Rigo, François ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale ; Université de Liège - ULiège > Département ArGEnCo > Analyse sous actions aléatoires en génie civil
Andrianne, Thomas ; Université de Liège - ULiège > Département d'aérospatiale et mécanique
Denoël, Vincent ; Université de Liège - ULiège > Département ArGEnCo > Analyse sous actions aléatoires en génie civil
Language :
English
Title :
Generalized lift force model under vortex shedding
Achenbach, E., Heinecke, E., On vortex shedding from smooth and rough cylinders in the range of Reynolds numbers 6×103 to 5×106. J. Fluid Mech. 109 (1981), 239–251.
Aswathy, M.S., Sarkar, Sunetra, Effect of stochastic parametric noise on vortex induced vibrations. Int. J. Mech. Sci. 153–154 (2019), 103–118.
Basu, R.I., Vickery, B.J., Across-wind vibrations of structure of circular cross-section. Part II. development of a mathematical model for full-scale application. J. Wind Eng. Ind. Aerodyn. 12:1 (1983), 75–97.
Batham, J.P., Pressure distributions on circular cylinders at critical Reynolds numbers. J. Fluid Mech. 57:2 (1973), 209–228.
Belousov, R., Berger, F., Hudspeth, A.J., Volterra-series approach to stochastic nonlinear dynamics: Linear response of the Van der Pol oscillator driven by white noise. Phys. Rev. E, 102, 2020, 032209.
Bishop, R.E.D., Hassan, A.Y., The lift and drag forces on a circular cylinder in a flowing fluid. Proc. Royal Soc. Lond. Ser. A Math. Phys. Sci. 277:1368 (1964), 32–50.
Collins, N.J., Transverse Forces on Smooth and Rough Cylinders in Harmonic Flow at High Reynolds Numbers. 1976, Calhoun.
Denoël, V., Derivation of a slow phase model of vortex-induced vibrations for smooth and turbulent oncoming flows. J. Fluids Struct., 99, 2020, 103145.
Dubois, R., Andrianne, T., Flow around tandem rough cylinders: Effects of spacing and flow regimes. J. Fluids Struct., 109, 2022, 103465.
Facchinetti, M., de Langre, E., Biolley, F., Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 19 (2004), 123–140.
Glendinning, P., Crighton, D.G., Ablowitz, M.J., Davis, S.H., Hinch, E.J., Iserles, A., Ockendon, J., Olver, P.J., Stability, instability and chaos: An introduction to the theory of nonlinear differential equations. Cambridge Texts in Applied Mathematics, 1994, Cambridge University Press.
Güven, O., Farell, C., Patel, V.C., Surface-roughness effects on the mean flow past circular cylinders. J. Fluid Mech. 98:4 (1980), 673–701.
Hartlen, R.T., Currie, I.G., Lift-oscillator model of vortex-induced vibration. J. Eng. Mech. Div. 96 (1970), 577–591.
Huseby, M., Grue, J., An experimental investigation of higher-harmonic wave forces on a vertical cylinder. J. Fluid Mech., 414, 2000.
King, R., A review of vortex shedding research and its application. Ocean Eng. 4:3 (1977), 141–171.
Krenk, S., Nielsen, S.R.K., Energy balanced double oscillator model for vortex-induced vibrations. J. Eng. Mech. 125 (1999), 263–271.
Lienhard, J.H., Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid Circular Cylinders Bulletin Washington State University. College of Engineering. Research Division, 300, 1966, Technical Extension Service, Pullman, Wash.
Lupi, F., Niemann, H.J., Höffer, R., Aerodynamic damping model in vortex-induced vibrations for wind engineering applications. J. Wind Eng. Ind. Aerodyn. 174 (2018), 281–295.
Matlab, Version 9.7.0 (R2019b). 2019, The MathWorks Inc., Natick, Massachusetts.
Moeller, M.J., Measurement of Unsteady Forces on a Circular Cylinder in Cross Flow at Subcritical Reynolds Numbers. (Ph.D. thesis), 1984, Massachusetts Institute of Technology, Dept. of Ocean Engineering.
Nielsen, S.R.K., Krenk, S., Stochastic Response of Energy Balanced Model for Vortex-Induced Vibration Structural Reliability Theory, 1997, Dept. of Building Technology and Structural Engineering, 16 Presented at ICOSSAR ’97, Kyoto, Japan, November 24-28, 1997 PDF for print.
Norberg, C., Fluctuating lift on a circular cylinder: review and new measurements. J. Fluids Struct. 17:1 (2003), 57–96.
Schewe, G., On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers. J. Fluid Mech. 133 (1983), 265–285.
So, R.M.C., Wang, X.Q., Xie, W.-C., Zhu, J., Free-stream turbulence effects on vortex-induced vibration and flow-induced force of an elastic cylinder. J. Fluids Struct. 24 (2008), 481–495.
Szepessy, S., Bearman, P.W., Aspect ratio and end plate effects on vortex shedding from a circular cylinder. J. Fluid Mech. 234 (1992), 191–217.
Tamura, Y., Wake-oscillator model of vortex-induced oscillation of circular cylinder. J. Wind Eng. 1981:10 (1981), 13–24.
Ulveseter, J.V., Thorsen, M.J., Saevik, S., Larsen, C.M., Stochastic modelling of cross-flow vortex-induced vibrations. Mar. Struct. 56 (2017), 260–280.
van Hinsberg, N.P., The Reynolds number dependency of the steady and unsteady loading on a slightly rough circular cylinder: From subcritical up to high transcritical flow state. J. Fluids Struct. 55 (2015), 526–539.
Vickery, B.J., Basu, R.I., Across-wind vibrations of structures of circular cross-section. Part I. development of a mathematical model for two-dimensional conditions. J. Wind Eng. Ind. Aerodyn. 12:1 (1983), 49–73.
Vickery, B.J., Clark, A.W., Lift or across-wind response of tapered stacks. J. Struct. Div. 98:1 (1972), 1–20.
West, G.S., Apelt, C.J., Measurements of fluctuating pressures and forces on a circular cylinder in the Reynolds number range 1e4 to 2.5e5. J. Fluids Struct. 7:3 (1993), 227–244.
Zhu, W.-Q., Yu, J.-S., On the response of the Van der Pol oscillator to white noise excitation†. J. Sound Vibr. 117:3 (1987), 421–431.