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a b s t r a c t

This paper proposes a generalized model for vortex shedding around a static cylinder.
This model is a first step to bridge the gap between two existing families of Vor-
tex Induced Vibration (VIV) models , namely (1) stochastic spectral models and (2)
wake-oscillator models with coupled fluid and structural equations. The first family is
experimentally-based while the models of the second family typically rely on theoret-
ical and phenomenological concepts. These models use a Van der Pol, Rayleigh or a
combination of both oscillators for the lift equation. The proposed model generalizes
these models by combining all third degree terms in the case of a static model, i.e.
by considering the equation of the fluid oscillator only. It is possible to enrich existing
models with a more complex parametric model because its parameters are identified
from experimental data. A second specificity of the proposed model stems from the
observation that, for a static cylinder in low turbulence flow, the envelope of the
measured lift force is not perfectly mono-harmonic, nor deterministic. Turbulence in
the wake is expected to create fluctuations in the lift envelope. In the proposed model,
stochasticity is consequently introduced to reproduce these fluctuations. It is based
as an additive exogenous noise as an input to the generalized shedding model, using
a Von Karman spectrum. Its coefficients are adjusted so that the model reproduces
the probability density function of the measured lift envelope (and its power spectral
density). The methodology is applied to Wind Tunnel data of a static circular cylinder in
subcritical and postcritical regimes. This set of data is used to identify the coefficients
of non-linear terms and Von Karman spectrum. The lift fluctuation coefficient generated
with the model matches results available in the literature for the considered regimes.
This work focuses on a methodology to obtain a generalized vortex shedding model
from experimental data measured on a static body. It can be applied to other cylinder
cross-sections or even extended to cylinders arranged in tandem.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

At medium to high Reynolds number, the flow behind bluff bodies is separated with vortices ejected alternatively
n both sides of the body. For symmetric geometries such as circular cylinders, vortex shedding creates a change in
ressure distribution on both sides of the cylinder which creates an oscillating resulting lift force. According to the Strouhal
aw, the vortex shedding frequency varies linearly with the incoming fluid velocity. For flexible or rigid spring-mounted
tructures, once this frequency matches the natural frequency of the structure left free to vibrate, the coupling between
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oth degrees-of-freedom (structure and fluid) leads to the resonance of the structure. This phenomenon is called Vortex
nduced Vibration (VIV) and different models have been proposed in the literature. They can be classified into two groups
ccording to the number of equations (one or two). Models (1.) focus on the structural equation, with different ways to
ake into account the flow loading on the second member of the equation : (1.i) a simple external harmonic excitation from
he lift force, (1.ii) a lift force that depends on the structural velocity and/or acceleration, giving an equivalent damping
odel, (1.iii) a spectral model of stochastic loading to take into account turbulence. In the following, symbol (1) is used

o refer to model (1.iii). Models (2) use a coupled differential system with two variables : the structure and the wake.
hese models highlight the importance of considering the flow as a variable with its own equation that interacts with the
tructure and not a simple forcing term.
In Model (1.i), the lift force on a static circular cylinder is represented using a harmonic loading. Nevertheless,

xperimental data show that the lift is not perfectly harmonic, even for uniform (or low turbulence) fluid velocity (Collins,
976; Huseby and Grue, 2000). Indeed, Bishop and Hassan (1964) showed high fluctuations in the measured lift envelope
or a circular cylinder without end-plates. They showed non-negligible fluctuations even with end plates, which suggested
hat in addition to three dimensional effects along the short span tested specimen, turbulence can develop in the boundary
ayer and in the wake. The modelling of forces resulting from the flow around static cylinder and their fluctuating
ehaviour is part of the motivation of this work.
When the structure is static, models that take into account only the structure (models (1.i-ii)) cannot simulate the

luid behaviour. Model (1) is able to represent the fluid alone with a spectral formulation. Models (2) without structural
otion simplify into one equation for the fluid. In this context, models describing the flow around static cylinders can be

inally classified into two families : (1) data driven or empirical (Vickery and Clark, 1972; Vickery and Basu, 1983; Basu
nd Vickery, 1983) (spectrum) and (2) non-linear models such as the wake-oscillator (Tamura, 1981; Facchinetti et al.,
004). The first family includes the well known Vickery–Basu model (Vickery and Clark, 1972; Basu and Vickery, 1983)
nd refers to experimentally-based models to obtain, directly, the spectrum of the lift force. They capture the frequency
ontent around the vortex shedding frequency but fail to represent other frequency ranges. The lift is a narrow-banded
rocess.
In this paper, focus is on the flow and resulting lift force on a static (fixed) cylinder. The dynamic of the lift coefficient

s captured by a single non-linear equation : the second equation of a wake-oscillator model.
Existing wake-oscillator models are deterministic and aim to replicate the synchronization features observed in

xperiments. They are mainly used today to provide the steady state response, which corresponds to harmonic or
uasi-harmonic response in most cases. Some of them are reviewed next.
Tamura’s model (Tamura, 1981) hinges on a Van der Pol type equation for the wake variable α (angle of the wake

lamina). It is theoretical and based on physical principles to model the wake lamina as a torsional oscillator. Tamura’s
model, applied on a static cylinder (y = 0), leads to a lift coefficient given by CL = −f α, where

α̈ − 2ξf Ω
(
1 − 4

f 2

C2
L0

α2
)

α̇ + Ω2α = 0. (1)

The meaning and values of model parameters f , ξf , CL0, Ω are discussed in the original paper (Tamura, 1981). For a
tatic cylinder, the frequency is equal to the vortex shedding frequency and the frequency ratio Ω = 1. By substituting
=

2f
CL0

α and εT = 2ξf (equivalent fluid damping), CL =
CL0
2 q, it can be written,

q̈ − εT (1 − q2)q̇ + q = 0. (2)

In a similar way, Hartlen and Currie (1970) used a Rayleigh-type equation for the fluid degree of freedom to model
VIV. For a static cylinder (y = 0, Ω = 1), their model reads

C̈L + (gĊ2
L − a)ĊL + CL = 0 (3)

with the symbols g, CL, a of the original paper (Hartlen and Currie, 1970). By substituting original parameter values
εH = a = 3gC2

L0/4 and CL =

√
3
2 CL0q, the governing equation becomes

q̈ − εH (1 − q̇2)q̇ + q = 0. (4)

Krenk and Nielsen (1999) used quadratic damping and an energy-based model. It corresponds mathematically to a
combination of Van der Pol and Rayleigh equations. For a static cylinder (y = 0, Ω = 1) and by substituting q = w/w0
and εK = 2ξf , in his original model, the equation governing the dynamics of shedding reads

q̈ − εK
(
1 −

(
q2 + q̇2

))
q̇ + q = 0 (5)

with CL =
ẇ
U γ =

ẇ
w0

CL0 = CL0q̇. The main difference between Krenk’s and the previous models is the link between the
wake variable q and the lift CL, with a derivative q̇ = CL/CL0, that comes from an energy-based model. Mathematically,
hese three equations exhibits a similar structure : they possess a limit cycle and are able to model the experimental
eature of vortex shedding, in particular the self limitation of the phenomenon. All these models can be cast in a
eneralized form

q̈ + q = F (q, q̇) = q̇(αq2 + βqq̇ + γ q̇2 + δ) (6)
3
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Table 1
Coefficients of non-linear terms of wake-oscillator general
models.

α β γ δ

Tamura −εT 0 0 εT
HC 0 0 −εH εH
Krenk −εK 0 −εK εK

where coefficients α, β, γ , δ take different values for each model, see Table 1. None of these models uses β , which is
shown later to not contribute to the lift envelope.

It is likely that these models are kept in a minimalistic formulation by their authors, so as to keep them simple
and a main argument explaining their usage is that they show the features of vortex shedding. From a comparison
with a detailed wind tunnel analysis, additional terms of Krenk’s model allowed more versatility and showed better
accuracy (Krenk and Nielsen, 1999). However, we notice that the three remaining parameters α, γ , δ of Krenk’s model
are all express according to the same unique quantity, εK .

By keeping the general formulation of Eq. (6), with α, γ , δ possibly different, we further increase the range of possible
dynamics spanned by the model, even if the term βqq̇2 will be dropped in the proposed model. In the subsequent
approach, the parameters of the model are fitted to experimental data with the constrain to provide a limit cycle,
characteristic of vortex shedding, but also to capture accurately both the fast and slow dynamics of the wake.

In doing so, we propose a data-driven model, while existing ones are theoretical (Tamura, 1981) or phenomenologi-
cal (Krenk and Nielsen, 1999; Hartlen and Currie, 1970). To the author’s knowledge, this work is the first identification
of the non-linear coefficients of a loading model such as Eq. (6), based on experimental data and their dynamics, which
is usual for model (1) but new for model (2).

Existing wake-oscillator models are deterministic and show harmonic or quasi-harmonic response in the steady state
regime. However, experimental evidences show fluctuations in the lift envelope as introduced before. Eq. (6) is thus not
sufficient and a randomization of this generalized model is therefore necessary. Such a randomization has been suggested
in Denoël (2020) in the context of stochastic Vortex Induced Vibration (VIV) by adding a term (1 + Iu) in front of U∞, to
study the influence of turbulence intensity and length scale on VIV using a randomized version of Facchinetti’s model
(another model based on Van der Pol equation). Nielsen and Krenk (1997) also studied a stochastic version of their
energy balanced model for VIV by replacing the fluid velocity with (1 + R(t))U∞, with the turbulence represented by
a non-dimensional stochastic process R(t). Ulveseter et al. (2017) proposed to add a stochastic process on frequency so
that the frequency of the vortex shedding force may vary in time, and the variation depends on the response of the
structure. Aswathy and Sarkar (2019) introduced also a noisy fluid velocity input in simulations. So et al. (2008) studied
the effect of free-stream turbulence on VIV of circular cylinder by adding turbulence grids. The incoming turbulence breaks
partially the vortex shedding, which reduces the lock-in range and displacement amplitude but also feeds energy to the
cylinder motion. It is believed that these stochastic models where the fluid velocity U is corrupted by noise are appropriate
to model turbulence in the oncoming flow. Stochasticity in the envelope response is observable experimentally, though,
even in case of uniform flow. Fluctuations in the lift are coming from variations in the boundary layer, wake turbulence
and three-dimensional effects along the span. In this context, we chose to randomize the deterministic generalized model
(6) with an additive noise which aims at capturing the turbulence in the near wake, a mechanism manifesting a different
source of randomness than that resulting from the oncoming flow. A realistic frequency content for this additive term,
interpretable as near wake (3D) turbulence, is then adjusted on experimental data in order to reproduce the spectrum of
the lift.

Another specificity of this work is therefore to combine the non-linear model (6) with a stochastic approach, in order to
model the randomness of the fluctuating lift envelope, even in uniform flow configurations. In some sense, the proposed
procedure adds the ‘‘missing piece’’ between data-driven, theoretical and phenomenological models, including stochastic
effects. This work can be seen as an effort to combine the advantage of two families of modelling : the stochasticity
introduced by spectral method and the self-limiting nature of wake-oscillator models. We show in this paper that the
proposed model is able to generate data, that are the closest to experimental measurements. It is done by firstly adjusting
a deterministic generalized model and secondly adding the turbulent content that allows to reproduce the fluctuations
of experimental data.

This paper is organized as follows. In Section 2, experimental data are presented. In Section 3, the deterministic part
of the generalized model is introduced, with its main parameters. The proposed additive noise is then presented and
the procedure to adjust its parameters is detailed. Results are shown in Section 4 and compare the present model with
others to the experimental results, in terms of lift coefficient (complete signal and envelope) statistics : Probability Density
Function (PDF) and Power Spectral Density (PSD). All coefficients and parameters (from the deterministic model and the
additive noise) are discussed in term of flow regimes. The final output is a comparison of the lift fluctuations predicted
by the model with literature results.
4
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Table 2
Wind tunnel setup parameters.
Regime Re k/D

Sub1 4.5 · 104 4 · 10−4

Sub2 4.3 · 104 7 · 10−3

Post 1.4 · 105 7 · 10−3

Fig. 1. Circular cylinder in subcritical regime : (a) experimental lift coefficient CL and (b) its corresponding phase portrait (q, q̇) with q =
2CL
CL0

.

. Experimental data

The parameters of the proposed generalized vortex shedding model are identified from experimental measurements.
ressure measurements are performed on a static cylinder in the Wind Tunnel Laboratory of University of Liège. The lift
oefficient is obtained by integration from 46 unsteady pressure taps equally spaced around the mid-span section of a
ircular cylinder (span L/D = 10, with D = 0.1m the diameter of the cylinder and a blockage ratio in the WT test section
f 3.3%). The data sets have been measured in uniform flow (turbulence intensity Iu = σu/U < 0.2%) using a sampling
requency fs = 250 Hz. Reynolds numbers covered subcritical and postcritical regimes and two surface roughnesses were
nvestigated (with k/D the relative roughness). The complete set-up description can be found in Dubois and Andrianne
2022). The proposed methodology was applied to three types of flow, two subcritical and one postcritical, see Table 2.
abels (Sub1, Sub2, Post) will be used to identify regimes in the following discussion. The complete data set contains three
e for each regime and will be used in Section 5 to compare all identified coefficients. Meanwhile, some representative
ata sets are used to motivate and illustrate the derivation of the proposed model.
Fig. 1 shows samples of measured lift coefficient in subcritical regime around the smooth and the rough cylinder (Sub1

nd Sub2). Despite the very low oncoming turbulence intensity (Iu < 0.2%), variations in the envelope are observable.
he lift is far from a harmonic or quasi-harmonic response, as also illustrated in the phase portrait (q, q̇). For a perfect
ine, the phase portrait would be a circle. The shape of the limit cycle is different here and oscillates around a limit cycle
f amplitude around 2. These variations come from the generated turbulence in the boundary layer around the cylinder
nd in the wake. Three dimensional effects can also influence the size and ejection location of the vortices around the
ylinder and along the span. The relation of the flow between two locations along the span of the cylinder is quantified
n the coherence function. Turbulence effects are then also present in 3D space and not only in the 2D cross plane. From
he time signal and phase portrait of the lift, the roughness seems to decrease the amplitude of these envelope variations
ut to accelerate their occurrence, i.e. faster dynamics, with a shorter characteristic time. Nevertheless, the shape of the
hase portrait remains similar, suggesting similar non-linearities.
The envelope CLe represented by dashed lines in Fig. 1(a) is computed with the analytic signal of CL, obtained with

he Hilbert transform implemented in Matlab (2019). The probability density function (PDF) of the lift envelope CLe is
llustrated in Fig. 2 for the three regimes. A mono-harmonic signal of constant amplitude (sine) would show a Dirac
unction for CLe at

√
2C ′

L (the root mean square (rms) of CL).
It can be observed that P(CLe ) shows a similar shape for Sub1 and Sub2 cases, with a significant dispersion in CLe .

ub1 and Sub2 cases correspond to the subcritical regime, where Reynolds effects are very low and the flow exhibits a
urbulent vortex street with a laminar boundary layer around the cylinder (Lienhard, 1966). Sub2 shows a higher cylinder
urface roughness and the dispersion in CLe is slightly higher than the one for Sub1 case. In the critical regime, the laminar

boundary layer undergoes a turbulent transition and no vortex street is apparent. The wake is disorganized. This regime

5
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Fig. 2. Probability density function of the experimental lift envelope CLe for the different regimes.

is not studied here. The postcritical regime (Post) is characterized by a turbulent vortex street (re-established after the
critical regime) and the boundary layer is turbulent. For this regime, the drag coefficient is lower than in the subcritical
regime (thinner boundary layer with a separation point further downstream).

In Fig. 2, P(CLe ) for Post case shows a smaller dispersion. The amplitude of lift fluctuation is also smaller (lower mode,
or maximum of P(CLe )), leading to a smaller C ′

L. Physically, the thinner boundary layer and smaller turbulent vortices in
he wake induce lower variation in the pressure distribution and so the lift fluctuation. For the three regimes, the fact
hat this envelope CLe is far from a Dirac function is part of the motivation of this work. The robustness of the proposed
dentification procedure for generalized vortex shedding model will be illustrated in the following using statistics of the
ift and its envelope.

. Derivation of a generalized model

A new model is presented here. It differs from existing models because it is based on the experimental data at high
requency (or fast dynamic) while existing models are phenomenological (Krenk and Nielsen, 1999; Hartlen and Currie,
970; Facchinetti et al., 2004) or based on some physical arguments (Tamura, 1981). By basing the proposed model on the
ast dynamics of experimental data, we can better capture the specific features of vortex shedding. This model is obtained
y fitting the parameters of a non-linear model to the experimental data. The randomness observed in the experiments,
n particular as to the random lift envelope, will be tackled in a second step.

.1. Deterministic part of the model

The considered model (6) is a generalization of the existing models and is recalled here for convenience,

q̈ + q = F (q, q̇) = q̇(αq2 + βqq̇ + γ q̇2 + δ). (7)

It is also general in the sense that it combines all possible odd non-linear terms of the oscillator using cubic terms
that contain powers of q̇ (i.e. q2q̇, qq̇2, q̇3) and a linear term in q̇. Quadratic terms, like q̇2, would not participate to the
ynamics of the wake-oscillator at leading order (first harmonic), see Appendix A. These even order terms are therefore
mitted from the model.
The identification method is based on a phase portrait analysis of the observed lift. It consists in adjusting coefficients

= (α, β, γ , δ) from experimental measurements of the fluid variable q(t) (derived from the lift coefficient, q = 2CL/CL0),
ollowing these steps :

1. Compute q̇ and q̈ from q (using finite differences) to obtain and represent the experimental trajectories of q̈+ q as
a function of q and q̇.

2. Adjust and fit the polynomial surface F (q, q̇) on experimental (non-parametric) trajectories of Q ∗

ij = (q̈ + q)(qi,q̇j)
measured for np values of q and q̇, using a least-square fitting procedure, to identify model coefficients α, β, γ , δ

π̂ = argmin
π

np∑
i,j

(
F (qi, q̇j; π) − Q ∗

ij

)2 (8)

where F (qi, q̇j; π) is given by Eq. (7). This procedure is illustrated in Fig. 3, with (1) the experimental trajectories
of q̈ + q as a function of (q, q̇) and (2) the surface fitting using additional constraints developed below.
6



YJFLS: 103758

F. Rigo, T. Andrianne and V. Denoël Journal of Fluids and Structures xxx (xxxx) xxx

d
t
c

(

t
f
e
u

(
t
t
q
a
r
p
b
f

α

3

c

Fig. 3. (a) Experimental trajectories of q̈ + q and deterministic polynomial surface fitting of F (q, q̇) in phase spaces.

Using a harmonic balance procedure, it is possible to add some constraints on coefficients in order to improve the
identification robustness to match the expected limit cycle amplitude (see Appendix A). It is shown that the term in qq̇2
oes not contribute to the amplitude of the limit cycle and therefore β = 0 is chosen. From experimental measurements,
he identification procedure without constraints on α, β, γ , δ returns negligible values for β compared to the other
oefficients. The remaining constraint is,

Q 2

4
(α + 3γ ) + δ = 0. (9)

with the limit cycle amplitude Q ̸= 0. This equation also gives a constraint on coefficients for a given limit cycle amplitude,
Q = 2 in order to be consistent with the definition of q and recover the physical lift coefficient amplitude C̃L =

CL0
2 Q = CL0

consistent with the limit cycle amplitude of Van der Pol oscillator), Eq. (9) becoming α + 3γ + δ = 0. The limit cycle
amplitude Q = 2 is consistent with the one for a Van der Pol oscillator (Hagedorn and Stadler, 1988).

Another constraint on coefficients comes from a stability analysis : in order to have a non-zero limit cycle, the state
space equation needs to be unstable at the origin x = (q, q̇) = (0, 0) = p, otherwise (q, q̇) would stay at this fixed
point p. The corresponding autonomous of Eq. (7) can be written in the form q̇ = c(x) (see details in Appendix A). Using
he Hartman–Grobman theorem, the stability can be assessed using the Jacobian matrix Jp(v) of the vector field v at the
ixed point p : the solution is asymptotically stable if all eigenvalues of J have strictly negative real part. In Appendix A,
igenvalues of J are computed and a discussion on the influence of the sign of δ allows to conclude that the solution is
nstable for δ > 0. To conclude, the optimization problem (8) is solved under the constraints:

δ = −(α + 3γ ) > 0. (10)

Fig. 3 illustrates the result of the complete fitting procedure for Sub1 case using the constraints on model coefficients.
The overall shape of the non-linearity is correctly captured by the polynomial surface fit but a residual is observed between
the experimental trajectories and the deterministic surface. Fig. 4 illustrates this normalized residual R = q̈+q−F (q, q̇)/σq
with σq the rms of q) in the (q, q̇) plane. Residuals are equally distributed around 0, showing that the parametric shape of
he model seems to be appropriate. Furthermore, the PSD of the residual will be used to inspire the stochastic model for
he additive noise. Fig. 5 shows the PSD of the residual R, experimental lift q, acceleration q̈, the left handside of Eq. (6)
¨ + q. Most energy of lift coefficient q is located around f0. The acceleration q̈ shows also energy content at 3f0, justifying
lso the use of third order terms in the non-linear model. The shape of the residual spectrum is flat in the low frequency
ange, without dominant frequency, and linear in log–log scales as frequency reaches large values, showing an appropriate
arametric model. However, the observed variation amplitude of ±0.6σq in Fig. 4 are non negligible and this residual can
e seen as an additive noise. This observation justifies the need to add a stochastic term in the model, developed in the
ollowing.

Finally, the procedure for the deterministic part of the model can be applied to the three regimes. Obtained values of
, γ , δ are summarized in Table 3.

.2. Additive noise

As discussed in the introduction and observed in the previous section, the lift coefficient measured on a static circular
ylinder is not perfectly harmonic. Models (2), which are based on a Van der Pol or Rayleigh equation, result in periodic or
7
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Fig. 4. Residual between experimental trajectories of Fig. 3 and deterministic fitted surface.

Fig. 5. Spectrum of residual R, experimental lift q, acceleration q̈, q̈ + q and von Karman type.

Table 3
Identified coefficients of the generalized model for the three
regimes.
Regime α γ δ

Sub1 −0.085 0.009 0.057
Sub2 −0.078 0.009 0.051
Post −0.016 0.002 0.011

quasi-periodic solutions depending on the range of parameters (Glendinning et al., 1994). In their original deterministic
formulations, they are not capable of emulating a chaotic envelope as observed in experimental data. One way to obtain
a chaotic envelope with a Van der Pol model (or similar) is to use time varying coefficients in the form of a stochastic
parametric loading., see e.g. Denoël (2020). This modelling option is particularly well suited when it is possible to justify
that some parameters of the wake-oscillator model, e.g. U + u(t), do vary in time. Evoking a quasi-steady theory, this
ffers a straightforward manner to model turbulent flows (Denoël, 2020). This option is not followed in this paper
hich considers uniform flows. Instead, noise is added in the model as a right hand-side in the generalized Van der
ol equation, which is assumed to better correspond to modelling the wake turbulence creating the slow fluctuations of
he lift envelope.

In models (2), such as the Vickery–Basu model, the way of modelling the stochastic nature of vortex shedding is
ubstantially different. Indeed, the lift force created by vortex shedding is directly represented by its power spectral
ensity and not as the solution of a differential equation.
A first possibility is to use the lift spectrum SCL (Power Spectral Density (PSD)) proposed by Basu and Vickery (1983),

hich was found to fit quite well experimental data (King, 1977). In fact, Vickery and Clark (1972) followed a similar
8
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SCL (f ) =

˜C2
L

√
πBf0

e
−

⎛⎝ 1− f
f0

B

⎞⎠2

(11)

here f is the frequency and B the bandwidth, a measure of the spread of the lift spectrum. In the absence of turbulence
n the oncoming flow, the bandwidth B = (B2

0 + 2(σu/U∞)2)1/2 is reduced to B0 which has typical values in the range
.05–0.1 (Basu and Vickery, 1983). The formulation of Eq. (11) is consistent with experimental observations around f0,
he vortex shedding frequency. However as illustrated next, the spectrum at other frequencies, slightly away from this
arrow frequency band, does not match experimental data. This fact is illustrated in Section 4, with a comparison of
odels results. This is not a real drawback of the model, since the purpose of the Vickery–Basu model is to provide an
quivalent loading that yields the same response, but not necessarily i.e. not the same lift along the whole frequency
omain.
In summary, models (2) are now mostly deterministic (or in a parametric stochastic form that is not appropriate for

niform flows) while models (1) are exclusively stochastic. Models (2), when embedded in the 2-DOF model are able
o capture the self-limiting nature of vortex induced vibrations. Conversely, models (1) are better suited to the forced
esponse at high Scruton (Piccardo and Solari, 1998) and do not offer the adaptive nature of the loading as a function of
he amplitude of the body. Equivalent damping models (Lupi et al., 2018) use a forced feedback with the lift force that
epends on the state (amplitude) of the structural oscillator but the particular dynamics of the lift force is not modelled
y a fluid equation.
With the perspectives of deriving a model offering the advantages of the two (traditionally opposed) approaches, we

uggest to introduce an additive forcing noise η(t) to Eq. (7), to obtain the final form of the model :

q̈ + q = F (q, q̇) + η (12)

As detailed next, the proposed form of F (q, q̇) is an extension of the non-linear terms in a Van der Pol equation. It is
important to notice that several studies (Zhu and Yu, 1987; Belousov et al., 2020) have focused on the influence of a white
noise excitation to Van der Pol equation. Nevertheless, we found that this kind of broadband forcing would create a lift
force q(t) which does not match experiments, as illustrated in Section 4. Indeed, we infer that the stochasticity that appears
in the lift force even in smooth flow comes from the signature of the downstream flow as a wake turbulence. If a parallel
with η(t) could be made, it is clear that its frequency content cannot be a white noise, which solely remains a mathematical
conceptualization. With this in mind, other types of noise were investigated in our study. Among several choices for the
modelling of η(t) (such as an Ornstein–Uhlenbeck process or other turbulence processes), consideration of a Von Karman-
type spectrum has shown very accurate results. Interestingly this spectrum is consistent with the Kolmogorov cascade
with a slope in 1/ω5/3 at higher frequencies. Its appropriateness could be explained by the fact that the stochasticity
in the observations is a result of the wake turbulence. Even if this seems to introduce a rationale in considering a Von
Karman spectrum, it should be kept in mind that this additive noise does not represent the physical quantity directly
(i.e. the pressure or its resultant). It is rather a mathematical tool added as a random entry to the generalized Van der Pol
model that fulfils the objectives we are trying to achieve: to reproduce statistics of the experimental lift. It is therefore
proposed to model the random process η(t) as a zero-mean Gaussian process with a power spectral density expressed as,

Φη(ω) = σ 2
η

2Lη

πU∞

1(
1 +

(
1.339Lη

ω
U∞

)2
) 5

6
(13)

ith ση the standard deviation of the additive noise and Lη a parameter linked to its characteristic time (i.e. as Lη increases,
he dynamics in η is slower, the characteristic frequency decreases). Conversly, the Von Karman spectrum in Eq. (13) tends
o a white noise when Lη tends to 0. An example of this PSD is presented in Fig. 5. It is a simple parametric expression
hat fits the PSD of the residual. Parameters of VK could be determined in order to reproduce the transition point to the
nertial zone and the level in the input zone (energy production range) of VK spectrum. However, we propose a more
igorous approach. Once the deterministic coefficients of F (q, q̇) are fitted following the procedure of Section 3.1, Von
arman parameters πVK = (ση, Lη) are determined to adjust the lift envelope shape of the model to the experimental
ne. This was performed by minimizing the difference between the PDF of the generated lift envelope from the model
nd a non-parametric estimate P̃CLe of the PDF of the lift envelope from the experimental data, as well as the difference
etween the generated PSD of the lift and a non parametric estimate from experimental data S̃CL,fi :

π̂VK = argmin
πVK

w1

nb∑
i

(
PCLe (qe,i; πVK ) − P̃CLe,i

)2
+ w2

nf∑
i

∆f
σ 2
CL

(
SCL (fi; πVK ) − S̃CL,fi

)2
(14)

ith w1 = w2 = 1/2, the relative weights in the objective function. The difference of PSD has been scaled to get rid of
spectrum dimensions, with the frequency step ∆f and the variances of experimental lift envelope σ 2

CLe
, nb = 50 is the num-

er of bins used to compute the PDF and n the number of frequencies for the PSD. More precisely, for a given value of π ,
f VK

9
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Table 4
Identified parameters of the exogenous noise.
Regime σu Lu
Sub1 0.55 1.15
Sub2 0.6 0.9
Post 0.2 1.2

1. We generate a sample of the noise η(t) from its spectrum Eq. (13),
2. We solve the complete differential equation of the model Eq. (12) to obtain the lift force, then we compute the PDF

of its envelope PCLe (qe,i) as well as the PSD of the lift SCL (f , πVK ).
3. Ultimately the objective function to be minimized, see Eq. (14) is computed.

The purpose of the identification procedure is to generate a model whose results are close to experimental values. In
conclusion, the study is made gradually, by adding a noise η on the deterministic adjusted model F (q, q̇). The following
ection will illustrate the comparison of experimental data with the present model (using Von Karman and white noise
pectrum), Basu’s and Tamura’s results.

. Results of model prediction

The identification methodology detailed in the previous section is applied to wind tunnel data sets presented in
ection 2. The identified coefficients π = (α, β, δ) and exogenous noise parameters σu, Lu are summarized respectively in
ables 3 and 4 for the various flow regimes considered. These specific values of the model parameters can then be used to
enerate time series of the lift coefficient time. These signals and the corresponding phase portrait can be compared to the
xperimental data. For Sub1 case (smooth surface cylinder at Re = 4.5 · 104), Fig. 6 shows that the present model is able
o capture correctly the experimental dynamics. The experimental window is a narrow-band process and the apparent
hase shift in the time series depends on the initial condition used in the simulations, which are clearly different from
hose of the experimental data. So the eye should not be guided by the comparison of phases in the time series but
ell by the magnitude of the oscillations. Indeed, in the model, the stationary response only is considered. Both the
ime signal amplitude and the phase portrait dynamics are well captured by the present model. Tamura’s model is also
epresented, a Van der Pol equation (π = (−εT , 0, εT )) with εT = 2ξf = 0.076 (Tamura, 1981). As it is deterministic, the
lift envelope is constant in the steady-state regime and the limit cycle amplitude is Q = 2. The phase portrait shape is
ndeed not perfectly elliptical because of the non-linearity but its shape is different from the experimental one, which
xhibit significant deviations from a periodic response. The lift expression proposed by Basu and Vickery (1983) is also
epresented for comparison. Its parameters of bandwidth B0 and amplitude C̃L are adjusted to experimental data. The
variability and shape of the phase portrait is captured but is has a circular shape with only small variation (one harmonic)
compared to experimental data. Indeed, it just corresponds to a narrowband Gaussian noise; no governing equation is
solved in this case.

On Fig. 7, the five results are compared (experimental data, present model, Tamura’s model, Vickery–Basu’s model and
the present model with a white noise forcing) for 3 data sets : Sub1, Sub2 and Post. Results are presented with four major
statistics of the lift coefficients : PDF of the lift, PDF of the lift envelope, PSD of the lift and PSD of the lift envelope. The
−5/3 slope is also superimposed to the PSD of the lift envelope to make the link with the additive noise from Von Karman
spectrum (affecting more the slower dynamics, i.e. the envelope), consistent with the Kolmogorov cascade.

The PDFs of the lift and the lift envelope obtained with the present model match well experimental data for all
data sets. Such results were expected as (i) the coefficients of the non-linear terms of the model are adjusted on 3D
experimental phase portrait and (ii) the exogenous noise parameters are adjusted so that PDFs of lift and lift envelope
match the experimental ones. The shape of lift PDF from Basu’s model, as well as the white noise forcing, are Gaussian.
The experimental one is however flatter in the neighbourhood of the origin, which is well captured by the present model.
Tamura’s model gives a harmonic signal, whose PDF has a U-shape as expected and does not correspond to experimental
data. In the postcritical regime, lift amplitude decreases but the general PDF shape remains the same.

The PDF of the lift envelope is a Dirac function for Tamura’s model (constant envelope). Basu’s model gives an
asymmetric PDF but with a too high skewness. The same shape with a different maximum is obtained for other Re,
because Basu’s model has only one parameter B. Using a white noise leads to a symmetric lift envelope PDF but with a
too high and sharp maximum value of the PDF because of its broadband frequency content (random noise around the
constant amplitude). Again, the proposed model matches very well experimental data.

The lift PSD of Basu’s model captures only frequencies close to f0. Tamura’s model has only one peak at f0. The present
model with white noise is able to capture a frequency content outside the range around f0 but the slope for higher
frequencies does not match experiments. The lift PSD with the present model with a Von Karman spectrum is very
close to the experimental one. In the PSD of the envelope SCLe , the drop after f /f0 = 1 is a numeric artifact of the
envelope computation and the higher frequency content is not physical (the envelope of the lift is computed with a

Hilbert transform and this arbitrary choice does not offer an accurate estimate of the frequency content beyond f = f0).

10
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Fig. 6. Comparison Sub1 case of experimental measurements (Section 2, Table 2), present model prediction with (α, γ , δ, ση, Lη) =

−0.085, 0.009, 0.057, 0.4, 1.15) (Section 3.1, Eq. (7) and Section 3.2, Eq. (13)), Tamura’s model with εT = 0.076 (Section 1, Eq. (1)) and Vickery–Basu’s
odel with B0 = 0.05 (Section 3.2, Eq. (11)) : lift coefficient CL and its corresponding phase portrait (q, q̇).

he present model captures correctly the shape of SCLe for each data set, close to the slope in 1/ω5/3, while predictions of
asu’s model are different as soon as one gets away from the shedding frequency. The present model with white noise
ives an envelope spectrum close to the experimental one but is too straight for low frequency compared to the present
odel with a Von Karman spectrum.

. Discussion

The identification of coefficients has been performed using the methodology described in Section 3.1, using the
hole available time signal presented in Section 2. To validate and assess the robustness of the identification, the same
ethodology has been applied to the two halves of the initial signal and the identified coefficients are close to those

dentified on the whole signal Training sets of different sizes were also investigated to cross-validate on test sets with
ccurate results for this application. The obtained coefficients α, β, γ , δ have been obtained with the data collected in a
ingle Wind Tunnel Laboratory. Cross-validation with experimental results coming from other wind tunnel tests is not
ppropriate. Indeed, there would be more variability between results obtained with different setup conditions in the
ame lab or from lab to lab than the residual variability in results for the same present setup. To quantify the residual
ariability, the objective function (Eq. (B.1)) can be interpreted as a coefficient of variation as it is computed with the mean
quared error on standardized statistics (PDF and nondimensional PSD). It is equal to around 3%. The variability of results
rom different setups and different labs can be computed with data of Fig. 11 (lift fluctuation from the literature). For
ubcritical regime, the variability of C ′

L (standard deviation over mean) is around 10%. This major difference indicates that
he proposed methodology is just a method to identify the coefficient of a particular test setup and a particular specimen.
t can just be used in the scope of the least-squares formulation (Eq. (8)) without the pretension to attempt at universal
umbers. However, the model is sufficiently versatile and could be used to determine the parameters of a generalized
ortex shedding model, e.g. on an ellipse or other cross-section shapes.
The first methodology presented in the paper with sequential identification is based on the fact that the time signature

s different for the deterministic and the stochastic parts of the model : (1) the 3 identified coefficients π = (α, γ , δ)
11
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Fig. 7. Comparison between experimental measurements, present model prediction, Tamura’s and Vickery–Basu’s results in sub- and postcritical
regimes: (a) PDF of lift coefficient, (b) PDF of lift envelope, (c) PSD of lift coefficient and (d) PSD of lift envelope. Columns correspond to the three
regimes presented in Table 2 (Sub1, Sub2, Post).
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Fig. 8. Coefficients of non-linear term (α, γ , δ) adjusted from experimental measurements, as a function of Reynolds number for smooth and rough
cylinder.

Fig. 9. Parameters used in the additional noise η(t) as a function of Reynolds number for smooth and rough cylinder.

are associated to the slow dynamics of the deterministic model and (2) the 2 VK parameters πVK = (ση, Lη) with the
ast fluctuations from wake turbulence. A second methodology has been investigated and is presented in Appendix B. It
s based on a simultaneous fit of all 5 parameters on experimental lift statistics with a 4-term objective function. The
btained results are presented in Appendix B and are very similar to the first methodology.
Fig. 8 shows the identified model coefficients π = (α, γ , δ) across regimes. In the subcritical regime (Sub1 and Sub2),

hey are almost Reynolds independent. The surface roughness has a small influence on the value of the coefficients (about
0% smaller in absolute value for the rough surface (Sub2)). Compared to Tamura’s model parameter, α is not exactly equal
o −δ, because an additional term in q̇2 (γ ) participates in the dynamics. In postcritical conditions (Post), values of model
coefficients decrease and so the importance of non-linear terms in the generalized model. Parameters of the additive
noise (ση, Lη) are reported in Fig. 9 for all regimes. For Sub1 and Sub2, these parameters are similar and ση is slightly
igher for Sub2 because the observed lift envelope dispersion was slightly wider for rough surface case. Length scales Lη

re lower for Sub2 than those for Sub1, leading to higher characteristic frequencies of turbulence in the boundary layer
nd wake. This could be attributed to roughness effects. For the postcritical regime, the magnitude of the fluctuations of
he additive noise ση is lower than those in subcritical regime, which is consistent with the observation of a lower lift
nvelope dispersion in postcritical regime.
Note that the condition of the unstable nature of the origin, to obtain a limit cycle (Eq. (10)) gives a combination for

arameters and they have to be taken as a whole. Each parameter taken independently does not characterize alone the
13
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Fig. 10. Comparison of PDF of experimental lift in subcritical regime with the PDF generated with the present model (coefficients of Eq. (15)).

Fig. 11. Lift fluctuation, experiments vs model prediction and comparison with literature (Moeller, 1984; West and Apelt, 1993; Szepessy and
Bearman, 1992; Schewe, 1983; van Hinsberg, 2015) (the grey line is an empirical trend from Norberg, 2003).

properties of the system. Values of parameters can be taken to identify the dynamics of lift coefficient in subcritical range
(Sub1) for example. The purpose of this methodology paper is not to guess a physical explanation for all parameters as
done in Tamura’s model (Tamura, 1981) but a methodology for the generalization of non-linear model for the lift force.
It is then difficult to give a physical meaning to the parameters because of their combination, they have a meaning when
taken as a whole.

Some insights from the discussion can be gained: its has been shown that in the subcritical regime, model parameters
are almost Reynolds independent. A final fixed set of values for π can then be used for different Re in this subcritical
regime

ᾱ = −0.09, γ̄ = 0.009, δ̄ = 0.063 (15)

ig. 10 compares the PDF of experimental lift envelope in subcritical range with the one obtained with the present model
nd coefficients of Eq. (15). This set of coefficients is able to capture the statistics of lift and can be used to predict the
ynamics of the lift as well as the lift fluctuation C ′

L. An extensive review of flow around circular cylinders was made
y Norberg (2003), allowing to compare the results of the present model and experiments from the literature. Fig. 11
ompares these results in term of lift fluctuation. This global quantity is a robust point of comparison to assess the accuracy

′
f the present model. The predictions of values of CL obtained with the proposed model are consistent with results from

14
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he literature in the subcritical regime, for smooth and rough cylinder surface, in low turbulence flow (Iu < 0.2%). In
ubcritical regime, different lift fluctuation coefficients are reported (from 0.2 to 0.6), as discussed by Tamura (1981). In
is model, he suggested a value of C ′

L between 0.4 and 0.5 (considering an amplitude CL0 = 0.6 and a monoharmonic
ignal, C ′

L = CL0/
√
2 = 0.42). These results are consistent around Re = 3 · 104 but underestimate C ′

L at higher Re, while
he present model is very close to experimental results from the literature up to Re = 5 · 104. The drag crisis (drop of the
drag coefficient CD) happens at Re = 2 · 105 for a smooth surface cylinder and this change of regime is also observable
in the variation of C ′

L with Re. van Hinsberg (2015) studied the effect of roughness on regimes, with k/D = 10−3. The
onset of the critical regime appears at a lower Re (around Re = 105) than in the smooth surface case, with higher values
or C ′

L in postcritical regime. The value of lift fluctuation C ′

L in postcritical conditions is higher when the cylinder surface
oughness increases (C ′

L around 0.15 for k/D = 10−3 and C ′

L < 0.5 for k/D = 10−5). The cylinder surface roughness of
the WT model used for the present model illustration is even higher (k/D = 7 · 10−3). The change of regime appears
at an even lower Re compared to results of van Hinsberg (2015). This is consistent with results of Güven et al. (1980),
Achenbach and Heinecke (1981), who showed a drag crisis starting around Re = 8 ·104 for k/D = 7 ·10−3 and CD value in
the postcritical regime increases also with k/D. The same behaviour is expected for lift fluctuation C ′

L, which explains that
present experimental measurements and model results exhibit higher C ′

L for higher k/D : at Re = 2.5 · 105, C ′

L = 0.23 for
k/D = 7 ·10−3, C ′

L = 0.15 for k/D = 2 ·10−3 (Batham, 1973) and C ′

L = 0.12 for k/D = 2 ·10−3 (van Hinsberg, 2015)). These
results show that the present model is able to correctly estimate C ′

L of the circular static cylinder in different regimes and
can be used in a prediction phase.

6. Conclusion

The objective of this paper is to derive and analyse a generalized model of the lift force under vortex shedding around
a static cylinder. Experiments show that the statistical distributions of CL and CLe are not a Dirac-distributed, i.e. the lift
is not purely mono-harmonic, as would be predicted by current wake-oscillator models. This suggested to use a spectral
model in addition to an extended version of classical wake-oscillator models. Another novelty of the proposed model is
that it is a wake-oscillator model, including the type of noise that is responsible for the non deterministic observations
whose coefficients are obtained from specific wind tunnel testing. This paper proposes a methodology in 2 steps for the
identification of lift model parameters : (i) coefficients α, γ , δ of the deterministic model and (ii) parameters of the von
Karman-type exogenous noise ση, Lη . The deterministic part of the model (i) is a second order differential equation for the
lift coefficient using a generic form for the non-linearity using all combinations odd powers of q, q̇ up to the third degree.
Coefficients of non-linear terms are adjusted on experimental dynamic trajectories thanks to a surface polynomial fit. A
harmonic balance procedure and a stability analysis allows to add constraints between the coefficients. Fluctuations in the
lift envelope are reproduced using an exogenous noise (ii). Parameters of the noise are adjusted using a least-square fitting
of the lift envelope PDF. A second methodology has been applied, with a simultaneous fitting of all 5 model parameters
on experimental lift statistics. Results are similar to the two-step procedure and proves the consistency of the method.

The procedure was applied to a circular cylinder at different Reynolds numbers and surface roughnesses. The evolution
of model coefficients and Von Karman parameters with Re and roughness were studied in sub- and postcritical regimes.
In the subcritical regime, model parameters are almost Reynolds independent. In the postcritical regime, non-linearities
decrease with Re and additive noise from wake turbulence increases. The fluctuating lift amplitude computed from
generated signal of the model were compared to experimental data. They have been found to match results from
the literature for a wide range of Reynolds number. Parameters are constant in subcritical range. We suggest to use:
ᾱ = −0.09, γ̄ = 0.009, δ̄ = 0.063.

This work opens several perspectives. Among others, it offers a simple and robust way to identify non-linear coefficients
in the vortex shedding model for a static circular cylinder, together with the additive noise intensity and characteristic
time. This study represents the starting point for two upcoming extensions. First, static cylinders arranged in tandem
configuration could benefit from this type of model, which is supposed to be a better stating point than other models
capturing the slow dynamics only. Indeed, as soon as the interaction of two cylinders in considered, the interacting
fast dynamics need to be modelled accurately. Second, this equation, combined with a structural one, can be used to
model cylinders in free vibration with carefully adapted coupling terms (assuming a one degree of freedom VIV). This
extension is not trivial but is in current study. Starting from the second methodology presented in the paper (simultaneous
fitting of all 5 model parameters),two coupling terms can be added for lift and structure equations and all 7 coefficients
can be adjusted simultaneously using experimental lift and structural displacement statistics. Finally, by doubling the
two-equation system, the extension to flexible cylinders in tandem arrangement is also possible.
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ppendix A. Fitting method constraints

.1. Harmonic balance

The harmonic balance procedure consists to substitute the Ansatz for the wake variable q(t) ≈ qh(t) = Qc cosωt +

s sinωt in Eq. (7), after computing q̇h, q̈h and non-linear terms q2hq̇h, qhq̇
2
h, q̇

3 thanks to trigonometric identities of third
rder.[

(1 − ω2)Qc −
αω

4
(Q 2

c Qs + Q 3
s ) −

βω2

4
(Q 3

c + QcQ 2
s ) −

3γω3

4
(Q 3

s + Q 2
c Qs) − δωQs

]
cosωt

+

[
(1 − ω2)Qs +

αω

4
(Q 3

c + QcQ 2
s ) −

βω2

4
(Q 3

s + Q 2
c Qs) +

3γω3

4
(Q 3

c + QcQ 2
s ) + δωQc

]
sinωt

+

[
αω

4
(Q 3

s − 3Q 2
c Qs) +

βω2

4
(Q 3

c − 3QcQ 2
s ) +

γω3

4
(3Q 2

c Qs − Q 3
s )

]
cos 3ωt

+

[
αω

4
(Q 3

c − 3QcQ 2
s ) +

βω2

4
(3Q 2

c Qs − Q 3
s ) −

3γω3

4
(3QcQ 2

s − Q 3
c )

]
sin 3ωt = 0 (A.1)

Higher harmonics are neglected (cos 3ωt and sin 3ωt) and first harmonics are balanced,

Rc :=(1 − ω2)Qc −
αω

4
(Q 2

c Qs + Q 3
s ) −

βω2

4
(Q 3

c + QcQ 2
s ) −

3γω3

4
(Q 3

s + Q 2
c Qs) + δωQs = 0 (A.2)

Rs :=(1 − ω2)Qs +
αω

4
(Q 3

c + QcQ 2
s ) −

βω2

4
(Q 3

s + Q 2
c Qs) +

3γω3

4
(Q 3

c + QcQ 2
s ) − δωQc = 0. (A.3)

By transforming Qc and Qs to polar coordinates (Qc = Q cos θ , Qs = Q sin θ ) and applying algebraic manipulations :
os θ (A.2)+sin θ (A.3) and cos θ (A.3)-sin θ (A.2), two relations are obtained,

(1 − ω2)Q −
βω2Q 3

4
= 0 (A.4)

αωQ 3

4
+

3γω3Q 3

4
+ δωQ = 0. (A.5)

Notice that adding q̇2 in F would have produced quadratic harmonics (sin2 ωt, cos2 ωt, cosωt sinωt , associated to
second harmonics sin 2ωt, cos 2ωt). At leading order, these even harmonics are discarded. Indeed, they do not have the
quality of restoring energy, i.e. they would lead to an unstable solution. The use of ω in qh(t) was made to remain general,
i.e. if an external force is applied to the system at this frequency ω. Nevertheless, without forcing term, the characteristic
frequency of the oscillator leads to ω = 1 and Eqs. (A.4)–(A.5) simplifies to (with a limit cycle amplitude Q ̸= 0),

β = 0 and
Q 2

4
(α + 3γ ) + δ = 0. (A.6)

.2. Stability

The stability of Eq. (7) is discussed using its autonomous form

ẋ = v(x), with x =

(
q
)

and v(x) =

(
q̇

)
with F = q̇(αq2 + βqq̇ + γ q̇2 + δ) (A.7)
q̇ F (q, q̇) − q
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Table B.5
Comparison of model coefficients (Sub1 case) obtained from
both methods.
Method α γ δ ση Lη

1 −0.085 0.009 0.057 0.55 1.15
2 −0.092 0.01 0.062 0.61 1.28

Its Jacobian matrix at point p = (0, 0) is,

Jp(v) =
∂v

∂x

⏐⏐⏐⏐
p

=

(
0 1

−1 + ∂qF ∂q̇F

) ⏐⏐⏐⏐
p

=

(
0 1

−1 δ

)
(A.8)

with ∂qF
⏐⏐
p = (2αqq̇ + βq̇2)

⏐⏐
(0,0) = 0 and ∂q̇F

⏐⏐
p = (αq2 + 2βqq̇ + 3γ q̇2 + δ)

⏐⏐
(0,0) = δ. The eigenvalues of Jp(v) are then,

λ =
δ ±

√
δ2 − 4
2

. (A.9)

If δ < −2, then δ ±
√

δ2 − 4 < 0 and if δ > 2, then δ ±
√

δ2 − 4 > 0. If |δ| < 2, λ is complex and its real part is equal
to δ/2, the solution is then unstable if Re(λ) = δ/2 > 0. By combining these criteria, the solution is unstable if 0 < δ < 2
and if δ > 2, thus if δ > 0.

Appendix B. Second methodology

This second methodology consists to fit simultaneously all 5 model parameters π0 = (α, γ , δ, ση, Lη) based on lift
tatistics. The model is adjusted on experimental (non-parametric) PDFs and PSDs of lift and lift envelope, measured for
b bins in PDFs and nf frequencies for PSDs. In practice, the lift is generated by solving Eq. (12) as a function of a parameter
et π0 and its statistics are computed (PDF et PSD of lift and lift envelope). Then, the parameters π0 are adjusted using a
least-square fitting with a 4 terms objective function,

π̂0 =argmin
π0

w1

nb∑
i

(
PCL (qi; π0) − P̃CL,i

)2
+ w2

nb∑
i

(
PCLe (qe,i; π0) − P̃CLe,i

)2
+ w3

nf∑
i

fi
(
SCL (fi; π0) − S̃CL,fi

)2

σ 2
CL

+ w4

nf∑
i

fi
(
SCLe (fi; π0) − S̃CLe,fi

)2

σ 2
CLe

(B.1)

ith wi = 1/4 the relative weights in the objective function. The differences of PSDs have been scaled by f /σ 2 to get
id of spectrum dimensions, with the frequency f and the variances of experimental lift σ 2

CL
= C ′2

L and lift envelope σ 2
CLe

.
able B.5 compares model coefficients obtained using the second method and results are similar to the first methodology.
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