Bacterial Proteins; Peptides; Pheromones; Bacterial Proteins/metabolism; DNA Transformation Competence/genetics; Gene Expression Regulation, Bacterial; Humans; Peptides/genetics; Pheromones/genetics/metabolism; Regulon/genetics; Signal Transduction/genetics
Abstract :
[en] Competence for DNA transformation is a major strategy for bacterial adaptation and survival. Yet, this successful tactic is energy-consuming, shifts dramatically the metabolism, and transitory impairs the regular cell-cycle. In streptococci, complex regulatory pathways control competence deactivation to narrow its development to a sharp window of time, a process known as competence shut-off. Although characterized in streptococci whose competence is activated by the ComCDE signaling pathway, it remains unclear for those controlled by the ComRS system. In this work, we investigate competence shut-off in the major human gut commensal Streptococcus salivarius. Using a deterministic mathematical model of the ComRS system, we predicted a negative player under the control of the central regulator ComX as involved in ComS/XIP pheromone degradation through a negative feedback loop. The individual inactivation of peptidase genes belonging to the ComX regulon allowed the identification of PepF as an essential oligoendopeptidase in S. salivarius. By combining conditional mutants, transcriptional analyses, and biochemical characterization of pheromone degradation, we validated the reciprocal role of PepF and XIP in ComRS shut-off. Notably, engineering cleavage site residues generated ultra-resistant peptides producing high and long-lasting competence activation. Altogether, this study reveals a proteolytic shut-off mechanism of competence in the salivarius group and suggests that this mechanism could be shared by other ComRS-containing streptococci.
Disciplines :
Microbiology
Author, co-author :
Knoops, Adrien ; Louvain Institute of Biomolecular Science and Technology, Université catholique
Ledesma-García, Laura ; Louvain Institute of Biomolecular Science and Technology, Université catholique
Waegemans, Alexandra ; Louvain Institute of Biomolecular Science and Technology, Université catholique
Lamontagne, Morgane; Louvain Institute of Biomolecular Science and Technology, Université catholique
Decat, Baptiste; Louvain Institute of Biomolecular Science and Technology, Université catholique
Degand, Hervé; Louvain Institute of Biomolecular Science and Technology, Université catholique
Morsomme, Pierre ; Louvain Institute of Biomolecular Science and Technology, Université catholique
Soumillion, Patrice ; Louvain Institute of Biomolecular Science and Technology, Université catholique
Delvigne, Frank ; Université de Liège - ULiège > Département GxABT > Microbial technologies ; Microbial Processes and Interactions, TERRA Research and Teaching Center
Hols, Pascal ; Louvain Institute of Biomolecular Science and Technology, Université catholique
Language :
English
Title :
Competence shut-off by intracellular pheromone degradation in salivarius streptococci.
Huang R, Li M, Gregory RL. Bacterial interactions in dental biofilm. Virulence. 2011 Sep; 2(5):435–44. 16140 [pii]; https://doi.org/10.4161/viru.2.5.16140 PMID: 21778817
Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012 Jun 13; 486(7402):207–14. nature11234 [pii]; https://doi.org/10.1038/nature11234 PMID: 22699609
Kommineni S, Bretl DJ, Lam V, Chakraborty R, Hayward M, Simpson P et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature. 2015 Oct 29; 526(7575):719–22. nature15524 [pii]; https://doi.org/10.1038/nature15524 PMID: 26479034
Reck M, Tomasch J, Wagner-Dobler I. The alternative sigma factor SigX controls bacteriocin synthesis and competence, the two quorum sensing regulated traits in Streptococcus mutans. PLoS Genet. 2015 Jul; 11(7):e1005353. https://doi.org/10.1371/journal.pgen.1005353 PGENETICS-D-14-03160 [pii]. PMID: 26158727
Shanker E, Federle MJ. Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes (Basel). 2017 Jan 5; 8(1):15. genes8010015 [pii]; https://doi.org/10.3390/genes8010015 PMID: 28067778
Son M, Ghoreishi D, Ahn SJ, Burne RA, Hagen SJ. Sharply tuned pH response of genetic competence regulation in Streptococcus mutans: a microfluidic study of the environmental sensitivity of comX. Appl Environ Microbiol. 2015 Aug 15; 81(16):5622–31. AEM.01421-15 [pii]; https://doi.org/10.1128/AEM. 01421-15 PMID: 26070670
Mignolet J, Fontaine L, Sass A, Nannan C, Mahillon J, Coenye T et al. Circuitry rewiring directly couples competence to predation in the gut dweller Streptococcus salivarius. Cell Rep. 2018 Feb 13; 22 (7):1627–38. S2211-1247(18)30104-9 [pii]; https://doi.org/10.1016/j.celrep.2018.01.055 PMID: 29444418
Veening JW, Blokesch M. Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat Rev Microbiol. 2017 Oct; 15(10):621–9. nrmicro.2017.66 [pii]; https://doi.org/10.1038/nrmicro.2017.66 PMID: 28690319
Wang CY, Dawid S. Mobilization of bacteriocins during competence in streptococci. Trends Microbiol. 2018 May; 26(5):389–91. S0966-842X(18)30061-1 [pii]; https://doi.org/10.1016/j.tim.2018.03.002 PMID: 29588109
Fontaine L, Wahl A, Flechard M, Mignolet J, Hols P. Regulation of competence for natural transformation in streptococci. Infect Genet Evol. 2015 Jul; 33343–60. S1567-1348(14)00328-1 [pii]; https://doi.org/10.1016/j.meegid.2014.09.010 PMID: 25236918
Havarstein LS, Coomaraswamy G, Morrison DA. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci U S A. 1995 Nov 21; 92(24):11140–4. https://doi.org/10.1073/pnas.92.24.11140 PMID: 7479953
Lee MS, Morrison DA. Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J Bacteriol. 1999 Aug; 181(16):5004–16. https://doi.org/10.1128/JB.181.16.5004-5016.1999 PMID: 10438773
Lingeswaran A, Metton C, Henry C, Monnet V, Juillard V, Gardan R. Export of Rgg quorum sensing peptides is mediated by the PptAB ABC transporter in Streptococcus thermophilus strain LMD-9. Genes (Basel). 2020 Sep 19; 11(9):1096. genes11091096 [pii]; https://doi.org/10.3390/ genes11091096 PMID: 32961685
Fontaine L, Boutry C, de Frahan MH, Delplace B, Fremaux C, Horvath P et al. A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius. J Bacteriol. 2010 Mar; 192(5):1444–54. JB.01251-09 [pii]; https://doi.org/10.1128/JB.01251-09 PMID: 20023010
Gardan R, Besset C, Gitton C, Guillot A, Fontaine L, Hols P et al. Extracellular life cycle of ComS, the competence-stimulating peptide of Streptococcus thermophilus. J Bacteriol. 2013 Apr; 195(8):1845–55. JB.02196-12 [pii]; https://doi.org/10.1128/JB.02196-12 PMID: 23396911
Talagas A, Fontaine L, Ledesma-Garcia L, Mignolet J, Li de la Sierra-Gallay, Lazar N et al. Structural Insights into streptococcal competence regulation by the cell-to-cell communication system ComRS. PLoS Pathog. 2016 Dec; 12(12):e1005980. https://doi.org/10.1371/journal.ppat.1005980 PPATHOGENS-D-16-01508 [pii]. PMID: 27907189
Balsalobre L, Ferrandiz MJ, Linares J, Tubau F, de la Campa AG. Viridans group streptococci are donors in horizontal transfer of topoisomerase IV genes to Streptococcus pneumoniae. Antimicrob Agents Chemother. 2003 Jul; 47(7):2072–81. https://doi.org/10.1128/AAC.47.7.2072-2081.2003 PMID: 12821449
Blokesch M. In and out-contribution of natural transformation to the shuffling of large genomic regions. Curr Opin Microbiol. 2017 Aug; 3822–9. S1369-5274(17)30004-8 [pii]; https://doi.org/10.1016/j.mib.2017.04.001 PMID: 28458094
Dowson CG, Hutchison A, Woodford N, Johnson AP, George RC, Spratt BG. Penicillin-resistant viridans streptococci have obtained altered penicillin-binding protein genes from penicillin-resistant strains of Streptococcus pneumoniae. Proc Natl Acad Sci U S A. 1990 Aug; 87(15):5858–62. https://doi.org/10.1073/pnas.87.15.5858 PMID: 2377622
Dowson CG, Coffey TJ, Kell C, Whiley RA. Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2B in S. pneumoniae. Mol Microbiol. 1993 Aug; 9(3):635–43. https://doi.org/10.1111/j.1365-2958.1993.tb01723.x PMID: 8412708
Pletz MW, McGee L, Van Beneden CA, Petit S, Bardsley M, Barlow M et al. Fluoroquinolone resistance in invasive Streptococcus pyogenes isolates due to spontaneous mutation and horizontal gene transfer. Antimicrob Agents Chemother. 2006 Mar; 50(3):943–8. 50/3/943 [pii]; https://doi.org/10.1128/AAC.50.3.943-948.2006 PMID: 16495255
Berge MJ, Mercy C, Mortier-Barriere I, VanNieuwenhze MS, Brun YV, Grangeasse C et al. A programmed cell division delay preserves genome integrity during natural genetic transformation in Streptococcus pneumoniae. Nat Commun. 2017 Nov 20; 8(1):1621. https://doi.org/10.1038/s41467-017-01716-9 [pii]. PMID: 29158515
Zaccaria E, Wells JM, van BP. Metabolic context of the competence-induced checkpoint for cell replication in Streptococcus suis. PLoS One. 2016; 11(5):e0153571. https://doi.org/10.1371/journal.pone. 0153571 PONE-D-15-49063 [pii]. PMID: 27149631
Knoops A, Vande Capelle F, Fontaine L, Verhaegen M, Mignolet J, Goffin P et al. The CovRS environmental sensor directly controls the ComRS signaling system to orchestrate competence bimodality in salivarius streptococci. mBio. 2022 Jan 4; e0312521. https://doi.org/10.1128/mbio.03125-21 PMID: 35089064
Lisboa J, Andreani J, Sanchez D, Boudes M, Collinet B, Liger D et al. Molecular determinants of the DprA-RecA interaction for nucleation on ssDNA. Nucleic Acids Res. 2014 Jun; 42(11):7395–408. gku349 [pii]; https://doi.org/10.1093/nar/gku349 PMID: 24782530
Mirouze N, Berge MA, Soulet AL, Mortier-Barriere I, Quentin Y, Fichant G et al. Direct involvement of DprA, the transformation-dedicated RecA loader, in the shut-off of pneumococcal competence. Proc Natl Acad Sci U S A. 2013 Mar 12; 110(11):E1035–E1044. 1219868110 [pii]; https://doi.org/10.1073/pnas.1219868110 PMID: 23440217
Weng L, Piotrowski A, Morrison DA. Exit from competence for genetic transformation in Streptococcus pneumoniae is regulated at multiple levels. PLoS One. 2013; 8(5):e64197. https://doi.org/10.1371/journal.pone.0064197 PONE-D-13-07569 [pii]. PMID: 23717566
Johnston CH, Soulet AL, Berge M, Prudhomme M, De LD, Polard P. The alternative sigma factor sigma (X) mediates competence shut-off at the cell pole in Streptococcus pneumoniae. Elife. 2020 Nov 2; 9e62907. https://doi.org/10.7554/eLife.62907 [pii]. PMID: 33135635
Martin B, Soulet AL, Mirouze N, Prudhomme M, Mortier-Barriere I, Granadel C et al. ComE/ComE~P interplay dictates activation or extinction status of pneumococcal X-state (competence). Mol Microbiol. 2013 Jan; 87(2):394–411. https://doi.org/10.1111/mmi.12104 PMID: 23216914
Underhill SAM, Shields RC, Burne RA, Hagen SJ. Carbohydrate and PepO control bimodality in competence development by Streptococcus mutans. Mol Microbiol. 2019 Nov; 112(5):1388–402. https://doi.org/10.1111/mmi.14367 PMID: 31403729
Mashburn-Warren L, Goodman SD, Federle MJ, Prehna G. The conserved mosaic prophage protein paratox inhibits the natural competence regulator ComR in Streptococcus. Sci Rep. 2018 Nov 8; 8 (1):16535. https://doi.org/10.1038/s41598-018-34816-7 [pii]. PMID: 30409983
Rutbeek NR, Rezasoltani H, Patel TR, Khajehpour M, Prehna G. Molecular mechanism of quorum sensing inhibition in Streptococcus by the phage protein paratox. J Biol Chem. 2021 Sep; 297 (3):100992. S0021-9258(21)00794-8 [pii]; https://doi.org/10.1016/j.jbc.2021.100992 PMID: 34298018
Kaspar J, Shields RC, Burne RA. Competence inhibition by the XrpA peptide encoded within the comX gene of Streptococcus mutans. Mol Microbiol. 2018 Aug; 109(3):345–64. https://doi.org/10.1111/mmi. 13989 PMID: 29802741
Kaspar J, Ahn SJ, Palmer SR, Choi SC, Stanhope MJ, Burne RA. A unique open reading frame within the comX gene of Streptococcus mutans regulates genetic competence and oxidative stress tolerance. Mol Microbiol. 2015 May; 96(3):463–82. https://doi.org/10.1111/mmi.12948 PMID: 25620525
Son M, Kaspar J, Ahn SJ, Burne RA, Hagen SJ. Threshold regulation and stochasticity from the MecA/ ClpCP proteolytic system in Streptococcus mutans competence. Mol Microbiol. 2018 Dec; 110(6):914–30. https://doi.org/10.1111/mmi.13992 PMID: 29873131
Haustenne L, Bastin G, Hols P, Fontaine L. Modeling of the ComRS signaling pathway reveals the limiting factors controlling competence in Streptococcus thermophilus. Front Microbiol. 2015; 61413. https://doi.org/10.3389/fmicb.2015.01413 PMID: 26733960
Van den Bogert B, Boekhorst J, Herrmann R, Smid EJ, Zoetendal EG, Kleerebezem M. Comparative genomics analysis of Streptococcus isolates from the human small intestine reveals their adaptation to a highly dynamic ecosystem. PLoS One. 2013; 8(12):e83418. https://doi.org/10.1371/journal.pone. 0083418 PONE-D-13-28051 [pii]. PMID: 24386196
Son M, Ahn SJ, Guo Q, Burne RA, Hagen SJ. Microfluidic study of competence regulation in Streptococcus mutans: environmental inputs modulate bimodal and unimodal expression of comX. Mol Microbiol. 2012 Oct; 86(2):258–72. https://doi.org/10.1111/j.1365-2958.2012.08187.x PMID: 22845615
Ledesma-Garcia L, Thuillier J, Guzman-Espinola A, Ensinck I, Li de la Sierra-Gallay, Lazar N et al. Molecular dissection of pheromone selectivity in the competence signaling system ComRS of streptococci. Proc Natl Acad Sci U S A. 2020 Apr 7; 117(14):7745–54. 1916085117 [pii]; https://doi.org/10.1073/pnas.1916085117 PMID: 32198205
Cassone M, Gagne AL, Spruce LA, Seeholzer SH, Sebert ME. The HtrA protease from Streptococcus pneumoniae digests both denatured proteins and the competence-stimulating peptide. J Biol Chem. 2012 Nov 9; 287(46):38449–59. S0021-9258(20)62311-0 [pii]; https://doi.org/10.1074/jbc.M112. 391482 PMID: 23012372
Wilkening RV, Chang JC, Federle MJ. PepO, a CovRS-controlled endopeptidase, disrupts Streptococcus pyogenes quorum sensing. Mol Microbiol. 2016 Jan; 99(1):71–87. https://doi.org/10.1111/mmi. 13216 PMID: 26418177
Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018 Jan 4; 46(D1):D624–D632. 4626772 [pii]; https://doi.org/10.1093/nar/gkx1134 PMID: 29145643
Desai BV, Morrison DA. An unstable competence-induced protein, CoiA, promotes processing of donor DNA after uptake during genetic transformation in Streptococcus pneumoniae. J Bacteriol. 2006 Jul; 188(14):5177–86. 188/14/5177 [pii]; https://doi.org/10.1128/JB.00103-06 PMID: 16816189
Nardi M, Renault P, Monnet V. Duplication of the pepF gene and shuffling of DNA fragments on the lactose plasmid of Lactococcus lactis. J Bacteriol. 1997 Jul; 179(13):4164–71. https://doi.org/10.1128/jb.179.13.4164-4171.1997 PMID: 9209029
Kanamaru K, Stephenson S, Perego M. Overexpression of the PepF oligopeptidase inhibits sporulation initiation in Bacillus subtilis. J Bacteriol. 2002 Jan; 184(1):43–50. https://doi.org/10.1128/JB.184.1.4350.2002 PMID: 11741842
Kleine LL, Monnet V, Pechoux C, Trubuil A. Role of bacterial peptidase F inferred by statistical analysis and further experimental validation. HFSP J. 2008 Feb; 2(1):29–41. https://doi.org/10.2976/1.2820377 PMID: 19404451
Vimr ER, Green L, Miller CG. Oligopeptidase-deficient mutants of Salmonella typhimurium. J Bacteriol. 1983 Mar; 153(3):1259–65. https://doi.org/10.1128/jb.153.3.1259-1265.1983 PMID: 6337992
Jiang X, Zhang M, Ding Y, Yao J, Chen H, Zhu D et al. Escherichia coli prlC gene encodes a trypsin-like proteinase regulating the cell cycle. J Biochem. 1998 Nov; 124(5):980–5. https://doi.org/10.1093/oxfordjournals.jbchem.a022216 PMID: 9792922
Monnet V, Nardi M, Chopin A, Chopin MC, Gripon JC. Biochemical and genetic characterization of PepF, an oligopeptidase from Lactococcus lactis. J Biol Chem. 1994 Dec 23; 269(51):32070–6. S0021-9258(18)31602-8 [pii]. PMID: 7798200
Kawasaki A, Nakano H, Hosokawa A, Nakatsu T, Kato H, Watanabe K. The exquisite structure and reaction mechanism of bacterial Pz-peptidase A toward collagenous peptides: X-ray crystallographic structure analysis of PZ-peptidase a reveals differences from mammalian thimet oligopeptidase. J Biol Chem. 2010 Nov 5; 285(45):34972–80. S0021-9258(20)47037-1 [pii]; https://doi.org/10.1074/jbc.M110.141838 PMID: 20817732
Lin B, Averett WF, Novak J, Chatham WW, Hollingshead SK, Coligan JE et al. Characterization of PepB, a group B streptococcal oligopeptidase. Infect Immun. 1996 Aug; 64(8):3401–6. https://doi.org/10.1128/iai.64.8.3401-3406.1996 PMID: 8757883
Mignolet J, Fontaine L, Kleerebezem M, Hols P. Complete genome sequence of Streptococcus salivarius HSISS4, a human commensal bacterium highly prevalent in the digestive tract. Genome Announc. 2016 Feb 4; 4(1):e01637–15. 4/1/e01637-15 [pii]; https://doi.org/10.1128/genomeA.01637-15 PMID: 26847886
Letort C, Juillard V. Development of a minimal chemically-defined medium for the exponential growth of Streptococcus thermophilus. J Appl Microbiol. 2001 Dec; 91(6):1023–9. 1469 [pii]; https://doi.org/10.1046/j.1365-2672.2001.01469.x PMID: 11851809
Fontaine L, Dandoy D, Boutry C, Delplace B, de Frahan MH, Fremaux C et al. Development of a versatile procedure based on natural transformation for marker-free targeted genetic modification in Streptococcus thermophilus. Appl Environ Microbiol. 2010 Dec; 76(23):7870–7. AEM.01671-10 [pii]; https://doi.org/10.1128/AEM.01671-10 PMID: 20935129
Dower WJ, Miller JF, Ragsdale CW. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11; 16(13):6127–45. https://doi.org/10.1093/nar/16.13.6127 PMID: 3041370
Liu X, Gallay C, Kjos M, Domenech A, Slager J, van Kessel SP et al. High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae. Mol Syst Biol. 2017 May 10; 13 (5):931. https://doi.org/10.15252/msb.20167449 PMID: 28490437
Dorrazehi GM, Worms S, Chirakadavil JB, Mignolet J, Hols P, et al. Building scarless gene libraries in the chromosome of bacteria. In: Iranzo O, Roque A, editors. Peptide and Protein Engineering, Springer Protocols Handbooks. New York, NY: Humana; 2020. pp. 189–211.
Fontaine L, Goffin P, Dubout H, Delplace B, Baulard A, Lecat-Guillet N et al. Mechanism of competence activation by the ComRS signalling system in streptococci. Mol Microbiol. 2013 Mar; 87(6):1113–32. https://doi.org/10.1111/mmi.12157 PMID: 23323845