Fragoso-Jiménez, J.C.; Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
Gutierrez-Rios, R.M.; Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
Flores, N.; Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
Martinez, A.; Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
Lara, A.R.; Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Ciudad de Mexico, Mexico
Delvigne, Frank ; Université de Liège - ULiège > TERRA Research Centre > Microbial technologies
Gosset, G.; Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
Language :
English
Title :
Glucose consumption rate-dependent transcriptome profiling of Escherichia coli provides insight on performance as microbial factories
Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol. 2008;6:613–24. DOI: 10.1038/nrmicro1932
Ma E, Altman E. Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 2006;24:530–6. DOI: 10.1016/j.tibtech.2006.09.001
Valgepea K, Adamberg K, Nahku R, Lahtvee P-J, Arike L, Vilu R. Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase. BMC Syst Biol. 2010;4:166. DOI: 10.1186/1752-0509-4-166
De M, Ae M, De Maeseneire S, Wim AE, Ae S, Vandamme E. Minimizing acetate formation in E. coli fermentations. Available from: https://academic.oup.com/jimb/article/34/11/689/5993063
Wolfe AJ. The Acetate Switch. Microbiol Mol Biol Rev 2005;69:12–50. Available from: https://journals.asm.org/journal/mmbr
Taymaz-Nikerel H, Lara AR. Vitreoscilla Haemoglobin: a tool to reduce overflow metabolism. Microorganisms. 2021;10:43. DOI: 10.3390/microorganisms10010043
Han K, Han K, Lim HC, Lim HC, Hong J, Hong J. Acetic acid formation in Escherichia coli fermentation. Biotechnol Bioeng. 1992;39:663–71. DOI: 10.1002/bit.260390611
Shiloach J, Kaufman J, Guillard aS, Fass R. Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli BL21 (hDE3) and Escherichia coli JM 109. Biotechnology. 1996;49:421–8.
Lin C, Cheng L, Wang J, Zhang S, Fu Q, Li S, et al. Optimization of culture conditions to improve the expression level of beta1–epsilon toxin of Clostridium perfringens type B in Escherichia coli. Biotechnol Biotechnol Equip. 2016;30:324–31. DOI: 10.1080/13102818.2015.1126201
De Anda R, Lara AR, Hernández V, Hernández-Montalvo V, Gosset G, Bolívar F, et al. Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate. Metab Eng. 2006;8:281–90. DOI: 10.1016/j.ymben.2006.01.002
Fuentes LG, Lara AR, Martínez LM, Ramírez OT, Martínez A, Bolívar F, et al. Modification of glucose import capacity in Escherichia coli: physiologic consequences and utility for improving DNA vaccine production. Microb Cell Fact. 2013;12:42. DOI: 10.1186/1475-2859-12-42
Fragoso-Jiménez JC, Baert J, Nguyen TM, Liu W, Sassi H, Goormaghtigh F, et al. Growth-dependent recombinant product formation kinetics can be reproduced through engineering of glucose transport and is prone to phenotypic heterogeneity. Microb Cell Fact. 2019. 10.1186/s12934-019-1073-5. DOI: 10.1186/s12934-019-1073-5
Tchieu JH, Norris V, Edwards JS, Saier MH. The complete phosphotransferase system in Escherichia coli. J Mol Biotechnol. 2001;3:329–46.
Ferenci T. Hungry bacteria—definition and properties of a nutritional state. Enviromental Microbiol. 2006;3:605–11. DOI: 10.1046/j.1462-2920.2001.00238.x
Death A, Ferenci T. Between feast and famine: endogenous inducer synthesis in the adaptation of Escherichia coli to growth with limiting carbohydrates. J Bacteriol. 1994;176:5101–7. DOI: 10.1128/jb.176.16.5101-5107.1994
Picon A, Teixeira de Mattos MJ, Postma PW. Reducing the glucose uptake rate in Escherichia coli affects growth rate but not protein production. Biotechnol Bioeng. 2005;90:191–200. 10.1002/bit.20387. DOI: 10.1002/bit.20387
Steinsiek S, Bettenbrock K. Glucose transport in Escherichia coli mutant strains with defects in sugar transport systems. J Bacteriol. 2012;194:5897–908. DOI: 10.1128/JB.01502-12
Hogema BM, Arents JC, Bader R, Eijkemans K, Yoshida H, Takahashi H, et al. Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIA(Glc). Mol Microbiol. 1998;30:487–98. DOI: 10.1046/j.1365-2958.1998.01053.x
Gutierrez-Ríos R, Freyre-Gonzalez JA, Resendis O, Collado-Vides J, Saier M, Gosset G. Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli. BMC Microbiol. 2007;7:53. 10.1186/1471-2180-7-53. DOI: 10.1186/1471-2180-7-53
JR S, H. M. Regulation of carbon utilization. Escherichia coli Salmonella Cell Mol Biol. ASM Press; 1996 [cited 2021 Sep 21];1325–43. Available from: http://ci.nii.ac.jp/naid/10005857743/en/
Vanyan L, Trchounian K. HyfF subunit of hydrogenase 4 is crucial for regulating FOF1 dependent proton/potassium fluxes during fermentation of various concentrations of glucose. J Bioenerg Biomembr. 2022;54:69–79. DOI: 10.1007/s10863-022-09930-x
Hempfling WP, Mainzer SE. Effects of varying the carbon source limiting growth on yield and maintenance characteristics of Escherichia coli in continuous culture. J Bacteriol. 1975. 10.1128/jb.123.3.1076-1087.1975. DOI: 10.1128/jb.123.3.1076-1087.1975
Vital M, Chai B, Østman B, Cole J, Konstantinidis KT, Tiedje JM. Gene expression analysis of E coli strains provides insights into the role of gene regulation in diversification. ISME J. 2015;9:1130–40. 10.1038/ismej.2014.204 DOI: 10.1038/ismej.2014.204
Death A, Ferenci T. Between feast and famine: endogenous inducer synthesis in the adaptation of Escherichia coli to growth with limiting carbohydrates. J Bacteriol. 1994. 10.1128/jb.176.16.5101-5107.1994. DOI: 10.1128/jb.176.16.5101-5107.1994
Hewitt CJ, Nebe-Von Caron G, Nienow AW, McFarlane CM. The use of multi-parameter flow cytometry to compare the physiological response of Escherichia coli W3110 to glucose limitation during batch, fed—batch and continuous culture cultivations. J Biotechnol. 1999;75:251–64. DOI: 10.1016/S0168-1656(99)00168-6
Yao R, Hirose Y, Sarkar D, Nakahigashi K, Ye Q, Shimizu K. Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Microb Cell Fact. 2011;10:67. DOI: 10.1186/1475-2859-10-67
Borirak O, Rolfe MD, De Koning LJ, Hoefsloot HCJ, Bekker M, Dekker HL, et al. Time-series analysis of the transcriptome and proteome of Escherichia coli upon glucose repression. Biochim Biophys Acta Proteins Proteomics. 2015;1854:1269–79. DOI: 10.1016/j.bbapap.2015.05.017
Castaño-Cerezo S, Bernal V, Post H, Fuhrer T, Cappadona S, Sánchez-Díaz NC, et al. Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli. Mol Syst Biol. 2014. 10.15252/msb.20145227. DOI: 10.15252/msb.20145227
Gosset G, Zhang Z, Nayyar S, Cuevas WA, Saier MH. Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli. J Bacteriol. 2004;186:3516–24. 10.1128/JB.186.11.3516-3524.2004. DOI: 10.1128/JB.186.11.3516-3524.2004
Klumpp S, Hwa T. Bacterial growth: global effects on gene expression, growth feedback and proteome partition. Curr Opin Biotechnol. 2014;28:96–102. DOI: 10.1016/j.copbio.2014.01.001
Bäcklund E, Markland K, Larsson G. Cell engineering of Escherichia coli allows high cell density accumulation without fed-batch process control. Bioprocess Biosyst Eng. 2008;31:11–20. DOI: 10.1007/s00449-007-0144-x
Bäcklund E, Ignatushchenko M, Larsson G. Suppressing glucose uptake and acetic acid production increases membrane protein overexpression in Escherichia coli. Microb Cell Fact. 2011. 10.1186/1475-2859-10-35. DOI: 10.1186/1475-2859-10-35
Bachmann BJ. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev. 1972;36:525–57. DOI: 10.1128/br.36.4.525-557.1972
Patro R, Duggal G, Kingsford C. Salmon: Accurate, versatile and ultrafast quantification from RNA-seq Data using Lightweight-Alignment. bioRxiv. 2015;021592. Available from: http://biorxiv.org/content/early/2015/06/27/021592.abstract
Robinson MD, Mccarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinforma Appl. 2010;26:139–40. DOI: 10.1093/bioinformatics/btp616
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Source J R Stat Soc Ser B. 1995;57:289–300.
Veit A, Polen T, Wendisch VF. Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. Appl Microbiol Biotechnol. 2007;74:406–21. DOI: 10.1007/s00253-006-0680-3
Aguilar C, Escalante A, Flores N, de Anda R, Riveros-McKay F, Gosset G, et al. Genetic changes during a laboratory adaptive evolution process that allowed fast growth in glucose to an Escherichia coli strain lacking the major glucose transport system. BMC Genomics. 2012;13:385. DOI: 10.1186/1471-2164-13-385
Gosset G. Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system. Microb Cell Fact. 2005;4:14. DOI: 10.1186/1475-2859-4-14
Plumbridge J. Regulation of gene expression in the PTS in Escherichia coli: the role and interactions of MIc. Curr Opin Microbiol Elsevier Ltd. 2002;5:187–93. DOI: 10.1016/S1369-5274(02)00296-5
Christensen DG, Meyer JG, Baumgartner JT, D’souza AK, Payne SH, Kuhn ML, et al. Identification of novel protein lysine acetyltransferases in escherichia coli. MBio. 2018;9:1–24. DOI: 10.1128/mBio.01905-18
Notley L, Ferenci’ T. Differential expression of mai genes under cAMP endogenous inducer controi in nutrient-stressed Escherictiia coli. Mol Microbiol. 1995. 10.1111/j.1365-2958.1995.tb02397.x. DOI: 10.1111/j.1365-2958.1995.tb02397.x
Boos W, Shuman H. Maltose/Maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev. 1998;62:204–29. DOI: 10.1128/MMBR.62.1.204-229.1998
Notley-McRobb L, Ferenci T. Adaptive mgl-regulatory mutations and genetic diversity evolving in glucose-limited Escherichia coli populations. Environ Microbiol. 1999;1:33–43. DOI: 10.1046/j.1462-2920.1999.00002.x
Wackwitz B, Bongaerts J, Goodman SD, Unden G. Growth phase-dependent regulation of nuoA-N expression in Escherichia coli K-12 by the Fis protein: upstream binding sites and bioenergetic significance. Mol Gen Genet. 1999;262:876–83. DOI: 10.1007/s004380051153
Tramonti A, De Canio M, Delany I, Scarlato V, De Biase D. Mechanisms of transcription activation exerted by GadX and GadW at the gadA and gadBC gene promoters of the glutamate-based acid resistance system in Escherichia coli. J Bacteriol. 2006;188:8118–27. DOI: 10.1128/JB.01044-06
Hernández-Montalvo V, Martínez A, Hernández-Chavez G, Bolivar F, Valle F, Gosset G. Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol Bioeng. 2003;83:687–94. DOI: 10.1002/bit.10702
Wada A, Yamazakit Y, Fujitat N, Ishihamatt A. Structure and probable genetic location of a “ribosome modulation factor” associated with 100S ribosomes in stationary-phase Escherichia coli cells (growth-dependent control/translation regulation/two-dimensional gel electrophoresis). Proc Nadl Acad Sci USA. 1990;87:2657–61. DOI: 10.1073/pnas.87.7.2657
Izutsu K, Wada C, Komine Y, Tomoyuki S, Ueguchi C, Nakura S, et al. Escherichia coli ribosome-associated protein SRA, whose copy number increases during stationary phase. J Bacteriol. 2001;183:2765–73. DOI: 10.1128/JB.183.9.2765-2773.2001
Bougdour A, Gottesman S. ppGpp regulation of RpoS degradation via anti-adaptor protein IraP. PNAS. 2007.
Tremblay LW, Dunaway-Mariano D, Allen KN. Structure and activity analyses of Escherichia coli K-12 NagD provide insight into the evolution of biochemical function in the haloalkanoic acid dehalogenase superfamily. Biochemistry. 2006;45:1183–93. 10.1021/bi051842j. DOI: 10.1021/bi051842j
Skretas G, Makino T, Varadarajan N, Pogson M, Georgiou G. Multi-copy genes that enhance the yield of mammalian G protein-coupled receptors in Escherichia coli. Metab Eng. 2012;14:591–602. DOI: 10.1016/j.ymben.2012.05.001
Semsey S, Krishna S, Sneppen K, Adhya S. Signal integration in the galactose network of Escherichia coli. Mol Microbiol. 2007;65:465–76. DOI: 10.1111/j.1365-2958.2007.05798.x
Geanacopoulos M, Adhya S. Functional characterization of roles of GalR and GalS asRegulators of thegalRegulon. J Bacteriol. 1997. 10.1128/jb.179.1.228-234.1997. DOI: 10.1128/jb.179.1.228-234.1997
Lastiri-Pancardo G, Mercado-Hernamp JS, Kim J, Jimamp I. A quantitative method for proteome reallocation using minimal regulatory interventions. Nat Chem Biol. 2020. 10.1038/s41589-020-0593-y. DOI: 10.1038/s41589-020-0593-y
Chou C, Bennett GN, Sari K. Effect of modified glucose uptake using genetic engineering techniques on high-level recombinant protein production in escherichia coli dense cultures. Biotechnol Adv. 1994;44:952–60.