[en] It is still largely unknown how mutations in different genes cause similar diseases - a condition known as locus heterogeneity. A likely explanation is that the different proteins encoded by the locus heterogeneity genes participate in the same biological function and, specifically, that they belong to the same protein complex. Here we report that, in up to 30% of the instances of locus heterogeneity, the disease-causing proteins are indeed members of the same protein complex. Moreover, we observed that, in many instances, the diseases and protein complexes only partially intersect. Among the possible explanations, we surmised that some genes that encode proteins in the complex have not yet been reported as causing disease and are therefore candidate disease genes. Mutations of known human disease genes and murine orthologs of candidate disease genes that encode proteins in the same protein complex do in fact often cause similar phenotypes in humans and mice. Furthermore, we found that the disease-complex intersection is not only incomplete but also non-univocal, with many examples of one disease intersecting more than one protein complex or one protein complex intersecting more than one disease. These limits notwithstanding, this study shows that action on proteins in the same complex is a widespread pathogenic mechanism underlying numerous instances of locus heterogeneity.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Gamba, Alessio ; Université de Liège - ULiège > GIGA > GIGA In silico medecine - Biomechanics Research Unit ; Department of Biochemistry and Molecular Pharmacology Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, I-20156, Milano, Italy
Salmona, Mario; Department of Biochemistry and Molecular Pharmacology Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, I-20156, Milano, Italy
Bazzoni, Gianfranco; Department of Biochemistry and Molecular Pharmacology Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, I-20156, Milano, Italy. gianfranco.bazzoni@marionegri.it
Language :
English
Title :
Quantitative analysis of proteins which are members of the same protein complex but cause locus heterogeneity in disease.
Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–52 (1999). DOI: 10.1038/35011540
Havugimana, P. C. et al. A census of human soluble protein complexes. Cell. 150, 1068–1081 (2012). DOI: 10.1016/j.cell.2012.08.011
Brunner, H. G. & van Driel, M. A. From syndrome families to functional genomics. Nat. Rev. Genet. 5, 545–551 (2004). DOI: 10.1038/nrg1383
Gavin, A.-C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006). DOI: 10.1038/nature04532
Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011). DOI: 10.1038/nrg2918
Chavali, S., Barrenas, F., Kanduri, K. & Benson, M. Network properties of human disease genes with pleiotropic effects. BMC Syst. Biol. 4, 78 (2010). DOI: 10.1186/1752-0509-4-78
Dand, N. et al. Network-Informed Gene Ranking Tackles Genetic Heterogeneity in Exome-Sequencing Studies of Monogenic Disease. Hum. Mutat. 36, 1135–1144 (2015). DOI: 10.1002/humu.22906
Renaux, A. et al. ORVAL: a novel platform for the prediction and exploration of disease-causing oligogenic variant combinations. Nucleic Acids Res. 47, W93–W98 (2019). DOI: 10.1093/nar/gkz437
Lage, K. et al. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat. Biotechnol. 25, 309–316 (2007). DOI: 10.1038/nbt1295
Chen, Y., Jacquemin, T., Zhang, S. & Jiang, R. Prioritizing protein complexes implicated in human diseases by network optimization. BMC Syst. Biol. 8(Suppl 1), S2 (2014). DOI: 10.1186/1752-0509-8-S1-S2
Huttlin, E. L. et al. Architecture of the human interactome defines protein communities and disease networks. Nature 545, 505–509 (2017). DOI: 10.1038/nature22366
Vanunu, O., Magger, O., Ruppin, E., Shlomi, T. & Sharan, R. Associating genes and protein complexes with disease via network propagation. PLoS Comput. Biol. 6, e1000641 (2010). DOI: 10.1371/journal.pcbi.1000641
Wang, Q. et al. Community of protein complexes impacts disease association. Eur. J. Hum. Genet. EJHG 20, 1162–1167 (2012). DOI: 10.1038/ejhg.2012.74
McClellan, J. & King, M.-C. Genetic heterogeneity in human disease. Cell. 141, 210–217 (2010). DOI: 10.1016/j.cell.2010.03.032
Daiger, S. P., Bowne, S. J. & Sullivan, L. S. Perspective on genes and mutations causing retinitis pigmentosa. Arch. Ophthalmol. Chic. Ill 1960(125), 151–158 (2007). DOI: 10.1001/archopht.125.2.151
Amberger, J. S., Bocchini, C. A., Schiettecatte, F., Scott, A. F. & Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43, D789–798 (2015). DOI: 10.1093/nar/gku1205
Roston, T. M. et al. Beyond the Electrocardiogram: Mutations in Cardiac Ion Channel Genes Underlie Nonarrhythmic Phenotypes. Clin. Med. Insights Cardiol. 11, 1179546817698134 (2017). DOI: 10.1177/1179546817698134
Mouse Genome, S. C. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002). DOI: 10.1038/nature01262
Smith, C. L., Goldsmith, C.-A. W. & Eppig, J. T. The Mammalian Phenotype Ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biol. 6, R7 (2005). DOI: 10.1186/gb-2004-6-1-r7
Kingsmore, S. F., Dinwiddie, D. L., Miller, N. A., Soden, S. E. & Saunders, C. J. Adopting orphans: comprehensive genetic testing of Mendelian diseases of childhood by next-generation sequencing. Expert Rev. Mol. Diagn. 11, 855–868 (2011). DOI: 10.1586/erm.11.70
Semple, J. I., Vavouri, T. & Lehner, B. A simple principle concerning the robustness of protein complex activity to changes in gene expression. BMC Syst. Biol. 2, 1 (2008). DOI: 10.1186/1752-0509-2-1
Lim, J. et al. Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature 452, 713–718 (2008). DOI: 10.1038/nature06731
Calcagni, G. et al. Clinical Presentation and Natural History of Hypertrophic Cardiomyopathy in RASopathies. Heart Fail. Clin. 14, 225–235 (2018). DOI: 10.1016/j.hfc.2017.12.005
Leducq, J.-B. et al. Evidence for the robustness of protein complexes to inter-species hybridization. PLoS Genet. 8, e1003161 (2012). DOI: 10.1371/journal.pgen.1003161
Olsen, R. W. & Sieghart, W. International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol. Rev. 60, 243–260 (2008). DOI: 10.1124/pr.108.00505
Deakyne, J. S. & Mazin, A. V. Fanconi anemia: at the crossroads of DNA repair. Biochem. Biokhimiia 76, 36–48 (2011). DOI: 10.1134/S0006297911010068
Narayan, D. S., Wood, J. P. M., Chidlow, G. & Casson, R. J. A review of the mechanisms of cone degeneration in retinitis pigmentosa. Acta Ophthalmol. (Copenh.) 94, 748–754 (2016). DOI: 10.1111/aos.13141
Herbert, M. et al. Phosphorylase Kinase Deficiency. in GeneReviews® (eds. Adam, M. P. et al.) (University of Washington, Seattle, 1993).
Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000). DOI: 10.1038/75556
Blake, J. A. et al. Mouse Genome Database (MGD)−2017: community knowledge resource for the laboratory mouse. Nucleic Acids Res. 45, D723–D729 (2017). DOI: 10.1093/nar/gkw1040
Köhler, S. et al. The Human Phenotype Ontology in 2017. Nucleic Acids Res. 45, D865–D876 (2017). DOI: 10.1093/nar/gkw1039