[1] Carrella, A., Brennan, M. J., Waters, T. P., and Lopes, V. J., 2012, "Force and Displacement Transmissibility of a Nonlinear Isolator With High-Static-Low-Dynamic-Stiffness," Int. J. Mech. Sci., 55(1), pp. 22-29.
[2] Johnson, D. R., Harne, R. L., and Wang, K. W., 2011, "A Disturbance Cancellation Perspective on Vibration Control Using a Bistable Snap-Through Attachment," ASME J. Vib. Acoust, 136(3), p. 031006.
[3] Sun, X. T., and Jing, X. J., 2015, "Multi-Direction Vibration Isolation With Quasi-Zero Stiffness by Employing Geometrical Nonlinearity," Mech. Syst. Signal Process, 62, pp. 149-163.
[4] Jing, X. J., Zhang, L. L., Jing, G. Q., Feng, X., Guo, Y. Q., and Xu, Z. D., 2019, "Critical Factors in Designing a Class of X-Shaped Structures for Vibration Isolation," Eng. Struct, 199, p. 109659.
[5] Zhou, J. X., Wang, X. L., Xu, D., and Bishop, S., 2015, "Nonlinear Dynamic Characteristics of a Quasi-Zero Stiffness Vibration Isolator With Cam-Roller-Spring Mechanisms," J. Sound Vib., 346, pp. 53-69.
[6] Yao, Y. H., Li, H. G., Li, Y., and Wang, X. J., 2020, "Analytical and Experimental Investigation of a High-Static-Low-Dynamic Stiffness Isolator With Cam-Roller-Spring Mechanism," Int. J. Mech. Sci., 186, p. 105888.
[7] Zhang, J. T., Zhang, J., Shu, C, and Fang, Z., 2017, "Enhanced Piezoelectric Wind Energy Harvesting Based on a Buckled Beam," Appl. Phys. Lett., 110(18), p. 183903.
[8] Liu, X. T., Huang, X. C, and Hua, H. X., 2013, "On the Characteristics of a Quasi-Zero Stiffness Isolator Using Euler Buckled Beam as Negative Stiffness Corrector," J. Sound Vib., 332(14), pp. 3359-3376.
[9] Zhou, S. X., Cao, J. Y., Erturk, A., and Lin, J., 2013, "Enhanced Broadband Piezoelectric Energy Harvesting Using Rotatable Magnets," Appl. Phys. Lett., 102(17), pp. 101301-R21.
[10] Cao, J. Y., Zhou, S. X., Inman, D. J., and Lin, J., 2015, "Nonlinear Dynamic Characteristics of Variable Inclination Magnetically Coupled Piezoelectric Energy Harvesters," ASME J. Vib. Acoust., 137(2), p. 021015.
[11] Jing, X. J., Zhang, L. L., Feng, X., and Li, A. K., 2019, "A Novel Bio-Lnspired Anti-Vibration Structure for Operating Hand-Held Jackhammers," Mech. Syst. Signal Process, 118, pp. 317-339.
[12] Stanton, S. C, McGehee, C. C, and Mann, B. P., 2010, "Nonlinear Dynamics for Broadband Energy Harvesting: Investigation of a Bistable Piezoelectric Inertial Generator," Phys. D, 239(10), pp. 640-653.
[13] Wang, G. Q., Zhao, Z. X., Liao, W. H., Tan, J. P., Ju, Y., and Li, Y., 2020, "Characteristics of a Tri-Stable Piezoelectric Vibration Energy Harvester by Considering Geometric Nonlinearity and Gravitation Effects," Mech. Syst. Signal Process, 138, pp. 1-18.
[14] Zhang, Y., Cao, J. Y., Wang, W., and Liao, W. H., 2020, "Enhanced Modeling of Nonlinear Restoring Force in Multi-Stable Energy Harvesters," J. Sound Vib., 494, p. 115890.
[15] Leadenham, S., and Erturk, A., 2015, "Nonlinear M-Shaped Broadband Piezoelectric Energy Harvester for Very Low Base Accelerations: Primary and Secondary Resonances," Smart Mater. Struct., 24(5), p. 55021.
[16] Noël, J. P., and Kerschen, G., 2017, "Nonlinear System Identification in Structural Dynamics: 10 More Years of Progress," Mech. Syst. Signal Process, 83, pp. 2-35.
[17] Marchesiello, S., and Garibaldi, L., 2008, "A Time Domain Approach for Identifying Nonlinear Vibrating Structures by Subspace Methods," Mech. Syst. Signal Process, 22(1), pp. 81-101.
[18] Noël, J. P., Marchesiello, S., and Kerschen, G., 2014, "Subspace-Based Identification of a Nonlinear Spacecraft in the Time and Frequency Domains," Mech. Syst. Signal Process, 43(1-2), pp. 217-236.
[19] Filippis, G. D., Noël, J. P., Kerschen, G., Soria, L., and Stephan, C, 2016, "Experimental Nonlinear Identification of an Aircraft With Bolted Connections," Proceedings of the XXXIII International Modal Analysis Conference, Orlando, FL, pp. 263-278.
[20] Noël, J. P., and Kerschen, G., 2013, "Frequency-Domain Subspace Identification of Nonlinear Mechanical Systems-Application to a Solar Array Structure," Mech. Syst. Signal Process, 40(2), pp. 701-717.
[21] Masri, S. F., and Caughey, T. K., 1979, "A Nonparametric Identification Technique for Nonlinear Dynamic Problems," ASME J. Appl. Mech., 46(2), pp. 433-447.
[22] Crawley, E. F., and Aubert, A. C, 1986, "Identification of Nonlinear Structural Elements by Force-State Mapping," AIAA J., 24(1), pp. 155-162.
[23] Al-Hadid, M., and Wright, J. R., 1990, "Application of the Force-State Mapping Approach to the Identification of Non-Linear Systems," Mech. Syst. Signal Process, 4(6), pp. 463-482.
[24] Worden, K., 1990, "Data Processing and Experiment Design for the Restoring Force Surface Method, Part I: Integration and Differentiation of Measured Time Data," Mech. Syst. Signal Process, 4(4), pp. 295-319.
[25] Worden, K., 1990, "Data Processing and Experiment Design for the Restoring Force Surface Method, Part II: Choice of Excitation Signal," Mech. Syst. Signal Process, 4(4), pp. 321-344.
[26] Kerschen, G., and Golinval, J. C, 2001, "Theoretical and Experimental Identification of a Non-Linear Beam," J. Sound Vib., 244(4), pp. 597-613.
[27] Kerschen, G., Lenaerts, V., and Golinval, J. C, 2003, "VTT Benchmark: Application of the Restoring Force Surface Method," Mech. Syst. Signal Process, 17(1), pp. 189-193.
[28] Allen, M. S., Sumali, H., and Epp, D. S., 2008, "Piecewise-Linear Restoring Force Surfaces for Semi-Nonparametric Identification of Nonlinear Systems," Nonlinear Dyn., 54(1), pp. 123-135.
[29] Noël, J. P., Renson, L., and Kerschen, G., 2014, "Complex Dynamics of a Nonlinear Aerospace Structure: Experimental Identification and Modal Interactions," J. Sound Vib., 333(12), pp. 2588-2607.
[30] Noël, J. P., Renson, L., Kerschen, G., Peeters, B., Manzato, S., and Debille, J., 2013, "Nonlinear Dynamic Analysis of an F-16 Aircraft Using GVT Data," Proceedings of the International Forum on Aeroelasticity and Structural Dynamics, Leuven, Belgium, pp. 1-13.
[31] Fuellekrug, U., and Goege, D., 2012, "Identification of Weak Non-Linearities Within Complex Aerospace Structures," Aerosp. Sci. Technol., 23(1), pp. 53-62.
[32] Moore, K. J., Kurt, M., Eriten, M., McFarland, D. M., Bergman, L. A., and Vakakis, A. F., 2019, "Time-Series Based Nonlinear System Identification of Modal Interactions Caused by Strongly Nonlinear Attachments," J. Sound Vib., 438, pp. 13-32.
[33] Friswell, M. I., Ali, S. F., Bilgen, O., Adhikari, S., Arthur, W. L., and Litak, G., 2013, "Non-Linear Piezoelectric Vibration Energy Harvesting From a Vertical Cantilever Beam With Tip Mass," J. Intell. Mater. Syst. Struct., 23(13), pp. 1505-1521.
[34] Feldman, M., 2012, "Nonparametric Identification of Asymmetric Nonlinear Vibration Systems With the Hilbert Transform," J. Sound Vib., 331(14), pp. 3386-3396.
[35] Yuan, T. C, Yang, J., and Chen, L. Q., 2018, "Nonparametric Identification of Nonlinear Piezoelectric Mechanical Systems," ASME J. Appl. Mech., 85(11), p. 111008.
[36] Xu, B., He, J., and Masri, S. F., 2012, "Data-Based Identification of Nonlinear Restoring Force Under Spatially Incomplete Excitations With Power Series Polynomial Model," Nonlinear Dyn., 67(3), pp. 2063-2080.
[37] Huang, D. M., Zhou, S. X., Li, W., and Litak, G., 2020, "On the Stochastic Response Regimes of a Tristable Viscoelastic Isolation System Under Delayed Feedback Control," Sci. China: Technol. Sci., 64(4), pp. 858-868.
[38] Zhou, S. X., and Zuo, L., 2018, "Nonlinear Dynamic Analysis of Asymmetric Tristable Energy Harvesters for Enhanced Energy Harvesting," Commun. Nonlinear Sci. Numer. Simul., 61, pp. 271-284.