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Abstract 

Strongly nonlinear structures have attracted a great deal of attention in the field of energy 

harvesting and vibration isolation recently. However, it is challenging to accurately 

characterize the nonlinear restoring force by analytical modeling or direct measurement in 

many realistic conditions due to the uncertainty of installation parameters or some constraints, 

including space size and dynamic disturbance. Therefore, the displacement-measurement 

restoring force surface identification approach is presented for describing the nonlinear 

restoring force. The widely known quasi-zero stiffness, bistable and tristable structures are 

designed in the cantilever beam system with rotatable magnets coupling to illustrate strongly 

nonlinear properties in the application of energy harvesting and vibration isolation. Based on 

the derived physical model of the designed strongly nonlinear structures, the displacement-

measurement restoring force surface identification with least-squares parameter fitting is 

proposed to obtain the nonlinear parameters of the stiffness force and damping force. The 

comparison between acceleration integration and displacement differentiation method for 

describing the restoring force surface of strongly nonlinear structures is discussed. Besides, the 

influence of noise level on identification accuracy is investigated. In experimental conditions, 

quasi-zero stiffness, bistable and tristable nonlinear structures with various geometrical 

parameters are performed to comparatively analyze the identified nonlinear stiffness force 

curve and measured force-displacement trajectory. Experimental results verify the 
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effectiveness of the displacement-measurement restoring force surface method for describing 

the nonlinear stiffness force. 

Keywords: Strongly nonlinear structures; Displacement-measurement restoring force surface; 

Quasi-zero stiffness; Bistable structure; Tristable structure.  

1. Introduction 

In recent years, many strongly nonlinear structures have been widely used in passive 

vibration isolation and energy harvesting. The basic principle of these nonlinear structures is 

to form an ideal nonlinear restoring force by coupling negative stiffness forces based on linear 

structures, such as oblique spring/bar [1,2], X-shaped structures [3,4], cam-roller-spring 

mechanisms [5,6], buckled beam [7,8] and magnetic coupling structures [9,10], etc. These 

nonlinear elements change the system’s dynamic response and make it useful in many 

engineering occasions but increase the complexity of nonlinear stiffness force calculation or 

identification.  

In the last decade, the popular methods of describing nonlinear restoring force include 

analytical calculation and direct measurement using the instrument. Carrella et al. calculated 

the force-displacement function of oblique spring-type high-static-low-dynamic-stiffness 

(HSLDS) isolator and then simplified it with cubic polynomial function to make great 

convenience for the analytical solution of dynamic equation [1]. Thanh et al. precisely 

characterized the nonlinear stiffness force of the HSLDS vehicle seat, and then Lagrange’s 

equation was adopted for derivation of dynamic equation [2]. In complex spatial geometric 

structures such as diamond, X-shaped, and bionic structures invented by Jing et al., two 

common ways are either the purely mathematical calculation of nonlinear restoring force or 

using Lagrange’s equation for modeling [3,4,11]. Zhou et al. utilized the cam-roller-spring 

mechanisms to construct quasi-zero stiffness force and replace the exact expression of 

nonlinear stiffness force with an approximate piecewise form to obtain the analytical solution 

of the system [5]. The above-mentioned analytical methods for nonlinear stiffness force 

calculation in vibration isolation structures are always based on the physical model with the 

ideal assumptions and be mathematically complicated. For bistable or tristable structures with 



magnetic force coupling in energy harvesting, the magnetic dipoles theory, equivalent magnetic 

current and magnetic charge method were always used for analytical calculation of magnetic 

force [12-14]. However, these analytical approaches suffer from the limitations of magnet’s 

dimensions and magnet’s intervals, accurate calculation of magnetic field distribution along 

conductors and complex computations. Moreover, Zhou et al. and Leadenham et al. measured 

the nonlinear stiffness force of the multi-stable beams and an M-shaped piezoelectric energy 

harvester, respectively, then fitted it with empirical polynomial function for dynamic analysis 

[9,10,15]. However, it will lead to a failure in another system once any parameter changes or 

force measuring instruments cannot be installed and arranged. 

In addition to analytical calculation and direct measurement, the identification strategy of 

nonlinear stiffness force such as the nonlinear subspace method and restoring force surface 

method has also received considerable interest in the recent decade [16]. For the nonlinear 

subspace-based method, the nonlinear restoring force is applied to the underlying linear system 

as a feedback force and then identifies the coefficients by frequency response function. 

Marchesiello et al. numerically studied this method to identify cubic and clearance type 

nonlinearities [17]. Later, this method and its improved version of the nonlinear frequency 

domain subspace algorithm have been widely used in aerospace structures, such as impacts on 

the mechanical stops [18], bolted connected joints on wingtip [19] and solar array structures 

[20]. However, the expression of nonlinear feedback force requires a priori knowledge to 

ensure the accuracy of identification. The restoring force surface method, or called force-state 

mapping, initially proposed by Masri and Caughey [21,22], has also been widely used in 

nonlinear force identification. Al-Hadid and Wright used the acceleration-measurement force-

state mapping method to identify the weakly nonlinear T-shaped beams and indicated that this 

method is more sensitive in case of low damping [23]. Worden compared the integration and 

differential of measured time data to construct the restoring force surface, and the influence of 

the selection of excitation signal on the identification of restoring force of linear and hardening 

spring oscillators was also illustrated [24,25]. Kerschen et al. utilized the restoring force surface 

method to identify the nonlinear beam with impact clearance and VTT benchmark system 

https://xueshu.baidu.com/s?wd=author%3A%28MA%20Al-Hadid%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson


based on acceleration-measurement [26,27]. Allen et al. proposed a piecewise-linear restoring 

force surface to identify the nonlinear electrostatic force of micro-cantilever beams based on 

velocity-measurement [28]. Noël et al. address the restoring force surface method companies 

with visual inspection and wavelet transform to a real-life aerospace structure with multiple 

mechanical stops and F16 aircraft wing-to-payload mounting interfaces [29,30]. Fuellekrug et 

al. studied the nonlinear stiffness force identification of a large transport aircraft under two 

coupled modes [31]. Moore et al. used acceleration-measurement to identify the nonlinear 

stiffness force in a grounded nonlinear energy sink system. The third-order Butterworth high-

pass filter is employed to reduce the influence of low-frequency components in the integration 

procedure and the trend term [32]. The works mentioned above can be found that the restoring 

force surface method and its improved version can identify nonlinear restoring force without 

exact analytical expression in realistic structures. However, when considering the identification 

of strongly nonlinear structures, especially those working in low-frequency vibration 

environments or multi-stable properties, the previous acceleration and velocity-measurement 

restoring force surface method will encounter the problem that low-frequency components in 

integration procedure and complex trend items removing. Besides, for flexible structures such 

as cantilever beam systems, the influence of the size and mass of additional acceleration sensors 

attached to the system must be considered carefully. Most importantly, with the increasing use 

of strongly nonlinear structures in energy harvesting and vibration control, it is necessary to 

compare displacement-differentiation and acceleration-integration methods for constructing 

the restoring force surface and identifying nonlinearities in strongly nonlinear structures. 

Therefore, the displacement-measurement restoring force surface approach is adopted in this 

paper to identify strongly nonlinear structures, and also a comparison with the acceleration-

measurement restoring force surface method is discussed. To design a test rig for accurate 

verification, quasi-zero stiffness, bistable and tristable structures are conducted on a 

geometrically nonlinear cantilever beam with magnetic coupling. Based on the derived 

nonlinear model of the designed strongly nonlinear cantilever beam, the displacement-

measurement restoring force surface identification method is adopted to obtain the nonlinear 



stiffness and damping force. The influence of noise intensity on identification accuracy is also 

illustrated. Moreover, experimental measurements of quasi-zero stiffness, bistable and tristable 

nonlinear structures with various geometrical parameters are performed to comparatively 

analyze the identified nonlinear stiffness force and measured force-displacement trajectory. 

Experimental results verify the effectiveness of the proposed method.   

The paper is organized as follows. In Section 2, the modeling theory of geometrically 

nonlinear cantilever beam is derived. The displacement-measurement restoring force surface 

identification process and comparison with acceleration-measurement restoring force surface 

method will be explained in detail in Section 3. Section 4 is dedicated to the numerical 

investigation and comparison of the proposed method, and further experimental verification 

and evaluation can be found in Section 5. Finally, the essential conclusions of the present study 

are summarized in Section 6. 

2. Modeling of strongly nonlinear structures                                                                                                                                                                                                                                                                      

A horizontal cantilever beam with rotatable magnetic coupling is designed in Fig. 1(a) to 

understand the dynamics of strongly nonlinear structures. The beam of length L carries two 

concentrated tip magnets C and the mass is Mm. Magnets C is subjected to two rotatable 

magnets A and B, arranged opposite magnets C. By changing the magnets' interval or rotatable 

angles, the cantilever beam will exhibit various nonlinear characteristics [9,10]. In this paper, 

only the quasi-zero stiffness, bistable and tristable beams are considered. Fig. 1(b) shows the 

quasi-zero stiffness beam under large deformation. The horizontal and vertical elastic 

displacements at the tip mass are x and y, respectively, and s represents the distance along the 

neutral axis of the beam. When considering an arbitrary point on the beam, p, at a distance s 

from the base, the laser displacement sensor can measure the response xp of the point. In Fig. 

1(c) and Fig. 1(d)，the bistable and tristable cantilever beams are illustrated. The bistable beam 

has two stable positions and one unstable position, while the tristable beam has three stable 

positions and two unstable positions.  



 

Figure. 1. (a) Schematic representation of magnetically coupled geometrically nonlinear cantilever beam 

with base excitation z(t)=Acos(ωt); (b) quasi-zero stiffness beam. x and y denote the horizontal and vertical 

displacements of the tip magnets C respectively. Arbitrary point p on the beam whose position is described 

by the coordinates xp, yp and s; (c) bistable beam; (d) tristable beam. 

In this section, the governing equation of motion will be derived by using the nonlinear 

Euler-Bernoulli beam theory and Lagrange’s equation. It is assumed that the effects of shear 

deformation and rotary inertia of the beam can be neglected. Moreover, the effects of high order 

modes are much higher than the excitation frequency, and only the first-order mode needs to 

be considered. The beam has mass density ρ, cross-sectional area A, equivalent to Young’s 

modulus E and second moment of inertia I. Neglecting the effect of rotary inertia of the beam 

and magnetic mass, the kinetic energy of the geometrically nonlinear beam-mass system is [33]: 
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The elastic potential energy of the cantilever beam is: 
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For magnetically coupled nonlinear structures, magnetic potential energy can be expressed as 

a polynomial model: 
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where q denotes the order of polynomial functions and k is the coefficient. The relationship 

between curvature and slope of the beam is  
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The differentiation of Eq. (6) can be described by  
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The displacement at any point p can be represented as a function of the mass tip displacement 

through modal shape function, ψ(s), as  

( , ) ( , ) ( ) ( ) ( )p px s t x L t s x t s = =  (9) 

The displacement may be approximated by any function satisfying the boundary conditions at 

s = 0, for example: 

1
( ) (1 cos( ))= (1 cos( ))

2 2
1 cos( )

2

t
t

s s
s

LL L

L

 
 


= − −

−

 
(10) 

Based on the above analysis, the kinetic energy of the system in terms of the transverse 

displacement of the tip mass, x, are described as 
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and the total potential energy is 
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the constants from N1 to N7 are given by  
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To obtain the motion equations of the proposed system, Lagrange’s equation is defined as 
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where Q(t) represents a generalized force, linear viscous damping force will be considered in 

any part of the beam. 
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Finally, the final equation of motion of the magnetically coupled nonlinear cantilever beam is 

obtained as 
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It can be easily found from Eq. (16) that both the inertia force, damping force and stiffness 

force are nonlinear. However, the order of magnitude (N3ρA+N4
2Mm)x2 term in inertia force 

is relatively small. In many energy harvesting and vibration isolation structures, the 

deformation of the beam is not so large. So, the (N3ρA+N4
2Mm)x2 term will be neglected in 

the following sections.  

3. Displacement-measurement restoring force surface method 

The restoring force surface method in the time domain plots the internal restoring force of a 

nonlinear element as a function of displacement and velocity amplitudes. In this way, nonlinear 

stiffness and damping forces can be visualized by cutting the restoring force surface with a 

vertical plane where either the velocity or displacement is around zero, respectively. 

Theoretically, it is better to measure displacement, velocity and acceleration at each sampling 

point simultaneously. In practice, measuring the acceleration and then making an integration 

procedure to obtain the other two variables is common. Not all strongly nonlinear structures 

can construct the restoring force surface by measuring the acceleration and then extracting the 

nonlinear restoring force. The bistable or tristable structures presented in this paper may be an 

excellent example to prove it. 

The specific process of restoring force surface construction and nonlinear stiffness extraction 

procedure will be shown as follows. 

The Eq. (16) can be rearranged as 
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where f
non

(x, ẋ) is excitation force minus inertia force, and also equal to the sum of damping 

force f
c
(x, ẋ) and nonlinear stiffness force f

k
(x). 

In Sec. 2, a displacement sensor was arranged at the position p, so the tip displacement can 



be calculated using the modal shape function. Then, taking the three-point numerical 

differentiation program in Eq. (18), the velocity and acceleration will finally be obtained.  
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where u denotes the location of the sampling point, and dt is the time interval. 

It should be noted that the response trajectory of oscillators needs to cover the phase space 

as much as possible to provide enough and continuous data sets [24,25]. Therefore, the choice 

of the excitation source should be careful, especially for multi-stable structures. From the above 

procedure, the restoring force surface can be defined by the triplets (x, ẋ,  f
non

(x, ẋ)). Generally, 

cross sections of the restoring force surface along the axes where velocity and displacement 

are equal to zero yield nonlinear stiffness force curves and damping force curves, respectively.  

However, it will lead to a failure or cause loss of identification accuracy if the sampling data 

around zero velocity is not sufficient for characterization. So, a more superior approach will be 

presented, and the detailed process of mathematical explanation is as follows. 

The proposed restoring force surface can be expressed by a two-dimensional polynomial 

mathematical model as 
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where m, n are the order of displacement x and velocity ẋ, respectively, and the coefficients αij 

can be obtained by the least square method. An essential procedure in the displacement-

measurement restoring force surface method is cutting the restoring force surface with two 

vertical planes around zero velocity instead of using the one zero-velocity plane. It means the 

velocity range is chosen to |ẋ| ≤ δ1, δ1 represents the distance between two vertical planes. 

Finally, projecting all the data sets (x, ẋ,  f
non

(x, ẋ)) to the zero-velocity plane, and the nonlinear 

stiffness force can be expressed as 
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The ki can be estimated by the least square method.  

It can be observed in Eq. (17), the damping force becomes linear when the displacement is 

close to zero. So, another two vertical planes around zero displacements are adopted to cut the 

restoring surface. The interval between the two planes is selected as  |x| ≤ δ2.  Finally, 

projecting all the data sets (x, ẋ,  f
non

(x, ẋ) ) to the zero-displacement plane, and the linear 



damping force can be expressed as 
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Least-squares parameter estimation can be utilized to obtain the values of the damping 

coefficients c.  

To establish an evaluation standard between the identified value f
k
(x) and the theoretical 

one, the Normalised Mean-Square Error (NMSE) indicator is defined as [27] 
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where σf non
2  is the variance of the measured restoring force data sets and N is the total number 

of samples. The NMSE value of lower than 5% means good agreement while a value of less 

than 1% indicates a perfect fit. The error evaluation of the damping coefficient can be more 

accessible, and the relative error can be used directly. 

The flow chart of identifying strongly nonlinear structures based on displacement-

measurement restoring force surface method and some comparisons are shown in Fig. 2. It 

should be noted that the limitation of the displacement differential process will lead to the 

amplification of noise in the resulting velocity and accelerations. In this paper, the swept-

frequency excitation is chosen, and a bandpass filter is adopted to solve this problem. When 

the velocity and acceleration are measured, there are two challenges in the integration 

procedure. Firstly, small low-frequency components in the acceleration data will be amplified 

relative to the components of interests. Though higher pass filtering can solve the problem, 

many strongly nonlinear structures work in low-frequency vibration conditions. Moreover, for 

multi-stable structures, the dynamic response must contains both inter-well and intra-well 

oscillation that allows construct the restoring force surface with the complete phase plane. 

However, by using the method of velocity integration, it is impossible to recognize the location 

of the oscillator oscillating any steady-state equilibrium points. The following sections of 

numerical investigation on bistable structures will give a specific explanation. Thus, for 

strongly nonlinear structures, especially quasi-zero stiffness and multi-stable structures, the 

displacement-measurement restoring force surface approach will be conducted and analyzed 

in more detail.  



 

Figure. 2. A schematic diagram of the proposed displacement-measurement restoring force surface method 

for identification of nonlinear stiffness force and linear damping force in strongly nonlinear structures. 



4.  Numerical investigations 

In this section, quasi-zero stiffness and bistable stiffness structures are illustrated for 

identification verification of the displacement-measurement restoring force surface method. 

The comparison between displacement-measurement and acceleration-measurement restoring 

force surface is conducted. Moreover, the influence of noise level on nonlinear restoring force 

identification accuracy is discussed. 

The selection and calculation of the fundamental physical parameters of the beam are shown 

in Table 1. The physical meaning represented by the symbols had been described in Sec. 2. 

Table 1. Parameters used in numerical simulations 

Symbol Numerical values Symbol Numerical values Symbol Numerical values 

E 1.98×1011N/m2
 Mm 4.2g N4 8.2247 

L 0.15m c 1N/(m/s) N5 901.936 

b 0.01m N1 0.034 N6 24727 

h 0.0008m N2 0.0545 N7 1.356×106 

ρ 7810kg/m3 N3 1.8401   

In Fig. 3, the nonlinear stiffness force characteristics of the above-mentioned nonlinear 

structures are introduced. The quasi-zero stiffness with the function of fnon=10x+105x3+108x5 is 

shown in Fig. 3(a). The stiffness is close to zero when the beam's deformation is small, and 

with the increase of deformation, the hardening characteristics will exhibit. For bistable 

stiffness structures with nonlinear stiffness force function of fnon=-30x+3×105x3-108x5 is shown 

in Fig. 3(b), three zero stiffness force points and one negative stiffness zone can be observed. 

The bistable characteristics will lead to inter-well and intra-well oscillation dependent on 

excitation level and will bring some difficulties in constructing the restoring force surface.  

 
Figure. 3. Two types of nonlinear stiffness force: (a) Quasi-zero stiffness structures; (b) bistable structures. 



4.1 Comparison between differentiation and integration  

  An 80-second forward sine sweep followed by a backward sine sweep signal is conducted 

on the system to excite the quasi-zero stiffness system. The sampling frequency is 500Hz, and 

the frequency range is 0~20Hz. The classic fourth-order Runge-Kutta is adopted to solve the 

second-order differential equation. In Fig. 4(a), the blue line shows the complete time-domain 

displacement response of the oscillator. And then, a 50 Hz Butterworth low pass filter and a 

three-point numerical differentiation algorithm are conducted. After one and two times of this 

process, both the velocity (red line) and acceleration(green line) response can be obtained. The 

resulting data sets of displacement, velocity and acceleration are substituted into Eq. (17), and 

then the restoring force surface was constructed as depicted in Fig. 4(b). Meanwhile, two 

vertical zero-velocity planes with δ1=0.02 were selected to cutting the restoring force surface, 

and the red circle line shows the intercepted trajectories. Besides, the blue circle represents the 

intercepted trajectories obtained by using two vertical zero-displacement planes with 

δ2=0.0002. Fig. 4(c) shows the comparison between the identified nonlinear stiffness force and 

the theoretical one. The NMSE error is 0.041%, which indicates a perfect fit. In Fig. 4(d), the 

identified linear damping force trajectories do not match as well with the theoretical one 

because small assumed displacement cutting planes will cause upper and lower deviation of 

intercepted nonlinear damping force data sets. The final relative error is 8.26%. For the same 

quasi-zero stiffness oscillator with the same excitation source, an integration procedure from 

the acceleration time-domain sequence was also conducted. Fig. 4(e) presents the acceleration 

response (green line), and the trapezium integration and the second-order trend term removal 

algorithm was adopted to obtain the velocity (red line) and displacement (blue line). In Fig. 

4(f), the acceleration-measurement restoring force surface was constructed and the nonlinear 

stiffness force and damping force trajectories are extracted. It can be observed in Fig. 4(g) that 

the identified nonlinear restoring force error is only 0.087%. But, the identified damping force 

still has a poorly fitting and the relative error reaches 11.93%, as shown in Fig. 4(h). The above 

results reveal that for monostable quasi-zero stiffness structures, both displacement-

measurement and acceleration-measurement methods for constructing the restoring force 

surface can identify the nonlinear stiffness force well. For damping coefficient identification, 

both methods need to be used with caution because of relatively higher error. 

For bistable structures, it can exhibit both inter-well or intra-well motions dependent on the 

excitation and the initial conditions. Based on the contribution of Wooden [24,25], the 

excitation source must make the response trajectory cover the phase plane as much as possible. 



If the bistable structure oscillating completely across the potential well or only make intra-well 

motions, it is impossible to construct the good restoring force surface or make the lousy fitting 

accuracy. In this example, a forward sine sweep followed by a backward sweep with the 

frequency range of 5~25Hz is adopted. The swept time is 80s with a sampling frequency 500Hz. 

Fig. 5(a) shows the displacement, velocity and acceleration responses of the oscillator. The 

5~50Hz Butterworth bandpass filtering program and differential procedure are conducted for 

obtaining the velocity and acceleration sequence. In Fig. 5(b), the restoring force surface is 

constructed and the intercepted nonlinear stiffness force and damping force are marked by red 

and blue circles, respectively. In Fig. 5(c), the identified nonlinear stiffness force fitted well 

with the theoretical curve and the NMSE error is only 0.093%. The identified damping force 

shown in Fig. 5(d) still has low accuracy. From the above mentioned, the displacement-

measurement restoring force surface method can identify the nonlinear restoring force well in 

bistable structures, especially the nonlinear stiffness force. In Fig. 5(e), the acceleration 

response sequence is presented first and then make integration procedure. Finally, the velocity 

and displacement sequence are given. It can be observed from Fig. 5(f) that the displacement 

to velocity integration procedure is reasonable, but the integrated displacement based on 

velocity is wrong as shown in Fig. 5(g). Many trend term removal methods such as mean 

removal, second-order trend removal, and highpass filter are adopted for obtaining the 

reasonable displacement response but failed to run. It’s a great difficulty to make the integration 

and detrended program to locating the inter-well and intra-well motion in the dynamic response 

of bistable oscillators. It can be observed in Fig. 5(h) that the constructed restoring force 

surface data sets are wrong and the following nonlinear restoring force extraction process can 

not be completed.  

From the above numerical analysis, it can be found that the displacement-measurement 

restoring force surface method may be more desirable for the identification of quasi-zero and 

bistable structures. So, it is necessary to start from the time series of displacement measurement 

to make identification procedures in bistable structures. However, measuring the displacement 

and then differentiating leads to the noise amplification in the resulting velocity and 

accelerations. In the next section, the influence of noise level on the identification accuracy of 

nonlinear stiffness force will be discussed. The damping force will not be discussed here 

because no noise pollution in the identification process had already lead to more significant 

errors. 



 
Fig. 4 Comparison between displacement-measurement and acceleration-measurement restoring force 

surface for identification of quasi-zero stiffness structures: (a) differentiation procedure; (b) restoring force 

surface; (c) nonlinear stiffness force identification and NMSE error; (d) nonlinear damping identification 

and relative error of damping coefficient. (e,f,g,h) integration procedure and the identification process.  



 
Fig. 5 Comparison between displacement-measurement and acceleration-measurement restoring force 

surface for identification of bistable structures: (a) differentiation procedure; (b) restoring force surface; (c) 

nonlinear stiffness force identification and NMSE error; (d) nonlinear damping identification and relative 

error of damping coefficient. (e,f,g,h) integration procedure and the identification process. 



4.2 Influence of noise level on identification accuracy 

In this section, the noise level on identification accuracy of nonlinear stiffness force in quasi-

zero stiffness and bistable structures are discussed. The noise intensities of 40dB, 30dB and 

20dB are added to the displacement response, respectively, and then make some comparisons.   

 

Fig. 6 The influence of noise level on identification accuracy of quasi-zero stiffness and bistable structures. 

(a) the frequency-swept displacement response of quasi-zero stiffness structures and the resulting velocity 

and acceleration based on filtering and differentiation program; (b) the constructed restoring force surface 

and the nonlinear stiffness force trajectory; (c) the identified nonlinear stiffness force compared with the 

theoretical one under the noise of 40dB, 30dB and 20dB respectively; (e,f,g) the dynamic response of the 

bistable system, constructed restoring force surface and the identified nonlinear stiffness force comparison.  

In Fig. 6(a), the frequency-swept displacement response with 20dB noise of quasi-zero 



stiffness structures is shown, and then the same procedure in Sec. 4.1 is adopted for obtaining 

velocity and acceleration. Fig. 6(b) presents the constructed restoring force surface and 

intercepted nonlinear stiffness force data sets. In Fig. 6(c), the identified nonlinear stiffness 

force with the noise level of 40dB, 30dB and 20dB are shown and the NMSE error are 0.23%, 

1.6% and 11.3% respectively. With the increase of the noise level, the identification accuracy 

decreases, and identification results are close to real value when the noise level below 30dB. 

For bistable structures, the 40dB, 30dB and 20dB noise are also added to the frequency-swept 

displacement response. Fig. 6(d) presents the displacement response with 20dB noise, and the 

resulting velocity and acceleration by differentiation procedure are also given. In Fig. 6(e), the 

constructed restoring force surface for the bistable oscillator is shown and the red circle line is 

the nonlinear stiffness force trajectory. The final identification results are plotted in Fig. 6(f). 

Similarly, the identified nonlinear stiffness force can keep a good fit when the noise level is 

lower than 30dB. In general, the identification accuracy of bistable oscillators is lower than 

quasi-zero stiffness structures. Considering the inter-well and intra-well chaos motion is more 

complicated than the frequency-swept response in monostable structures, the lower accuracy 

in identifying bistable structures is reasonable.   

 

5.  Experimental validations 

To verify the displacement-measurement restoring force surface method for nonlinear 

stiffness force identification of three strongly nonlinear structures in realistic conditions, an 

experimental test rig is set up in Fig. 7(a). The quasi-zero stiffness, bistable stiffness and 

tristable stiffness structures are designed in the cantilever beam system with rotatable magnets 

coupling function. The excitation source is generated by a vibration exciter (JZK-50, Econ 

Technologies Co., Ltd), a power amplifier (YE5874A, Econ Technologies Co., Ltd), and a 

vibration controller (VT-9002-1, Econ Technologies Co., Ltd) is used to realize the feedback 

and real-time control of excitation signal. A displacement sensor (HL-G112-A-C5, Keyence) 

is applied to measure the relative displacement response and the data sets are collected by an 

oscilloscope (MSOX3052A, Agilent). Another acceleration sensor (EV4540, Econ 

Technologies Co., Ltd) is installed on the fixture to monitor the vibration exciter output signal 

and transmit it to the data acquisition instrument (MI-70080, Econ Technologies Co., Ltd). 



In the experiments, the cantilever beam is made of 65Mn spring steel and has a dimension 

of 146.5×10×0.8mm3. All cantilever beams have two endmost magnets except for tristable 

beam 2 (low potential well tristable have four magnets). The magnet's size is 10×10×2.5mm3 

and the property is NdFeB. To extract the continuous nonlinear stiffness force curve from the 

displacement-measurement restoring force surface method discussed in Sec. 3, the mode of 

forwarding sine swept-frequency followed with the same intensity of backward swept-

frequency is adopted in the experimental excitation. More detailed parameters of the 

configuration of four typical beams and excitation level are illustrated in Table 2.  

Table 2. Experimental excitation parameters for system identification 

Types 
Equilibrium position 

(mm) 

Frequency range 

(Hz) 

Excitation 

acceleration (m/s2) 

Quasi-zero stiffness 0 5~25 3.5 

Bistable stiffness -8.16 ; 0 ; 10.4 10~30 8 

Tristable stiffness1 -11.4 ; -6.29 ; 0 ; 5.9 ; 13.4 10~30 10.5 

Tristable stiffness2 -11 ; -6.7 ; 0 ; 8.2 ; 14.1 8~28 8 

Another nonlinear stiffness force measurement experimental setup is shown in Fig. 7(b). 

The Force Gauge (M5-2, MARK-10 Corporation) is installed on the structure driven by the 

ball screw and the resolution is 0.002N. As the dynamometer pushes the cantilever beam to 

deform, the movement displacement will be recorded by Digital Indicator. Each measurement 

needs to be carried out from the steady-state point position and then arrange the force-

displacement data from negative to positive deflection. This means the number of 

measurements is divided into two, four and six segments for quasi-zero stiffness, asymmetric 

bistable and asymmetric tristable beams.  

Moreover, the force gauge cannot be installed on the designed test fixture to identify the 

equivalent mass. So, the linear stiffness of the cantilever beam is measured firstly, and the value 

is K=80N/m, and then a swept-frequency excitation signal was conducted on the linear 

cantilever beam and the resonant frequency is 18.5Hz. By using the equation of 

M=80/(18.5×2π)2, the equivalent mass M=5.9×10-3kg.  

It must be emphasized that the dynamic response needs to be reconstructed based on the 

identified nonlinear restoring force and then compared with the measured data sets [32-34]. 



Generally, it is necessary to do so to verify the accuracy of the results. However, for strongly 

nonlinear structures like the bistable system investigated in this paper, It is almost impossible 

to complete the task making the reconstruction response in good agreement with the actual 

acquisition response. The dynamic response of the bistable system is very sensitive to the 

nonlinear coefficients, initial conditions and excitation level, etc. So, the slightly incorrect 

identification results maybe cause the oscillator to exhibit different forms of chaos movement. 

In this paper, the identified nonlinear stiffness force is compared with the directly measured 

one. Besides, the nonlinear stiffness force of the actual magnetic coupling cantilever is not a 

perfect polynomial or a smooth spline, and it can not be accurately fitted. So, qualitative 

comparisons are considered in experimental investigations. 

 

Figure. 7. Experimental set-up: (a) excitation generation, control and signal acquisition equipment; (b) 

nonlinear stiffness force measuring instrument. 

Firstly, the displacement-measurement restoring force surface method is applied to quasi-

zero stiffness and bistable cantilever beams. Fig. 8 shows the whole process from displacement 

response to identified nonlinear stiffness force. In Fig. 8(a), the beam is excited by a forward 

sine sweep (5~25Hz) followed by a backward sine sweep (25~5Hz) with a sampling frequency 

of 500Hz at the constant acceleration of 3.5m/s2. The jumping phenomenon is not as apparent 

as the quasi-zero stiffness beam in numerical investigations. Fig. 8(b) shows the constructed 

restoring force surface, and the nonlinear stiffness force curve remarked by the red circles are 

extracted by assuming the velocity |𝑥̇| ≤ 0.02 m/s. The extracted nonlinear stiffness force 



curve is not monotonically increasing and both hardening and softening properties can be seen. 

This is because it is tough to construct a perfect zero stiffness zone around the steady-state 

point in real applications and a relatively close zero stiffness is achieved by coupling two 

negative stiffness regions. If the magnetic force keeps increasing and the nonlinear stiffness 

force crosses zero points, the bistable and tristable phenomenon will occur. In Fig. 8(c), the 

identified nonlinear stiffness force curve and measured force-displacement trajectory was 

compared and show good consistency. Fig. 8(d) shows the bistable beam dynamic response 

under a forward sine sweep (10~30Hz) followed by a backward sine sweep (30~10Hz) with a 

sampling frequency of 500Hz at the constant acceleration of 8m/s2. This type of response is 

suitable for restoring force surface construction shown in Fig. 8(e) and the nonlinear stiffness 

force extraction is shown in Fig. 8(f). It can be observed from Fig. 8(f) that the nonlinear 

stiffness force identified by the proposed method is very reliable when compared to the 

measured force-displacement trajectory. 

As for designing a multi-stable vibration structure or putting it into practical use, the 

potential wells and equilibrium points are critical factors [35,36]. For example, a tristable 

piezoelectric energy harvester needs to make a nonlinear stiffness force design based on the 

intensity and frequency range of environmental excitation. Moreover, the equilibrium points 

cannot be designed too large and this will cause piezoelectric layers to break up. Generally, it 

should be designed with low potential wells to work in a weak and low-frequency excitation 

environment.  

To verify the ability of the displacement-measurement restoring force surface method for 

nonlinear stiffness force identification of different multi-stable structures, two asymmetric 

tristable beams with high potential wells and low potential wells are compared in Fig. 9. One 

noticeable feature is that the beam with high potential wells is hard to fully motivated, as shown 

in Fig. 9(a), but as for low potential wells, the oscillator traveling across the potential wells in 

a large swept frequency range, as shown in Fig. 9(b). However, a relatively good restoring 

force surface and nonlinear stiffness force data sets were constructed in high potential well 

tristable oscillator compared to the beam with low potential wells as shown in Fig. 9(c) and 

Fig. 9(d). It must be emphasized here that the tristable oscillator with low potential wells can 

also generate an excellent original displacement response for the displacement-measurement 

restoring force surface identification process. Numerous examples and experiments had been 

conducted in this paper, and only these two types were chosen to make a more intuitive 

comparison. Consequently, by comparing the identified results with the measured force-

displacement trajectory in Fig. 9(e) and Fig. 9(f), the proposed identification method has strong 



applicability to multi-stable structures with different potential wells and equilibrium points. 

 

Fig. 8. (a,d) Frequency-swept response of the quasi-zero stiffness and bistable stiffness oscillator; (b,e) 

constructed restoring force surface and extracted nonlinear stiffness force curve by cutting the restoring force 

surface with two vertical zero-velocity planes; (c,f) comparison between identified and measured nonlinear 

stiffness force.  

 



 

Fig. 9. (a,b) The swept-frequency response of tristable oscillators with high potential wells and low potential 

wells depth. (c,d) constructed restoring force surface and extracted nonlinear stiffness force; (e,f) comparison 

of identified nonlinear stiffness force curve and measured force-displacement trajectory. 

 

6.  Conclusions 

This paper investigates the displacement-measurement restoring force surface method for 

the identification of nonlinear restoring force in strongly nonlinear structures. To verify the 

effectiveness and accuracy of the identification procedure, quasi-zero stiffness and bistable 



structures are numerically investigated. By comparing with the acceleration-measurement 

restoring force surface method, it can be found that the method of measuring acceleration and 

make integration procedure cannot obtain the reasonable inter-well and intra-well displacement 

response in bistable systems. So, starting from the time series of displacement measurement to 

construct the restoring force surface for nonlinear restoring force identification is necessary. In 

monostable quasi-zero stiffness structures, though the acceleration-measurement method for 

identification is feasible, its accuracy is lower than that of the displacement-measurement 

approach. Besides, the displacement-measurement restoring force surface method is robust for 

identifying the nonlinear stiffness force in strongly nonlinear structures when the noise is lower 

than 30dB. In experimental conditions, the quasi-zero stiffness, bistable and tristable cantilever 

beam are designed to obtain their displacement response for identifying the restoring force. 

The identified nonlinear stiffness force curve has a good agreement with the directly measured 

force-displacement trajectory. Moreover, the identified results of two asymmetric tristable 

structures show that the displacement-measurement restoring force surface method has strong 

applicability for those multi-stable structures with different potential wells and equilibrium 

points. 
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