Article (Scientific journals)
Capabilities of Auto-encoders and Principal Component Analysis of the reduction of microstructural images; Application on the acceleration of Phase-Field simulations
El Fetni, Seifallah; Habraken, Anne; Duchene, Laurent
2022In Computational Materials Science, 216 (January 2023)
Peer Reviewed verified by ORBi Dataset
 

Files


Full Text
1-s2.0-S0927025622005316-main.pdf
Publisher postprint (3.24 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Phase field; Spinodal decomposition; LSTM; GRU; Auto-encoders; PCA; HPC
Abstract :
[en] In this work, a data-driven framework based on Phase-Field simulations data is proposed to highlight the capabilities of neural networks to ensure accurate low dimensionality reduction of simulated microstructural images and to provide time-series analysis. The dataset was indeed constructed from high-fidelity Phase-Field simulations. Analyses demonstrated that the association of auto-encoder neural networks and principal component analyses leads to ensure efficient and significant dimensionality reduction: 1/196 of reduction ratio with more than 80% of accuracy. These findings give insight to apply analyses on data from the latent dimension. Application of Long Short Term Memory (LSTM) neural networks showed the possibility of making next frame predictions; that makes possible the acceleration of Phase-Field simulation without the need of high computing resources. We discussed the application of such a framework on various areas of research. Different methods are proposed from the conducted analyses, in order to ensure dimensionality reduction (auto-encoders, principal component analysis, Artificial Neural Networks) and time-series analysis (LSTM, Gated Recurrent Unit (GRU)).
Disciplines :
Materials science & engineering
Author, co-author :
El Fetni, Seifallah ;  Université de Liège - ULiège > Urban and Environmental Engineering  ; Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F
Habraken, Anne  ;  Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F ; Université de Liège - ULiège > Département de mécanique des matériaux et structures ; Université de Liège - ULiège > Département de mécanique des matériaux et structures > Service M & S
Duchene, Laurent  ;  Université de Liège - ULiège > Département ArGEnCo > Analyse multi-échelles dans le domaine des matériaux et structures du génie civil ; Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F
Language :
English
Title :
Capabilities of Auto-encoders and Principal Component Analysis of the reduction of microstructural images; Application on the acceleration of Phase-Field simulations
Publication date :
2022
Journal title :
Computational Materials Science
ISSN :
0927-0256
eISSN :
1879-0801
Publisher :
Elsevier, Netherlands
Volume :
216
Issue :
January 2023
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Development Goals :
9. Industry, innovation and infrastructure
Funders :
ULiège research council of Sciences and Techniques
Funding text :
As Research Director of FRS-FNRS, AM Habraken acknowledges the support of this institution. The ULiège research council of Sciences and Techniques is acknowledged for the post-doc IN IPD-STEMA 2019 grant of Seifallah Fetni.
Available on ORBi :
since 06 October 2022

Statistics


Number of views
126 (16 by ULiège)
Number of downloads
6 (5 by ULiège)

Scopus citations®
 
12
Scopus citations®
without self-citations
10
OpenCitations
 
0
OpenAlex citations
 
12

Bibliography


Similar publications



Contact ORBi