Romain, B.; Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, AFERE, Reims, France, Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro‐Bio Tech, University of Liège, Gembloux, Belgium
Delvigne, Frank ; Université de Liège - ULiège > TERRA Research Centre > Microbial technologies
Rémond, C.; Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, AFERE, Reims, France
Rakotoarivonina, H.; Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, AFERE, Reims, France
Language :
English
Title :
Control of phenotypic diversification based on serial cultivations on different carbon sources leads to improved bacterial xylanase production
Publication date :
2022
Journal title :
Bioprocess and Biosystems Engineering
ISSN :
1615-7591
eISSN :
1615-7605
Publisher :
Springer Science and Business Media Deutschland GmbH
Volume :
45
Issue :
8
Pages :
1359 - 1370
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
We are grateful to the material support of the MOBICYTE technical platform located at University of Reims Champagne-Ardennes (URCA) for the flow cytometer access. We are thankful to Damien Rioult from this technical platform for the different reservation and advice during the cytometry experiments. We are also grateful to Coralie Pierrot which performed different successive cultivations of Thermobacillus xylanilyticus described in this work. The work is part of a PhD grant provided by ULiège (Gembloux-Agro-Bio Tech) and a PhD contract in URCA. The authors are grateful to the French Region Grand Est and the Grand Reims for the financial support of the Chaire AFERE.
Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64 DOI: 10.1080/07388550290789450
Bhardwaj N, Kumar B, Verma P (2019) A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresour Bioprocess. 10.1186/s40643-019-0276-2 DOI: 10.1186/s40643-019-0276-2
Takkellapati S, Li T, Gonzalez MA (2018) An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol Environ Policy 20:1615–1630. 10.1007/s10098-018-1568-5 DOI: 10.1007/s10098-018-1568-5
Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800. 10.1016/j.biortech.2010.01.088 DOI: 10.1016/j.biortech.2010.01.088
Dodd D, Cann IKO (2009) Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy 1:2–17 DOI: 10.1111/j.1757-1707.2009.01004.x
Samain E, Touzel JP, Brodel B, Debeire P (1992) Isolation of a thermophilic bacterium producing high levels of xylanase. Xylans Xylanases, Prog Biotechnol 7:467–470
Touzel JP, O’Donohue M, Debeire P, Samain E, Breton C (2000) Thermobacillus xylanilyticus gen. nov., sp. nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. Int J Syst Evol Microbiol 50:315–320 DOI: 10.1099/00207713-50-1-315
Samain E, Debeire P, Touzel JP (1997) High level production of a cellulase-free xylanase in glucose-limited fed batch cultures of a thermophilic Bacillus strain. J Biotechnol 58:71–78 DOI: 10.1016/S0168-1656(97)00140-5
Debeche T, Cummings N, Connerton I, Debeire P, O’Donohue MJ (2000) Genetic and biochemical characterization of a highly thermostable α-L- arabinofuranosidase from Thermobacillus xylanilyticus. Appl Environ Microbiol 66:1734–1736 DOI: 10.1128/AEM.66.4.1734-1736.2000
Rakotoarivonina H, Hermant B, Chabbert B, Touzel JP, Remond C (2011) A thermostable feruloyl-esterase from the hemicellulolytic bacterium Thermobacillus xylanilyticus releases phenolic acids from non-pretreated plant cell walls. Appl Microbiol Biotechnol 90:541–552 DOI: 10.1007/s00253-011-3103-z
Rakotoarivonina H, Loux V, Doliwa C, Martin V, Rémond C (2022) Draft genome sequence of the lignocellulolytic and thermophilic bacterium Thermobacillus xylanilyticus XE. Microbiol Resour Announc 11:e00934-21 DOI: 10.1128/mra.00934-21
Rakotoarivonina H, Hermant B, Monthe N, Rémond C (2012) The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth. Microb Cell Fact 11:1–12 DOI: 10.1186/1475-2859-11-159
Rakotoarivonina H, Revol PV, Aubry N, Rémond C (2016) The use of thermostable bacterial hemicellulases improves the conversion of lignocellulosic biomass to valuable molecules. Appl Microbiol Biotechnol 100:7577–7590 DOI: 10.1007/s00253-016-7562-0
Rakotoarivonina H, Hermant B, Aubry N, Rabenoelina F, Baillieul F, Rémond C (2014) Dynamic study of how the bacterial breakdown of plant cell walls allows the reconstitution of efficient hemicellulasic cocktails. Bioresour Technol 170:331–341. 10.1016/j.biortech.2014.07.097 DOI: 10.1016/j.biortech.2014.07.097
Debeire-Gosselin M, Loonis M, Samain E, Debeire P (1991) Purification and properties of a 22kDa endoxylanase excreted by a new strain of thermophilic Bacillus. Prog Biotechnol 7:463–466
Bouchat R, Vélard F, Audonnet S, Damien R, Delvigne F, Rémond C et al (2022) Xylanase production by Thermobacillus xylanilyticus is impaired by population diversification but can be mitigated based on the management of cheating behavior. Microb Cell Fact. 10.1186/s12934-022-01762-z DOI: 10.1186/s12934-022-01762-z
Velicer GJ (2003) Social strife in the microbial world. Trends Microbiol 11:330–337 DOI: 10.1016/S0966-842X(03)00152-5
Allison SD (2005) Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol Lett 8:626–635 DOI: 10.1111/j.1461-0248.2005.00756.x
Kidby DK, Davidson DJ (1973) Ferricyanide estimation of sugars in the nanomole range. Anal Biochem 55:321–325 DOI: 10.1016/0003-2697(73)90323-0
Konopka MC, Strovas TJ, Ojala DS, Chistoserdova L, Lidstrom ME, Kalyuzhnaya MG (2011) Respiration response imaging for real-time detection of microbial function at the single-cell level. Appl Environ Microbiol 77:67–72 DOI: 10.1128/AEM.01166-10
Davey HM, Hexley P (2011) Red but not dead? Membranes of stressed Saccharomyces cerevisiae are permeable to propidium iodide. Environ Microbiol 13:163–171 DOI: 10.1111/j.1462-2920.2010.02317.x
Binder D, Drepper T, Jaeger KE, Delvigne F, Wiechert W, Kohlheyer D et al (2017) Homogenizing bacterial cell factories: analysis and engineering of phenotypic heterogeneity. Metab Eng 42:145–156 DOI: 10.1016/j.ymben.2017.06.009
Sassi H, Nguyen TM, Telek S, Gosset G, Grünberger A, Delvigne F (2019) Segregostat: a novel concept to control phenotypic diversification dynamics on the example of Gram-negative bacteria. Microb Biotechnol 12:1064–1075 DOI: 10.1111/1751-7915.13442
Portnoy VA, Bezdan D, Zengler K (2011) Adaptive laboratory evolution-harnessing the power of biology for metabolic engineering. Curr Opin Biotechnol 22:590–594. 10.1016/j.copbio.2011.03.007 DOI: 10.1016/j.copbio.2011.03.007
Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution - principles and applications for biotechnology. Microb Cell Fact 12:1–18 DOI: 10.1186/1475-2859-12-64
Schwenk K, Wagner GP (2001) Function and the evolution of phenotypic stability: connecting pattern to process. Am Zool 41:552–563
Govil T, Saxena P, Samanta D, Singh SS, Kumar S, Salem DR et al (2020) Adaptive enrichment of a thermophilic bacterial isolate for enhanced enzymatic activity. Microorganisms 8:1–16 DOI: 10.3390/microorganisms8060871
Patyshakuliyeva A, Arentshorst M, Allijn IE, Ram AFJ, de Vries RP, Gelber IB (2016) Improving cellulase production by Aspergillus niger using adaptive evolution. Biotechnol Lett 38:969–974 DOI: 10.1007/s10529-016-2060-0
Dalmau E, Montesinos JL, Lotti M, Casas C (2000) Effect of different carbon sources on lipase production by Candida rugosa. Enzyme Microb Technol 26:657–663 DOI: 10.1016/S0141-0229(00)00156-3
da Silva RN, Melo LFdA, Luna Finkler CL (2021) Optimization of the cultivation conditions of Bacillus licheniformis BCLLNF-01 for cellulase production. Biotechnol Reports 29:e00599 DOI: 10.1016/j.btre.2021.e00599
Allison SD, Lu L, Kent AG, Martiny AC (2014) Extracellular enzyme production and cheating in Pseudomonas fluorescens depend on diffusion rates. Front Microbiol 5:1–8
Jõers A, Kaldalu N, Tenson T (2010) The frequency of persisters in Escherichia coli reflects the kinetics of awakening from dormancy. J Bacteriol 192:3379–3384 DOI: 10.1128/JB.00056-10
Luidalepp H, Jõers A, Kaldalu N, Tenson T (2011) Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence. J Bacteriol 193:3598–3605 DOI: 10.1128/JB.00085-11
Feng X, Kostylev M, Dandekar AA, Greenberg EP (2019) Dynamics of cheater invasion in a cooperating population of Pseudomonas aeruginosa. Sci Rep 9:1–9. 10.1038/s41598-019-46651-5 DOI: 10.1038/s41598-019-46651-5
Vulić M, Kolter R (2001) Evolutionary cheating in Escherichia coli stationary phase cultures. Genetics 158:519–526 DOI: 10.1093/genetics/158.2.519
Heins AL, Weuster-Botz D (2018) Population heterogeneity in microbial bioprocesses: origin, analysis, mechanisms, and future perspectives. Bioprocess Biosyst Eng 41:889–916. 10.1007/s00449-018-1922-3 DOI: 10.1007/s00449-018-1922-3
Nguyen TM, Telek S, Zicler A, Martinez JA, Zacchetti B, Kopp J et al (2021) Reducing phenotypic instabilities of a microbial population during continuous cultivation based on cell switching dynamics. Biotechnol Bioeng 118:3847–3859 DOI: 10.1002/bit.27860
Deng Y, Fong SS (2011) Laboratory evolution and multi-platform genome re-sequencing of the cellulolytic actinobacterium Thermobifida fusca. J Biol Chem 286:39958–39966 DOI: 10.1074/jbc.M111.239616
Smits WK, Kuipers OP, Veening JW (2006) Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol 4:259–271 DOI: 10.1038/nrmicro1381
Burbulys D, Trach KA, Hoch JA (1991) Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64:545–552 DOI: 10.1016/0092-8674(91)90238-T
Casadesús J, D’Ari R (2002) Memory in bacteria and phage. BioEssays 24:512–518 DOI: 10.1002/bies.10102
Wolf DM, Fontaine-Bodin L, Bischofs I, Price G, Keasling J, Arkin AP (2008) Memory in microbes: quantifying history-dependent behavior in a bacterium. PLoS ONE 3:e1700 DOI: 10.1371/journal.pone.0001700
Lambert G, Kussel E (2014) Memory and fitness optimization of bacteria under fluctuating environments. PLoS Genet 10:e1004556 DOI: 10.1371/journal.pgen.1004556
Delvigne F, Goffin P (2014) Microbial heterogeneity affects bioprocess robustness: dynamic single-cell analysis contributes to understanding of microbial populations. Biotechnol J 9:61–72 DOI: 10.1002/biot.201300119