Xylanase production by Thermobacillus xylanilyticus is impaired by population diversification but can be mitigated based on the management of cheating behavior.
[en] BACKGROUND: The microbial production of hemicellulasic cocktails is still a challenge for the biorefineries sector and agro-waste valorization. In this work, the production of hemicellulolytic enzymes by Thermobacillus xylanilyticus has been considered. This microorganism is of interest since it is able to produce an original set of thermostable hemicellulolytic enzymes, notably a xylanase GH11, Tx-xyn11. However, cell-to-cell heterogeneity impairs the production capability of the whole microbial population. RESULTS: Sequential cultivations of the strain on xylan as a carbon source has been considered in order to highlight and better understand this cell-to-cell heterogeneity. Successive cultivations pointed out a fast decrease of xylanase activity (loss of ~ 75%) and Tx-xyn11 gene expression after 23.5 generations. During serial cultivations on xylan, flow cytometry analyses pointed out that two subpopulations, differing at their light-scattering properties, were present. An increase of the recurrence of the subpopulation exhibiting low forward scatter (FSC) signal was correlated with a progressive loss of xylanase activity over several generations. Cell sorting and direct observation of the sorted subpopulations revealed that the low-FSC subpopulation was not sporulating, whereas the high-FSC subpopulation contained cells at the onset of the sporulation stage. The subpopulation differences (growth and xylanase activity) were assessed during independent growth. The low-FSC subpopulation exhibited a lag phase of 10 h of cultivation (and xylanase activities from 0.15 ± 0.21 to 3.89 ± 0.14 IU/mL along the cultivation) and the high-FSC subpopulation exhibited a lag phase of 5 h (and xylanase activities from 0.52 ± 0.00 to 4.43 ± 0.61 over subcultivations). Serial cultivations on glucose, followed by a switch to xylan led to a ~ 1.5-fold to ~ 15-fold improvement of xylanase activity, suggesting that alternating cultivation conditions could lead to an efficient population management strategy for the production of xylanase. CONCLUSIONS: Taken altogether, the data from this study point out that a cheating behavior is responsible for the progressive reduction in xylanase activity during serial cultivations of T. xylanilyticus. Alternating cultivation conditions between glucose and xylan could be used as an efficient strategy for promoting population stability and higher enzymatic productivity from this bacterium.
Disciplines :
Biotechnology
Author, co-author :
Bouchat, Romain ; Université de Liège - ULiège > TERRA Research Centre ; INRAE, FARE, UMR A 614, Chaire AFERE, Université de Reims Champagne Ardenne, ; Laboratory of Microbial Processes and Interactions, TERRA Teaching and Research
Vélard, Frédéric; BIOS EA 4691 "Biomatériaux et Inflammation en site osseux", Université de Reims
Audonnet, Sandra; URCACyt, Flow Cytometry Technical Platform, Université de Reims
Rioult, Damien; Plateau Technique Mobile de Cytométrie Environnementale MOBICYTE, Université de
Delvigne, Frank ; Université de Liège - ULiège > Département GxABT > Microbial technologies ; Laboratory of Microbial Processes and Interactions, TERRA Teaching and Research
Rémond, Caroline; INRAE, FARE, UMR A 614, Chaire AFERE, Université de Reims Champagne Ardenne,
Rakotoarivonina, Harivony; INRAE, FARE, UMR A 614, Chaire AFERE, Université de Reims Champagne Ardenne,
Language :
English
Title :
Xylanase production by Thermobacillus xylanilyticus is impaired by population diversification but can be mitigated based on the management of cheating behavior.
Al-ghussain L. Global warming: review on driving forces and mitigation. Environ Prog Sustain Energy. 2018;38:13–21. DOI: 10.1002/ep.13041
Naik SN, Goud VV, Rout PK, Dalai AK. Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev. 2010;14(2):578–97. DOI: 10.1016/j.rser.2009.10.003
Chandel AK, Garlapati VK, Singh AK, Antunes FAF, da Silva SS. The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol. 2018;264:370–81. 10.1016/j.biortech.2018.06.004. DOI: 10.1016/j.biortech.2018.06.004
Ebringerová A, Heinze T. Xylan and xylan derivatives—biopolymers with valuable properties, 1: naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun. 2000;21:542–56. DOI: 10.1002/1521-3927(20000601)21:9<542::AID-MARC542>3.0.CO;2-7
Kumar N, Pruthi V. Potential applications of ferulic acid from natural sources. Biotechnol Rep. 2014;4:86–93. 10.1016/j.btre.2014.09.002. DOI: 10.1016/j.btre.2014.09.002
Boz H. p-Coumaric acid in cereals: presence, antioxidant and antimicrobial effects. Int J Food Sci Technol. 2015;50:2323–8. DOI: 10.1111/ijfs.12898
Van Dyk JS, Pletschke BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv. 2012;30:1458–80. 10.1016/j.biotechadv.2012.03.002. DOI: 10.1016/j.biotechadv.2012.03.002
Dodd D, Cann IKO. Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy. 2009;1:2–17. DOI: 10.1111/j.1757-1707.2009.01004.x
Deutschmann R, Dekker RFH. From plant biomass to bio-based chemicals: latest developments in xylan research. Biotechnol Adv. 2012;30:1627–40. 10.1016/j.biotechadv.2012.07.001. DOI: 10.1016/j.biotechadv.2012.07.001
Binod P, Gnansounou E, Sindhu R, Pandey A. Enzymes for second generation biofuels: recent developments and future perspectives. Bioresour Technol Rep. 2019;5:317–25. 10.1016/j.biteb.2018.06.005. DOI: 10.1016/j.biteb.2018.06.005
Samain E, Touzel JP, Brodel B, Debeire P. Isolation of a thermophilic bacterium producing high levels of xylanase. Xylans Xylanases Prog Biotechnol. 1992;7:467–70.
Touzel JP, O’Donohue M, Debeire P, Samain E, Breton C. Thermobacillus xylanilyticus gen. nov., sp. nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. Int J Syst Evol Microbiol. 2000;50(1):315–20. DOI: 10.1099/00207713-50-1-315
Samain E, Debeire P, Touzel JP. High level production of a cellulase-free xylanase in glucose-limited fed batch cultures of a thermophilic Bacillus strain. J Biotechnol. 1997;58(2):71–8. DOI: 10.1016/S0168-1656(97)00140-5
Debeche T, Cummings N, Connerton I, Debeire P, O’Donohue MJ. Genetic and biochemical characterization of a highly thermostable α-L-arabinofuranosidase from Thermobacillus xylanilyticus. Appl Environ Microbiol. 2000;66(4):1734–6. DOI: 10.1128/AEM.66.4.1734-1736.2000
Rakotoarivonina H, Hermant B, Chabbert B, Touzel JP, Remond C. A thermostable feruloyl-esterase from the hemicellulolytic bacterium Thermobacillus xylanilyticus releases phenolic acids from non-pretreated plant cell walls. Appl Microbiol Biotechnol. 2011;90:541–52. DOI: 10.1007/s00253-011-3103-z
Rakotoarivonina H, Hermant B, Monthe N, Rémond C. The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth. Microb Cell Fact. 2012;11(1):1–12. DOI: 10.1186/1475-2859-11-159
Debeire-Gosselin M, Loonis M, Samain E, Debeire P. Purification and properties of a 22kDa endoxylanase excreted by a new strain of thermophilic Bacillus. Prog Biotechnol. 1991;7:463–6.
García-Contreras R, Loarca D. The bright side of social cheaters: potential beneficial roles of “social cheaters” in microbial communities. FEMS Microbiol Ecol. 2021;97:1–6.
Smith P, Schuster M. Public goods and cheating in microbes. Curr Biol. 2019;29:R442–7. 10.1016/j.cub.2019.03.001. DOI: 10.1016/j.cub.2019.03.001
Casadesús J, Low DA. Programmed heterogeneity: epigenetic mechanisms in bacteria. J Biol Chem. 2013;288:13929–35. DOI: 10.1074/jbc.R113.472274
Delvigne F, Zune Q, Lara AR, Al-Soud W, Sørensen SJ. Metabolic variability in bioprocessing: implications of microbial phenotypic heterogeneity. Trends Biotechnol. 2014;32:608–16. 10.1016/j.tibtech.2014.10.002. DOI: 10.1016/j.tibtech.2014.10.002
Dragosits M, Mattanovich D. Adaptive laboratory evolution—principles and applications for biotechnology. Microb Cell Fact. 2013;12:1–18. DOI: 10.1186/1475-2859-12-64
Müller S, Nebe-Von-Caron G. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev. 2010;34:554–87. DOI: 10.1111/j.1574-6976.2010.00214.x
Baert J, Delepierre A, Telek S, Fickers P, Toye D, Delamotte A, et al. Microbial population heterogeneity versus bioreactor heterogeneity: evaluation of redox sensor green as an exogenous metabolic biosensor. Eng Life Sci. 2016;16(7):643–51. DOI: 10.1002/elsc.201500149
Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol. 2008;35:377–91. DOI: 10.1007/s10295-008-0327-8
Strassmann JE, Queller DC. Evolution of cooperation and control of cheating in a social microbe. Proc Natl Acad Sci USA. 2011;108:10855–62. DOI: 10.1073/pnas.1102451108
Wechsler T, Kümmerli R, Dobay A. Understanding policing as a mechanism of cheater control in cooperating bacteria. J Evol Biol. 2019;32:412–24. DOI: 10.1111/jeb.13423
Perkins TJ, Swain PS. Strategies for cellular decision-making. Mol Syst Biol. 2009;5:1–15. 10.1038/msb.2009.83. DOI: 10.1038/msb.2009.83
Peng M, Liang Z. Degeneration of industrial bacteria caused by genetic instability. World J Microbiol Biotechnol. 2020;36:1–16. 10.1007/s11274-020-02901-7. DOI: 10.1007/s11274-020-02901-7
Bouchedja DN, Danthine S, Kar T, Fickers P, Sassi H, Boudjellal A, et al. PH level has a strong impact on population dynamics of the yeast Yarrowia lipolytica and oil micro-droplets in multiphasic bioreactor. FEMS Microbiol Lett. 2018;365:1–10. DOI: 10.1093/femsle/fny173
Velicer GJ. Social strife in the microbial world. Trends Microbiol. 2003;11:330–7. DOI: 10.1016/S0966-842X(03)00152-5
Allison SD. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol Lett. 2005;8:626–35. DOI: 10.1111/j.1461-0248.2005.00756.x
Dürre P. Physiology and sporulation in Clostridium. Microbiol Spectr. 2014;2:313–29. DOI: 10.1128/microbiolspec.TBS-0010-2012
Tracy BP, Gaida SM, Papoutsakis ET. Development and application of flow-cytometric techniques for analyzing and sorting endospore-forming clostridia. Appl Environ Microbiol. 2008;74:7497–506. DOI: 10.1128/AEM.01626-08
Täuber S, Golze C, Ho P, Von Lieres E, Grünberger A. DMSCC: a microfluidic platform for microbial single-cell cultivation of: Corynebacterium glutamicum under dynamic environmental medium conditions. Lab Chip R Soc Chem. 2020;20:4442–55. DOI: 10.1039/D0LC00711K
Sassi H, Nguyen TM, Telek S, Gosset G, Grünberger A, Delvigne F. Segregostat: a novel concept to control phenotypic diversification dynamics on the example of Gram-negative bacteria. Microb Biotechnol. 2019;12:1064–75. DOI: 10.1111/1751-7915.13442
Nguyen TM, Telek S, Zicler A, Martinez JA, Zacchetti B, Kopp J, et al. Reducing phenotypic instabilities of a microbial population during continuous cultivation based on cell switching dynamics. Biotechnol Bioeng. 2021;118:3847–59. DOI: 10.1002/bit.27860
Deng Y, Fong SS. Laboratory evolution and multi-platform genome re-sequencing of the cellulolytic actinobacterium Thermobifida fusca. J Biol Chem. 2011;286:39958–66. DOI: 10.1074/jbc.M111.239616
Kidby DK, Davidson DJ. Ferricyanide estimation of sugars in the nanomole range. Anal Biochem. 1973;55:321–5. DOI: 10.1016/0003-2697(73)90323-0
Marion M, Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. DOI: 10.1016/0003-2697(76)90527-3
Rakotoarivonina H, Hermant B, Aubry N, Rabenoelina F, Baillieul F, Rémond C. Dynamic study of how the bacterial breakdown of plant cell walls allows the reconstitution of efficient hemicellulasic cocktails. Bioresour Technol. 2014;170:331–41. 10.1016/j.biortech.2014.07.097. DOI: 10.1016/j.biortech.2014.07.097
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods. 2001;25:402–8. DOI: 10.1006/meth.2001.1262
Shi L, Günther S, Hübschmann T, Wick LY, Harms H, Müller S. Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytom Part A. 2007;71:592–8. DOI: 10.1002/cyto.a.20402