WR

θR
qwR

qθR


=


I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I





WL

θL
WR

θR
qwL

qθL
qwR

qθR


. (A.13)

Using this permutation matrix on the matrices in Eq. (12) finally provides the
one-dimensional electromechanical finite element that can be used with an as-
sembly process in order to define the finite element model of the whole structure.
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G. Kerschen, A multimodal nonlinear piezoelectric vibration absorber, in:
Proceedings of ISMA2018 and USD2018, KU Leuven, 2018, pp. 63–77.

[15] G. Raze, A. Jadoul, S. Guichaux, V. Broun, G. Kerschen, A digital nonlin-
ear piezoelectric tuned vibration absorber, Smart Materials and Structures
29 (1) (2019) 015007.

[16] G. Habib, G. Kerschen, A principle of similarity for nonlinear vibration
absorbers, Physica D: Nonlinear Phenomena 332 (2016) 1–8.

[17] N. W. Hagood, A. von Flotow, Damping of structural vibrations with piezo-
electric materials and passive electrical networks, Journal of sound and
vibration 146 (2) (1991) 243–268.
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