Doctoral thesis (Dissertations and theses)
A new Bayesian framework for the interpretation of geophysical data
Michel, Hadrien
2023
 

Files


Full Text
PhD_MichelOK.pdf
Author preprint (10.69 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
geophysics; inversion; uncertainty quantification; Bayesian; Bayesian Evidential Learning; sNMR; MASW
Abstract :
[en] Providing images of the subsurface from ground-based datasets is at the heart of the geophysicist’s work. Multiple approaches have been applied to tackle this task. Most of the time, this task is performed in a deterministic framework, meaning that for a given dataset, a single model is provided to explain the data. However, those deterministic approaches lack the ability to provide reasonable uncertainty estimations, that take into account the non-unicity of the solution, noise in the data and modelling error. To provide precise and accurate models of the subsurface along with uncertainty, geophysicists use probabilistic approaches. Those approaches are able to sample the ensemble of a priori possible models (the prior) in order to extract models that can reasonably explain the datasets (the posterior). Such approaches, even though superior in terms of the reliability of their results, are rarely applied in practice due to their significant computational requirements. In this manuscript, the aim is to propose a new Bayesian framework to interpret those geophysical datasets. This new framework, called Bayesian Evidential Learning, promises to enable a fast, precise and accurate estimation of the uncertainty. This framework is applied and adapted for 1D geophysical datasets (BEL1D). The new and adapted framework presents several advantages when compared to classical probabilistic approaches: from fast computations due to the limited number of forward runs needed, to providing insight about the experiment sensitivity and the validity of the prior. Moreover, it benefits from its construction as a Machine Learning algorithm, leading to quasi-instantaneous models of uncertainty.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Michel, Hadrien  ;  Université de Liège - ULiège > Urban and Environmental Engineering  ; UGent - Ghent University [BE] > Faculty of Sciences, Departement of Geology ; F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]
Language :
English
Title :
A new Bayesian framework for the interpretation of geophysical data
Defense date :
January 2023
Number of pages :
198
Institution :
ULiège - Université de Liège [Faculté des Sciences Appliquées], Liège, Belgium
UGent - Ghent University [Faculty of Sciences], Gent, Belgium
Degree :
Doctorat en Sciences Appliquées
Cotutelle degree :
Doctor of Science: Geology
Promotor :
Nguyen, Frédéric ;  Université de Liège - ULiège > Département ArGEnCo > Géophysique appliquée
Hermans, Thomas;  UGent - Ghent University [BE] > Faculty of Sciences, Departement of Geology
President :
Dassargues, Alain  ;  Université de Liège - ULiège > Urban and Environmental Engineering
Secretary :
Dudal, David;  UGent - Ghent University [BE] > Faculty of Sciences, Departement of Physics and astronomy ; KU Leuven - Catholic University of Leuven [BE] > Faculty of Science, Department of Physics and Astronomy
Jury member :
Laloy, Eric;  SCK CEN - Belgian Nuclear Research Centre [BE] > Engineered and Geosystems Analysis
Garambois, Stéphane;  Université Grenoble Alpes > ISTerre
Irving, James;  UNIL - Université de Lausanne [CH] > Faculty of Geosciences and Environment, ISTE
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]
Funding text :
Hadrien Michel is a fellow from F.R.S.-FNRS.
Available on ORBi :
since 14 October 2022

Statistics


Number of views
120 (27 by ULiège)
Number of downloads
10 (10 by ULiège)

Bibliography


Similar publications



Contact ORBi