Abstract :
[en] In this work, a data-driven framework based on Phase-Field simulations data is proposed to highlight the capabilities of neural networks to ensure accurate low dimensionality reduction of simulated microstructural images and to provide time-series analysis. The dataset was indeed constructed from high-fidelity Phase-Field simulations. Analyses demonstrated that the association of auto-encoder neural networks and principal component analyses leads to ensure efficient and significant dimensionality reduction: 1/196 of reduction ratio with more than 80% of accuracy. These findings give insight to apply analyses on data from the latent dimension. Application of Long Short Term Memory (LSTM) neural networks showed the possibility of making next frame predictions; that makes possible the acceleration of Phase-Field simulation without the need of high computing resources. We discussed the application of such a framework on various areas of research. Different methods are proposed from the conducted analyses, in order to ensure dimensionality reduction (auto-encoders, principal component analysis, Artificial Neural Networks) and time-series analysis (LSTM, Gated Recurrent Unit (GRU)).
Funding text :
As Research Director of FRS-FNRS, AM Habraken acknowledges the support of this institution. The ULiège research council of Sciences and Techniques is acknowledged for the post-doc IN IPD-STEMA 2019 grant of Seifallah Fetni.
Scopus citations®
without self-citations
10