Drop-in biofuels production from microalgae to hydrocarbons: Microalgal cultivation and harvesting, conversion pathways, economics and prospects for aviation
[en] In the last few years, governments all around the world have agreed upon migrating towards carbon-neutral economies as a strategy for restraining the effects of climate change. A major obstacle limiting this achievement is greenhouse gases emissions, for which the aviation sector is a key contributor because of its dependence on fossil fuels. As an alternative, biofuels with similar characteristics to current fossil-fuels and fully compatible with the existing petroleum infrastructure (i.e., drop-in biofuels) are being developed. In this regard, microalgae are a promising feedstock thanks to, among other aspects, their potential for lipid accumulation. This review outlines the development status, opportunities, and challenges of different technologies that are capable of or applicable to transform microalgae into aviation fuels. To this effect, a baseline of the existing jet fuels and the requirements for potential aviation biofuels is initially presented. Then, microalgae production and valorization techniques are discussed with an emphasis on the thermochemical pathways. Finally, an assessment of the present techno-economic feasibility of microalgae-derived aviation fuels is discussed, along with the authors’ point of view on the suitability of these techniques. Further developments are needed to reduce the costs of cultivation and harvesting of microalgae, and a biorefinery approach might improve the economics of the overall process. In addition, while each of the conversion routes described has its advantages and drawbacks, they converge upon the need of optimizing the deoxygenation techniques and the proportion of the suitable type of hydrocarbons that match fuel requirements.
Breitenstein, Antoine ; Université de Liège - ULiège > Gembloux Agro-Bio Tech > Gembloux Agro-Bio Tech
Nimmegeers, Philippe; UA - University of Antwerp [BE] > Department of Engineering Management ; UA - University of Antwerp [BE] > Faculty of Applied Engineering > Intelligence in Processes, Advanced Catalysts and Solvents (iPRACS) ; VCCM, Flanders Make
Perez Saura, Pablo ; Université de Liège - ULiège > Integrative Biological Sciences (InBioS) ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et physiologie des microalgues
Hai, Bingxin; UAlberta - University of Alberta [CA] > Department of Agricultural, Food & Nutritional Science
Asomaning, Justice; UAlberta - University of Alberta [CA] > Department of Agricultural, Food & Nutritional Science
Alizadeh Eslami, Ali; Université catholique de Louvain (UCLouvain) > Institute of Condensed Matter and Nanosciences (IMCN)
Billen, Peter; UA - University of Antwerp [BE] > Faculty of Applied Engineering > Intelligence in Processes, Advanced Catalysts and Solvents (iPRACS)
Van Passel, Steven; UA - University of Antwerp [BE] > Department of Engineering Management ; VCCM, Flanders Make ; Nanolab Centre of Excellence
Bressler, David C.; UAlberta - University of Alberta [CA] > Department of Agricultural, Food & Nutritional Science
Debecker, Damien P.; Université catholique de Louvain (UCLouvain) > Institute of Condensed Matter and Nanosciences (IMCN)
Remacle, Claire ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et physiologie des microalgues ; Université de Liège - ULiège > Integrative Biological Sciences (InBioS)
Richel, Aurore ; Université de Liège - ULiège > Département GxABT > Smart Technologies for Food and Biobased Products (SMARTECH)
Drop-in biofuels production from microalgae to hydrocarbons: Microalgal cultivation and harvesting, conversion pathways, economics and prospects for aviation
Publication date :
30 August 2022
Journal title :
Biomass and Bioenergy
ISSN :
0961-9534
eISSN :
1873-2909
Publisher :
Elsevier, United Kingdom
Volume :
165
Pages :
106555
Peer reviewed :
Peer Reviewed verified by ORBi
Development Goals :
7. Affordable and clean energy 9. Industry, innovation and infrastructure
Name of the research project :
Energy Transition Fund - ADV_BIO
Funders :
SPF Economie - Service Public Fédéral Économie, PME, Classes moyennes et Énergie
Demirbas, A., Political, economic and environmental impacts of biofuels: a review. Appl. Energy 86 (2009), S108–S117, 10.1016/j.apenergy.2009.04.036.
Höök, M., Tang, X., Depletion of fossil fuels and anthropogenic climate change-A review. Energy Pol. 52 (2013), 797–809, 10.1016/j.enpol.2012.10.046.
Barbir, F., Veziroǧlu, T.N., Plass, H.J., Environmental damage due to fossil fuels use. Int. J. Hydrogen Energy 15 (1990), 739–749, 10.1016/0360-3199(90)90005-J.
Hoen, A., van Grinsven, A., Kampman, B., Faber, J., van Essen, H., Skinner, I., Directorate General for Internal Policies. 2017, Policy department for structural and cohesion policies Transport and Tourism Research for TRAN Committee-Decarbonisation of EU transport study.
Union, European, Clean Power for Transport: a European Alternative Fuels Strategy. 2013.
Union, E., Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December2018 on the Promotion of the Use of Energy from Renewable Sources, 2018 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2018:328:FULL&from=EN.
Directive 2014/94/EU OF, the European Parliament and of the Council of 22 October 2014 on the Deployment of Alternative Fuels Infrastructure, 2014.
United Nations, The Paris Agreement. 2015 https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement. (Accessed 28 May 2021)
Intergovernmental Panel On Climate Change (IPCC). AR5 Climate Change 2014: Mitigation of Climate Change. 2014 https://www.ipcc.ch/report/ar5/wg3/. (Accessed 29 November 2021)
Wei, H., Liu, W., Chen, X., Yang, Q., Li, J., Chen, H., Renewable bio-jet fuel production for aviation: a review. Fuel, 254, 2019, 10.1016/j.fuel.2019.06.007.
Braun-Unkhoff, M., Riedel, U., Alternative fuels in aviation. CEAS Aeronaut. J. 6 (2015), 83–93, 10.1007/s13272-014-0131-2.
Neuling, U., Kaltschmitt, M., Introduction, Biokerosene Status Prospect. 2017, 1–10, 10.1007/978-3-662-53065-8_1.
International Energy Agency (IEA). World Energy Balances Highlights. 2021, World Energy Stat. Balanc. (accessed March 15, 2022) https://www.iea.org/data-and-statistics/data-product/world-energy-statistics-and-balances.
Yilmaz, N., Atmanli, A., Sustainable alternative fuels in aviation. Energy 140 (2017), 1378–1386, 10.1016/j.energy.2017.07.077.
United Nations, World population prospect 2019: Highlights, Department of Economic and Social Affairs, Population Division (ST/ESA/SER.A/423). 2019, 1–39.
United Nations, World Population 2019. 2019.
Neuling, U., Kaltschmitt, M., Conversion routes for production of biokerosene—status and assessment. Biomass Convers. Biorefinery 5 (2015), 367–385, 10.1007/s13399-014-0154-2.
Bello, Captured CO2 to Grow Microalgae for Bio-Jet Fuel Production. 2012, Winter Sch. Univ. Cambridge.
Eurostat, Energy, Transport and Environment Statistics 2020 Edition. 2020, - Stat. Books, 96–99 Print. by Impr. Bietlot Freres, Belgium https://ec.europa.eu/eurostat/about/policies/copyright.
Airbus, Airbus Forecasts Need for over 39,000 New Aircraft in the Next 20 Years. 2019.
Janda, K., Kristoufek, L., Zilberman, D., Biofuels: policies and impacts. Agric. Econ. (Czech Republic) 58 (2012), 372–386, 10.17221/124/2011-agricecon.
Karatzos, S., Mcmillan, J.D., Saddler, J.N., The potential and challenges of drop-in biofuels. Rep ICE Bioenergy Task, 39, 2014 Authors.
Naqvi, M., Yan, J., First-generation biofuels. Handb. Clean Energy Syst., 2015, John Wiley & Sons, Ltd, 1–18, 10.1002/9781118991978.hces207.
Carriquiry, M.A., Du, X., Timilsina, G.R., Second generation biofuels: economics and policies. Energy Pol. 39 (2011), 4222–4234, 10.1016/j.enpol.2011.04.036.
Gasparatos, A., Stromberg, P., Takeuchi, K., Sustainability impacts of first-generation biofuels. Anim. Front. 3 (2013), 12–26, 10.2527/af.2013-0011.
Kargbo, H., Harris, J.S., Phan, A.N., Drop-in” fuel production from biomass: critical review on techno-economic feasibility and sustainability. Renew. Sustain. Energy Rev., 135, 2021, 110168, 10.1016/j.rser.2020.110168.
Saladini, F., Patrizi, N., Pulselli, F.M., Marchettini, N., Bastianoni, S., Guidelines for emergy evaluation of first, second and third generation biofuels. Renew. Sustain. Energy Rev. 66 (2016), 221–227, 10.1016/j.rser.2016.07.073.
Dahman, Y., Dignan, C., Fiayaz, A., Chaudhry, A., An introduction to biofuels, foods, livestock, and the environment. Biomass, Biopolym. Mater. Bioenergy Constr. Biomed. Other Ind. Appl., 2019, Elsevier, 241–276, 10.1016/B978-0-08-102426-3.00013-8.
Pattanaik, L., Pattnaik, F., Saxena, D.K., Naik, S.N., Biofuels from agricultural wastes. Second Third Gener. Feed. Evol. Biofuels, 2019, Elsevier, 103–142, 10.1016/B978-0-12-815162-4.00005-7.
Regalbuto, J.R., Almalki, F., Liu, Q., Banerjee, R., Wong, A., Keels, J., Hydrocarbon fuels from lignocellulose. Water, Energy Food Sustain. Middle East Sustain. Triangle, 2017, Springer International Publishing, 127–159, 10.1007/978-3-319-48920-9_7.
Morales, G., Iglesias, J., Melero, J.A., Sustainable catalytic conversion of biomass for the production of biofuels and bioproducts. Catalysts, 10, 2020, 10.3390/catal10050581.
Verma, M., Godbout, S., Brar, S.K., Solomatnikova, O., Lemay, S.P., Larouche, J.P., Biofuels production from biomass by thermochemical conversion technologies. Int. J. Chem. Eng., 2012, 10.1155/2012/542426.
Srivastava, R.K., Shetti, N.P., Reddy, K.R., Aminabhavi, T.M., Biofuels, biodiesel and biohydrogen production using bioprocesses. A review. Environ. Chem. Lett. 18 (2020), 1049–1072, 10.1007/s10311-020-00999-7.
Tursi, A., A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res. J. 6 (2019), 962–979, 10.18331/BRJ2019.6.2.3.
Khan, M.I., Shin, J.H., Kim, J.D., The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Factories, 17, 2018, 36, 10.1186/s12934-018-0879-x.
International Energy Agency (IEA). World Energy Outlook 2020. 2020.
Lam, N.L., Smith, K.R., Gauthier, A., Bates, M.N., Kerosene: a review of household uses and their hazards in low-and middle-income countries. J. Toxicol. Environ. Health Part B Crit. Rev. 15 (2012), 396–432, 10.1080/10937404.2012.710134.
Ritchie, G.D., Still, K.R., Rossi, J., Bekkedal, M.Y.V., Bobb, A.J., Arfsten, D.P., Biological and Health Effects of Exposure to Kerosene-Based Jet Fuels and Performance Additives. 2003, 10.1080/10937400306473.
Elmoraghy, M., Production of Bio-Jet Fuel from Microalgae. 2013.
Edwards, T., Advancements in gas turbine fuels from 1943 to 2005. J. Eng. Gas Turbines Power 129 (2007), 13–20, 10.1115/1.2364007.
International Air Transport Association. IATA Guidance Material for Sustainable Aviation Fuel Management. second ed., 2015 https://www.iata.org/contentassets/d13875e9ed784f75bac90f000760e998/iata20guidance20material20for20saf.pdf.
Cookson, D.J., Lloyd, C.P., Smith, B.E., Investigation of the chemical basis of kerosene (jet fuel) specification properties. Energy Fuel. 1 (1987), 438–447, 10.1021/ef00005a011.
ASTM International, ASTM D1655-21a. Standard Specification for Aviation Turbine Fuels. 2021 West Conshohocken.
Hilman, J.I., Near-term feasibility of alternative jet fuels, near-term feasibility altern. Jet Fuels, 2022, 10.7249/tr554.
Shafer, L.M., Striebich, R.C., Gomach, J., Edwards, T., Chemical class composition of commercial jet fuels and other specialty kerosene fuels, A Collect. Tech. Pap. - 14th AIAA/AHI Int. Sp. Planes Hypersonic Syst. Technol. Conf. 1 (2006), 512–517, 10.2514/6.2006-7972.
Wei, C.Y., Chiu, P.Y., Hou, P.N., Matsuda, H., Hung, G.U., The Value of 99mTc ECD SPECT with Statistical Image Analysis on Enhancing the Early Diagnosis of Primary Progressive Aphasia. 2017, 10.1097/RLU.0000000000001475.
Chuck, C.J., Donnelly, J., The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene. Appl. Energy 118 (2014), 83–91, 10.1016/j.apenergy.2013.12.019.
Chiong, M.C., Chong, C.T., Ng, J.H., Lam, S.S., Tran, M.V., Chong, W.W.F., Mohd Jaafar, M.N., Valera-Medina, A., Liquid biofuels production and emissions performance in gas turbines: a review. Energy Convers. Manag. 173 (2018), 640–658, 10.1016/j.enconman.2018.07.082.
Karatzos, S., van Dyk, J.S., McMillan, J.D., Saddler, J., Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I, Biofuels, Bioprod. Biorefining 11 (2017), 344–362, 10.1002/bbb.1746.
Naik, S.N., Goud, V.V., Rout, P.K., Dalai, A.K., Production of first and second generation biofuels: a comprehensive review. Renew. Sustain. Energy Rev. 14 (2010), 578–597, 10.1016/j.rser.2009.10.003.
Rawat, I., Ranjith Kumar, R., Mutanda, T., Bux, F., Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl. Energy 103 (2013), 444–467, 10.1016/j.apenergy.2012.10.004.
Mata, T.M., Martins, A.A., Caetano, N.S., Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14 (2010), 217–232, 10.1016/j.rser.2009.07.020.
Mutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandraj, A., Bux, F., Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour. Technol. 102 (2011), 57–70, 10.1016/j.biortech.2010.06.077.
Pittman, J.K., Dean, A.P., Osundeko, O., The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102 (2011), 17–25, 10.1016/j.biortech.2010.06.035.
Stephenson, P.G., Moore, C.M., Terry, M.J., Zubkov, M.V., Bibby, T.S., Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol. 29 (2011), 615–623, 10.1016/j.tibtech.2011.06.005.
Zhu, X.G., Long, S.P., Ort, D.R., What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?. Curr. Opin. Biotechnol. 19 (2008), 153–159, 10.1016/j.copbio.2008.02.004.
Van Acker, R., Vanholme, R., Storme, V., Mortimer, J.C., Dupree, P., Boerjan, W., Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnol. Biofuels, 6, 2013, 46, 10.1186/1754-6834-6-46.
Benvenuti, G., Bosma, R., Cuaresma, M., Janssen, M., Barbosa, M.J., Wijffels, R.H., Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation. J. Appl. Phycol. 27 (2014), 1425–1431, 10.1007/S10811-014-0470-8 2014 274.
Ho, S.H., Chen, C.Y., Chang, J.S., Effect of light intensity and nitrogen starvation on CO 2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 113 (2012), 244–252, 10.1016/j.biortech.2011.11.133.
Wu, L.F., Chen, P.C., Lee, C.M., The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. Int. Biodeterior. Biodegrad. 85 (2013), 506–510, 10.1016/j.ibiod.2013.05.016.
Koley, S., Mathimani, T., Bagchi, S.K., Sonkar, S., Mallick, N., Microalgal biodiesel production at outdoor open and polyhouse raceway pond cultivations: a case study with Scenedesmus accuminatus using low-cost farm fertilizer medium. Biomass Bioenergy 120 (2019), 156–165, 10.1016/j.biombioe.2018.11.002.
Raheem, A., Prinsen, P., Vuppaladadiyam, A.K., Zhao, M., Luque, R., A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J. Clean. Prod. 181 (2018), 42–59, 10.1016/j.jclepro.2018.01.125.
Tsukahara, K., Sawayama, S., Liquid fuel production using microalgae. J. Japan Pet. Inst. 48 (2005), 251–259, 10.1627/jpi.48.251.
Eloka-Eboka, A.C., Inambao, F.L., Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production. Appl. Energy 195 (2017), 1100–1111, 10.1016/j.apenergy.2017.03.071.
Chisti, Y., Constraints to commercialization of algal fuels. J. Biotechnol. 167 (2013), 201–214, 10.1016/j.jbiotec.2013.07.020.
Chisti, Y., Raceways-based production of algal crude oil. Greenpeace 3 (2013), 195–216, 10.1515/green-2013-0018.
Abu Hajar, H.A., Riefler, R.G., Stuart, B.J., Cultivation of the microalga Neochloris oleoabundans for biofuels production and other industrial applications (a review). Appl. Biochem. Microbiol. 53 (2017), 640–653, 10.1134/S0003683817060096.
Ryu, B.G., Kim, J., Farooq, W., Han, J.I., Yang, J.W., Kim, W., Algal-bacterial process for the simultaneous detoxification of thiocyanate-containing wastewater and maximized lipid production under photoautotrophic/photoheterotrophic conditions. Bioresour. Technol. 162 (2014), 70–79, 10.1016/j.biortech.2014.03.084.
Yeesang, C., Cheirsilp, B., Low-cost production of green microalga Botryococcus braunii biomass with high lipid content through mixotrophic and photoautotrophic cultivation. Appl. Biochem. Biotechnol. 174 (2014), 116–129, 10.1007/s12010-014-1041-9.
Miranda, C.T., Pinto, R.F., de Lima, D.V.N., V Viegas, C., da Costa, S.M., Azevedo, S.M.F.O., Miranda, C.T., Pinto, R.F., de Lima, D.V.N., V Viegas, C., da Costa, S.M., Azevedo, S.M.F.O., Microalgae lipid and biodiesel production: a Brazilian challenge. Am. J. Plant Sci. 6 (2015), 2522–2533, 10.4236/AJPS.2015.615254.
Lee, J.Y., Yoo, C., Jun, S.Y., Ahn, C.Y., Oh, H.M., Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol., 101, 2010, 10.1016/j.biortech.2009.03.058 S75–S77.
Templeton, D.W., Quinn, M., Van Wychen, S., Hyman, D., Laurens, L.M.L., Separation and quantification of microalgal carbohydrates. J. Chromatogr. A 1270 (2012), 225–234, 10.1016/j.chroma.2012.10.034.
Lai, M., Lan, E., Advances in metabolic engineering of cyanobacteria for photosynthetic biochemical production. Metabolites 5 (2015), 636–658, 10.3390/metabo5040636.
Cheng, D., He, Q., Assessment of environmental stresses for enhanced microalgal biofuel production - an overview. Front. Energy Res., 2, 2014, 10.3389/fenrg.2014.00026.
González-Fernández, C., Ballesteros, M., Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol. Adv. 30 (2012), 1655–1661, 10.1016/j.biotechadv.2012.07.003.
Biller, P., Ross, A.B., Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour. Technol. 102 (2011), 215–225, 10.1016/j.biortech.2010.06.028.
Schwenzfeier, A., Wierenga, P.A., Gruppen, H., Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresour. Technol. 102 (2011), 9121–9127, 10.1016/j.biortech.2011.07.046.
Bondioli, P., Della Bella, L., Rivolta, G., Chini Zittelli, G., Bassi, N., Rodolfi, L., Casini, D., Prussi, M., Chiaramonti, D., Tredici, M.R., Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresour. Technol. 114 (2012), 567–572, 10.1016/j.biortech.2012.02.123.
Ugwu, C.U., Aoyagi, H., Uchiyama, H., Photobioreactors for mass cultivation of algae. Bioresour. Technol. 99 (2008), 4021–4028, 10.1016/j.biortech.2007.01.046.
Ward, O.P., Singh, A., Omega-3/6 fatty acids: alternative sources of production. Process Biochem. 40 (2005), 3627–3652, 10.1016/j.procbio.2005.02.020.
Lam, M.K., Khoo, C.G., Lee, K.T., Scale-up and commercialization of algal cultivation and biofuels production. Biofuels from Algae, 2019, 475–506, 10.1016/b978-0-444-64192-2.00019-6.
Acién, F.G., Molina, E., Reis, A., Torzillo, G., Zittelli, G.C., Sepúlveda, C., Masojídek, J., Photobioreactors for the production of microalgae, microalgae-based biofuels bioprod. From feed. Cultiv. to End-Products, 2017, 1–44, 10.1016/B978-0-08-101023-5.00001-7.
White, R.L., Ryan, R.A., Long-term cultivation of algae in open-raceway ponds: lessons from the field. Ind. Biotechnol. 11 (2015), 213–220, 10.1089/ind.2015.0006.
de Godos, I., Mendoza, J.L., Acién, F.G., Molina, E., Banks, C.J., Heaven, S., Rogalla, F., Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresour. Technol. 153 (2014), 307–314, 10.1016/j.biortech.2013.11.087.
Sheehan, J., Dunahay, T., Benemann, J., Roessler, P., 1998, Close-Out Report, 10.2172/15003040 Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae.
Greenwell, H.C., Laurens, L.M.L., Shields, R.J., Lovitt, R.W., Flynn, K.J., Placing microalgae on the biofuels priority list: a review of the technological challenges. J. R. Soc. Interface 7 (2010), 703–726, 10.1098/rsif.2009.0322.
Stephenson, A.L., Kazamia, E., Dennis, J.S., Howe, C.J., Scott, S.A., Smith, A.G., Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuel. 24 (2010), 4062–4077, 10.1021/ef1003123.
Kim, B.H., Choi, J.E., Cho, K., Kang, Z., Ramanan, R., Moon, D.G., Kim, H.S., Influence of water depth on microalgal production, biomass harvest, and energy consumption in high rate algal pond using municipal wastewater. J. Microbiol. Biotechnol. 28 (2018), 630–637, 10.4014/jmb.1801.01014.
Costa, J.A.V., Freitas, B.C.B., Santos, T.D., Mitchell, B.G., Morais, M.G., Open pond systems for microalgal culture. Biofuels from Algae, 2019, 199–223, 10.1016/b978-0-444-64192-2.00009-3.
Çelekli, A., Yavuzatmaca, M., Bozkurt, H., Modeling of biomass production by Spirulina platensis as function of phosphate concentrations and pH regimes. Bioresour. Technol. 100 (2009), 3625–3629, 10.1016/j.biortech.2009.02.055.
Borowitzka, M.A., Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol. 70 (1999), 313–321, 10.1016/S0168-1656(99)00083-8.
Brennan, L., Owende, P., Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14 (2010), 557–577, 10.1016/j.rser.2009.10.009.
Brentner, L.B., Eckelman, M.J., Zimmerman, J.B., Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ. Sci. Technol. 45 (2011), 7060–7067, 10.1021/es2006995.
Carvalho, A.P., Meireles, L.A., Malcata, F.X., Microalgal reactors: a review of enclosed system designs and performances. Biotechnol. Prog. 22 (2006), 1490–1506, 10.1002/bp060065r.
Su, G., Jiao, K., Chang, J., Li, Z., Guo, X., Sun, Y., Zeng, X., Lu, Y., Lin, L., Enhancing total fatty acids and arachidonic acid production by the red microalgae Porphyridium purpureum. Bioresour. Bioprocess., 3, 2016, 10.1186/s40643-016-0110-z.
Wang, B., Lan, C.Q., Horsman, M., Closed photobioreactors for production of microalgal biomasses. Biotechnol. Adv. 30 (2012), 904–912, 10.1016/j.biotechadv.2012.01.019.
Molina, E., Fernández, J., Acién, F.G., Chisti, Y., Tubular photobioreactor design for algal cultures. J. Biotechnol. 92 (2001), 113–131, 10.1016/S0168-1656(01)00353-4.
Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F.X., van Langenhove, H., Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 28 (2010), 371–380, 10.1016/j.tibtech.2010.04.004.
Cheah, W.Y., Show, P.L., Yap, Y.J., Mohd Zaid, H.F., Lam, M.K., Lim, J.W., Ho, Y.C., Tao, Y., Enhancing microalga Chlorella sorokiniana CY-1 biomass and lipid production in palm oil mill effluent (POME) using novel-designed photobioreactor. Bioengineered 11 (2020), 61–69, 10.1080/21655979.2019.1704536.
Watanabe, Y., de la Noüe, J., Hall, D.O., Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium spirulina platensis. Biotechnol. Bioeng. 47 (1995), 261–269, 10.1002/BIT.260470218.
Mirón, A.S., Garcı́a, M.C.C., Gómez, A.C., Camacho, F.G., Grima, E.M., Chisti, Y., Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem. Eng. J. 16 (2003), 287–297, 10.1016/S1369-703X(03)00072-X.
Sobczuk, T.M., Camacho, F.G., Grima, E.M., Chisti, Y., Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioproc. Biosyst. Eng. 28 (2005), 243–250, 10.1007/S00449-005-0030-3 2005 284.
Huang, J., Ying, J., Fan, F., Yang, Q., Wang, J., Li, Y., Development of a novel multi-column airlift photobioreactor with easy scalability by means of computational fluid dynamics simulations and experiments. Bioresour. Technol. 222 (2016), 399–407, 10.1016/j.biortech.2016.09.109.
Soman, A., Shastri, Y., Optimization of novel photobioreactor design using computational fluid dynamics. Appl. Energy 140 (2015), 246–255, 10.1016/j.apenergy.2014.11.072.
De Vree, J.H., Bosma, R., Janssen, M., Barbosa, M.J., Wijffels, R.H., Comparison of four outdoor pilot-scale photobioreactors. Biotechnol. Biofuels, 8, 2015, 215, 10.1186/s13068-015-0400-2.
Rosli, S.S., Amalina Kadir, W.N., Wong, C.Y., Han, F.Y., Lim, J.W., Lam, M.K., Yusup, S., Kiatkittipong, W., Kiatkittipong, K., Usman, A., Insight review of attached microalgae growth focusing on support material packed in photobioreactor for sustainable biodiesel production and wastewater bioremediation. Renew. Sustain. Energy Rev., 134, 2020, 110306, 10.1016/j.rser.2020.110306.
Rosli, S.S., Wong, C.Y., Yunus, N.M., Lam, M.K., Show, P.L., Cheng, C.K., Wang, D.K., Da Oh, W., Lim, J.W., Optimum interaction of light intensity and CO2 concentration in bioremediating N-rich real wastewater via assimilation into attached microalgal biomass as the feedstock for biodiesel production. Process Saf. Environ. Protect. 141 (2020), 355–365, 10.1016/j.psep.2020.05.045.
Molina Grima, E., Belarbi, E.H., Acién Fernández, F.G., Robles Medina, A., Chisti, Y., Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 20 (2003), 491–515, 10.1016/S0734-9750(02)00050-2.
Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J., Chang, J.S., Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour. Technol. 102 (2011), 71–81, 10.1016/j.biortech.2010.06.159.
Sen Tan, J., Lee, S.Y., Chew, K.W., Lam, M.K., Lim, J.W., Ho, S.H., Show, P.L., A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered 11 (2020), 116–129, 10.1080/21655979.2020.1711626.
Bwapwa, J.K., Anandraj, A., Trois, C., Possibilities for conversion of microalgae oil into aviation fuel: a review. Renew. Sustain. Energy Rev. 80 (2017), 1345–1354, 10.1016/j.rser.2017.05.224.
Fan, L., Zhang, H., Li, J., Wang, Y., Leng, L., Li, J., Yao, Y., Lu, Q., Yuan, W., Zhou, W., Algal biorefinery to value-added products by using combined processes based on thermochemical conversion: a review. Algal Res., 47, 2020, 101819, 10.1016/j.algal.2020.101819.
Robota, H.J., Alger, J.C., Shafer, L., Converting algal triglycerides to diesel and HEFA jet fuel fractions. Energy Fuel. 27 (2013), 985–996, 10.1021/ef301977b.
Naval Publications and Form Centre (NPFC). MIL-DTL-83133, Revision K, July 18, 2018 - Turbine Fuel, Aviation, Kerosene Type, JP-8 (NATO F-34), NATO F-35, and JP-8+100 (NATO F-37. 2018, Millitary Gov. Specs Stand.
ASTM. Standard Specification for Aviation Turbine Fuels. 2010 West Conshohocken, PA, 2021 https://www.astm.org/Standards/D7566.htm.
Kandel, K., Anderegg, J.W., Nelson, N.C., Chaudhary, U., Slowing, I.I., Supported iron nanoparticles for the hydrodeoxygenation of microalgal oil to green diesel. J. Catal. 314 (2014), 142–148, 10.1016/j.jcat.2014.04.009.
Khan, S., Kay Lup, A.N., Qureshi, K.M., Abnisa, F., Wan Daud, W.M.A., Patah, M.F.A., A review on deoxygenation of triglycerides for jet fuel range hydrocarbons. J. Anal. Appl. Pyrolysis 140 (2019), 1–24, 10.1016/j.jaap.2019.03.005.
Peng, B., Yao, Y., Zhao, C., Lercher, J.A., Towards quantitative conversion of microalgae oil to diesel-range alkanes with bifunctional catalysts. Angew. Chem. Int. Ed. 51 (2011), 2072–2075, 10.1002/anie.201106243.
Araújo, P.H.M., Maia, A.S., Cordeiro, A.M.T.M., Gondim, A.D., Santos, N.A., Catalytic deoxygenation of the oil and biodiesel of licuri (syagrus coronata) to obtain n-alkanes with chains in the range of biojet fuels. ACS Omega 4 (2019), 15849–15855, 10.1021/acsomega.9b01737.
Benson, T.J., Hernandez, R., French, W.T., Alley, E.G., Holmes, W.E., Elucidation of the catalytic cracking pathway for unsaturated mono-, di-, and triacylglycerides on solid acid catalysts. J. Mol. Catal. Chem. 303 (2009), 117–123, 10.1016/j.molcata.2009.01.008.
Naji, S.Z., Tye, C.T., Abd, A.A., State of the art of vegetable oil transformation into biofuels using catalytic cracking technology: recent trends and future perspectives. Process Biochem. 109 (2021), 148–168, 10.1016/j.procbio.2021.06.020.
Zhao, X., Wei, L., Julson, J., Qiao, Q., Dubey, A., Anderson, G., Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel. N. Biotech. 32 (2015), 300–312, 10.1016/j.nbt.2015.01.004.
Zhao, X., Wei, L., Cheng, S., Huang, Y., Yu, Y., Julson, J., Catalytic cracking of camelina oil for hydrocarbon biofuel over ZSM-5-Zn catalyst. Fuel Process. Technol. 139 (2015), 117–126, 10.1016/j.fuproc.2015.07.033.
Asiedu, A., Davis, R., Kumar, S., Catalytic transfer hydrogenation and characterization of flash hydrolyzed microalgae into hydrocarbon fuels production (jet fuel). Fuel, 261, 2020, 116440, 10.1016/j.fuel.2019.116440.
Galadima, A., Muraza, O., Waste materials for production of biodiesel catalysts: technological status and prospects. J. Clean. Prod., 263, 2020, 121358, 10.1016/j.jclepro.2020.121358.
Li, F., Jiang, J., Liu, P., Zhai, Q., Wang, F., Hse, C.Y., Xu, J., Catalytic cracking of triglycerides with a base catalyst and modification of pyrolytic oils for production of aviation fuels. Sustain. Energy Fuels 2 (2018), 1206–1215, 10.1039/c7se00505a.
Choi, I.H., Hwang, K.R., Han, J.S., Lee, K.H., Yun, J.S., Lee, J.S., The direct production of jet-fuel from non-edible oil in a single-step process. Fuel 158 (2015), 98–104, 10.1016/j.fuel.2015.05.020.
Long, F., Li, F., Zhai, Q., Wang, F., Xu, J., Thermochemical conversion of waste acidic oil into hydrocarbon products over basic composite catalysts. J. Clean. Prod. 234 (2019), 105–112, 10.1016/j.jclepro.2019.06.109.
S.K.Y.S.S.O. NgWang, H., Biofuels Production from Hydrotreating of Vegetable Oil Using Supported Noble Metals, and Transition Metal Carbide and Nitride. 2012, Wayne State University https://ezproxy.bibl.ulaval.ca/login?url=http://search.proquest.com/docview/1010761967?accountid=12008%5Cnhttp://sfx.bibl.ulaval.ca:9003/sfx_local??url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&genre=dissertations+&+theses&sid=ProQ:Pro.
Bayat, A., Sadrameli, S.M., Conversion of canola oil and canola oil methyl ester (CME) to green aromatics over a HZSM-5 catalyst: a comparative study. RSC Adv. 5 (2015), 28360–28368, 10.1039/c5ra01691f.
Laurentiu, B., Rape oil vs Camelina oil: a comparative study of their fatty acid profile and their suitability for biofuel production. SGEM Int. Multidiscip. Sci. GeoConference EXPO Proc., STEF92 Technology, 2018, 10.5593/sgem2018v/4.3/s11.062.
Ojeda, M., Osterman, N., Dražić, G., Fele Žilnik, L., Meden, A., Kwapinski, W., Balu, A.M., Likozar, B., Novak Tušar, N., Conversion of palmitic acid over Bi-functional Ni/ZSM-5 catalyst: effect of stoichiometric Ni/Al molar ratio. Top. Catal. 61 (2018), 1757–1768, 10.1007/s11244-018-1046-7.
Pimenta, J.L.C.W., Barreto, R.D.T., dos Santos, O.A.A., de Matos Jorge, L.M., Effects of reaction parameters on the deoxygenation of soybean oil for the sustainable production of hydrocarbons. Environ. Prog. Sustain. Energy, 39, 2020, 10.1002/ep.13450.
Kim, T.H., Lee, K., Oh, B.R., Lee, M.E., Seo, M., Li, S., Kim, J.K., Choi, M., Chang, Y.K., A novel process for the coproduction of biojet fuel and high-value polyunsaturated fatty acid esters from heterotrophic microalgae Schizochytrium sp. ABC101. Renew. Energy 165 (2021), 481–490, 10.1016/j.renene.2020.09.116.
Liu, Y., Yao, L., Xin, H., Wang, G., Li, D., Hu, C., The production of diesel-like hydrocarbons from palmitic acid over HZSM-22 supported nickel phosphide catalysts. Appl. Catal. B Environ. 174–175 (2015), 504–514, 10.1016/j.apcatb.2015.03.023.
Amber, S., Kamal, M.A., Production of hydrocarbons by catalytic cracking of stearic acid under atmospheric pressure for petrochemical replacement. Petrol. Sci. Technol. 37 (2019), 146–154, 10.1080/10916466.2018.1522334.
Snåre, M., Kubičková, I., Mäki-Arvela, P., Chichova, D., Eränen, K., Murzin, D.Y., Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons. Fuel 87 (2008), 933–945, 10.1016/j.fuel.2007.06.006.
Krobkrong, N., Itthibenchapong, V., Khongpracha, P., Faungnawakij, K., Deoxygenation of oleic acid under an inert atmosphere using molybdenum oxide-based catalysts. Energy Convers. Manag. 167 (2018), 1–8, 10.1016/j.enconman.2018.04.079.
Immer, J.G., Kelly, M.J., Lamb, H.H., Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids. Appl. Catal. Gen. 375 (2010), 134–139, 10.1016/j.apcata.2009.12.028.
Gasanov, A.G., Azizov, A.G., Khalilova, S.R., Ayubov, I.G., Gurbanova, M.M., Alieva, S.T., Synthesis of 8-heptadecene by decarboxylation of oleic acid in various catalyst systems. Russ. J. Appl. Chem. 87 (2014), 214–216, 10.1134/S1070427214020153.
Dragu, A., Kinayyigit, S., García-Suárez, E.J., Florea, M., Stepan, E., Velea, S., Tanase, L., Collière, V., Philippot, K., Granger, P., Parvulescu, V.I., Deoxygenation of oleic acid: influence of the synthesis route of Pd/mesoporous carbon nanocatalysts onto their activity and selectivity. Appl. Catal. Gen. 504 (2015), 81–91, 10.1016/j.apcata.2015.01.008.
Fu, J., Lu, X., Savage, P.E., Hydrothermal decarboxylation and hydrogenation of fatty acids over Pt/C. ChemSusChem 4 (2011), 481–486, 10.1002/cssc.201000370.
Hossain, M.Z., Chowdhury, M.B.I., Jhawar, A.K., Xu, W.Z., Charpentier, P.A., Continuous low pressure decarboxylation of fatty acids to fuel-range hydrocarbons with in situ hydrogen production. Fuel 212 (2018), 470–478, 10.1016/j.fuel.2017.09.092.
Singh, H.K.G., Yusup, S., Quitain, A.T., Abdullah, B., Ameen, M., Sasaki, M., Kida, T., Cheah, K.W., Biogasoline production from linoleic acid via catalytic cracking over nickel and copper-doped ZSM-5 catalysts. Environ. Res., 186, 2020, 109616, 10.1016/j.envres.2020.109616.
Ganesan, R., Narasimhalu, P., Joseph, A.I.J., Pugazhendhi, A., Synthesis of silver nanoparticle from X-ray film and its application in production of biofuel from jatropha oil. Int. J. Energy Res. 45 (2020), 17378–17388, 10.1002/er.6106.
Snåre, M., Kubičková, I., Mäki-Arvela, P., Eränen, K., Murzin, D.Y., Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Ind. Eng. Chem. Res. 45 (2006), 5708–5715, 10.1021/ie060334i.
Dawes, G.J.S., Scott, E.L., Le Nôtre, J., Sanders, J.P.M., Bitter, J.H., Deoxygenation of biobased molecules by decarboxylation and decarbonylation - a review on the role of heterogeneous, homogeneous and bio-catalysis. Green Chem. 17 (2015), 3231–3250, 10.1039/c5gc00023h.
Parker, K., Weragoda, G.K., Pho, V., Canty, A.J., Polyzos, A., O'Hair, R.A.J., Ryzhov, V., Gas-phase models for the nickel- and palladium-catalyzed deoxygenation of fatty acids. ChemCatChem 12 (2020), 5476–5485, 10.1002/cctc.202000908.
Endalew, A.K., Kiros, Y., Zanzi, R., Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass Bioenergy 35 (2011), 3787–3809, 10.1016/j.biombioe.2011.06.011.
Hassani, M., A two-step catalytic production of biodiesel from waste cooking oil. Int. J. Eng., 26, 2013, 10.5829/idosi.ije.2013.26.06c.01.
Shahinuzzaman, M., Yaakob, Z., Ahmed, Y., Non-sulphide zeolite catalyst for bio-jet-fuel conversion. Renew. Sustain. Energy Rev. 77 (2017), 1375–1384, 10.1016/j.rser.2017.01.162.
Wang, H., Biofuels Production from Hydrotreating of Vegetable Oil Using Supported Noble Metals, and Transition Metal Carbide and Nitride. 2012, Wayne State University.
Xu, J., Jiang, J., Zhao, J., Thermochemical conversion of triglycerides for production of drop-in liquid fuels. Renew. Sustain. Energy Rev. 58 (2016), 331–340, 10.1016/j.rser.2015.12.315.
Li, H., Yu, P., Shen, B., Biofuel potential production from cottonseed oil: a comparison of non-catalytic and catalytic pyrolysis on fixed-fluidized bed reactor. Fuel Process. Technol. 90 (2009), 1087–1092, 10.1016/j.fuproc.2009.04.016.
Demirbas, A., Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers. Manag. 44 (2003), 2093–2109, 10.1016/s0196-8904(02)00234-0.
Wiggers, V.R., Meier, H.F., Wisniewski, A., Chivanga Barros, A.A., Wolf Maciel, M.R., Biofuels from continuous fast pyrolysis of soybean oil: a pilot plant study. Bioresour. Technol. 100 (2009), 6570–6577, 10.1016/j.biortech.2009.07.059.
Wiggers, V.R., Zonta, G.R., França, A.P., Scharf, D.R., Simionatto, E.L., Ender, L., Meier, H.F., Challenges associated with choosing operational conditions for triglyceride thermal cracking aiming to improve biofuel quality. Fuel 107 (2013), 601–608, 10.1016/j.fuel.2012.11.011.
Kozliak, E., Mota, R., Rodriguez, D., Overby, P., Kubátová, A., Stahl, D., Niri, V., Ogden, G., Seames, W., Non-catalytic cracking of jojoba oil to produce fuel and chemical by-products. Ind. Crop. Prod. 43 (2013), 386–392, 10.1016/j.indcrop.2012.07.042.
Asomaning, J., Mussone, P., Bressler, D.C., Thermal deoxygenation and pyrolysis of oleic acid. J. Anal. Appl. Pyrolysis 105 (2014), 1–7, 10.1016/j.jaap.2013.09.005.
Asomaning, J., Mussone, P., Bressler, D.C., Two-stage thermal conversion of inedible lipid feedstocks to renewable chemicals and fuels. Bioresour. Technol. 158 (2014), 55–62, 10.1016/j.biortech.2014.01.136.
Meher, L., Vidyasagar, D., Naik, S., Technical aspects of biodiesel production by transesterification - a review. Renew. Sustain. Energy Rev. 10 (2006), 248–268, 10.1016/j.rser.2004.09.002.
Maher, K.D., Bressler, D.C., Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour. Technol. 98 (2007), 2351–2368, 10.1016/j.biortech.2006.10.025.
Chiaramonti, D., Buffi, M., Rizzo, A.M., Lotti, G., Prussi, M., Bio-hydrocarbons through catalytic pyrolysis of used cooking oils and fatty acids for sustainable jet and road fuel production. Biomass Bioenergy 95 (2016), 424–435, 10.1016/j.biombioe.2016.05.035.
Sivriu, A.M., Koncsag, C.I., Mares, A.M., Tirpan, R., Sapunaru, O., Jinescu, G., Olefins and fuels from frying palm oil through pyrolysis. Environ. Eng. Manag. J. 19 (2020), 345–352, 10.30638/eemj.2020.032.
Kubátová, A., Luo, Y., Šťávová, J., Sadrameli, S.M., Aulich, T., Kozliak, E., Seames, W., New path in the thermal cracking of triacylglycerols (canola and soybean oil). Fuel 90 (2011), 2598–2608, 10.1016/j.fuel.2011.04.022.
da Silva, V.T., Sousa, L.A., Catalytic upgrading of fats and vegetable oils for the production of fuels. Role Catal. Sustain. Prod. Bio-Fuels Bio-Chemicals, 2013, Elsevier, 67–92, 10.1016/B978-0-444-56330-9.00003-6.
Zhang, Y., Wang, X., Li, Q., Yang, R., Li, C., A ReaxFF molecular dynamics study of the pyrolysis mechanism of oleic-type triglycerides. Energy Fuel. 29 (2015), 5056–5068, 10.1021/acs.energyfuels.5b00720.
Beal, C.M., Gerber, L.N., Sills, D.L., Huntley, M.E., Machesky, S.C., Walsh, M.J., Tester, J.W., Archibald, I., Granados, J., Greene, C.H., Algal biofuel production for fuels and feed in a 100-ha facility: a comprehensive techno-economic analysis and life cycle assessment. Algal Res. 10 (2015), 266–279, 10.1016/j.algal.2015.04.017.
Na, J.G., Park, Y.K., Il Kim, D., Oh, Y.K., Jeon, S.G., Kook, J.W., Shin, J.H., Lee, S.H., Rapid pyrolysis behavior of oleaginous microalga, Chlorella sp. KR-1 with different triglyceride contents. Renew. Energy 81 (2015), 779–784, 10.1016/j.renene.2015.03.088.
Fu, J., Yang, C., Wu, J., Zhuang, J., Hou, Z., Lu, X., Direct production of aviation fuels from microalgae lipids in water. Fuel 139 (2015), 678–683, 10.1016/j.fuel.2014.09.025.
Araújo, P.H.M., Santana, J.K.S., Sassi, R., da Costa, D.C., Antoniosi Filho, N.R., Cordeiro, A.M.T.M., Gondim, A.D., Santos, N.A., Renewable source hydrocarbons obtaining from microalgae by catalytic deoxygenation. Biomass Convers. Biorefinery, 2021, 10.1007/s13399-021-01353-9.
Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A., Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54 (2008), 621–639, 10.1111/j.1365-313X.2008.03492.x.
Quinn, J.C., Davis, R., The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour. Technol. 184 (2015), 444–452, 10.1016/j.biortech.2014.10.075.
Prado, C.M.R., Antoniosi Filho, N.R., Production and characterization of the biofuels obtained by thermal cracking and thermal catalytic cracking of vegetable oils. J. Anal. Appl. Pyrolysis 86 (2009), 338–347, 10.1016/j.jaap.2009.08.005.
Tao, L., Milbrandt, A., Zhang, Y., Wang, W.C., Techno-economic and resource analysis of hydroprocessed renewable jet fuel. Biotechnol. Biofuels, 10, 2017, 261, 10.1186/s13068-017-0945-3.
Myllyoja, J., Aalto, P., Process for the Manufacture of Diesel Range Hydrocarbons. 2007.
Monnier, J., Sulimma, H., Dalai, A., Caravaggio, G., Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides. Appl. Catal. Gen. 382 (2010), 176–180, 10.1016/j.apcata.2010.04.035.
Yang, Y., Wang, Q., Zhang, X., Wang, L., Li, G., Hydrotreating of C18 fatty acids to hydrocarbons on sulphided NiW/SiO2-Al2O3. Fuel Process. Technol. 116 (2013), 165–174, 10.1016/j.fuproc.2013.05.008.
Ayandiran, A.A., Boahene, P.E., Dalai, A.K., Hu, Y., Hydroprocessing of oleic acid for production of jet-fuel range hydrocarbons over cu and fecu catalysts. Catalysts, 9, 2019, 1051, 10.3390/catal9121051.
Ayandiran, A.A., Boahene, P.E., Nanda, S., Dalai, A.K., Hu, Y., Hydroprocessing of oleic acid for the production of aviation turbine fuel range hydrocarbons over bimetallic Fe-Cu/SiO2-Al2O3 catalysts promoted by Sn, Ti and Zr. Mol. Catal., 2021, 111358, 10.1016/j.mcat.2020.111358.
Xing, S., Lv, P., Wang, J., Fu, J., Fan, P., Yang, L., Yang, G., Yuan, Z., Chen, Y., One-step hydroprocessing of fatty acids into renewable aromatic hydrocarbons over Ni/HZSM-5: insights into the major reaction pathways. Phys. Chem. Chem. Phys. 19 (2017), 2961–2973, 10.1039/c6cp06327f.
IEA Bioenergy Task 39 Demonstration Plant Database, Database on Facilities for the Production of Advanced Liquid and Gaseous Biofuels for Transport, 2021 https://demoplants.best-research.eu/. (Accessed 25 June 2021)
Lepage, T., Kammoun, M., Schmetz, Q., Richel, A., Biomass-to-hydrogen: a review of main routes production, processes evaluation and techno-economical assessment. Biomass Bioenergy, 144, 2021, 105920, 10.1016/j.biombioe.2020.105920.
Widjaya, E.R., Chen, G., Bowtell, L., Hills, C., Gasification of non-woody biomass: a literature review. Renew. Sustain. Energy Rev. 89 (2018), 184–193, 10.1016/j.rser.2018.03.023.
Kumar, A., Jones, D.D., Hanna, M.A., Thermochemical biomass gasification: a review of the current status of the technology. Energies 2 (2009), 556–581, 10.3390/en20300556.
Benedetti, V., Patuzzi, F., Baratieri, M., Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. Appl. Energy 227 (2018), 92–99, 10.1016/j.apenergy.2017.08.076.
Bain, R.L., Broer, K., Gasification. Thermochem. Process. Biomass Convers. Into Fuels, Chem. Power, 2011, John Wiley and Sons, 47–77, 10.1002/9781119990840.ch3.
Warnecke, R., Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass Bioenergy 18 (2000), 489–497, 10.1016/S0961-9534(00)00009-X.
Srinivasakannan, C., Balasubramanian, N., Variations in the design of dual fluidized bed gasifiers and the quality of syngas from biomass, Energy Sources, Part A Recover. Util. Environ. Eff. 33 (2011), 349–359, 10.1080/15567030902967835.
Zeng, X., Zhang, J., Adamu, M.H., Wang, F., Han, Z., Zheng, Q., Zhang, L., Xu, G., Behavior and kinetics of drying, pyrolysis, gasification, and combustion tested by a microfluidized bed reaction analyzer for the staged-gasification process. Energy Fuel. 34 (2020), 2553–2565, 10.1021/acs.energyfuels.9b03707.
Lv, P.M., Xiong, Z.H., Chang, J., Wu, C.Z., Chen, Y., Zhu, J.X., An experimental study on biomass air-steam gasification in a fluidized bed. Bioresour. Technol. 95 (2004), 95–101, 10.1016/j.biortech.2004.02.003.
Bridgwater, A.V., Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J. 91 (2003), 87–102, 10.1016/S1385-8947(02)00142-0.
Luo, S., Xiao, B., Guo, X., Hu, Z., Liu, S., He, M., Hydrogen-rich gas from catalytic steam gasification of biomass in a fixed bed reactor: influence of particle size on gasification performance. Int. J. Hydrogen Energy 34 (2009), 1260–1264, 10.1016/j.ijhydene.2008.10.088.
Devi, L., Ptasinski, K.J., Janssen, F.J.J.G., Van Paasen, S.V.B., Bergman, P.C.A., Kiel, J.H.A., Catalytic decomposition of biomass tars: use of dolomite and untreated olivine. Renew. Energy 30 (2005), 565–587, 10.1016/j.renene.2004.07.014.
Watanabe, H., Li, D., Nakagawa, Y., Tomishige, K., Watanabe, M.M., Catalytic gasification of oil-extracted residue biomass of Botryococcus braunii. Bioresour. Technol. 191 (2015), 452–459, 10.1016/j.biortech.2015.03.034.
Nasir, N., Hydrothermal Liquefaction of Lignocellulosic Biomass. 2019 http://etheses.whiterose.ac.uk/23637/.
Alper, K., Tekin, K., Karagöz, S., Ragauskas, A.J., Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing. Sustain. Energy Fuels 4 (2020), 4390–4414, 10.1039/d0se00784f.
Peterson, A.A., Vogel, F., Lachance, R.P., Fröling, M., Antal, M.J., Tester, J.W., Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ. Sci. 1 (2008), 32–65, 10.1039/b810100k.
Toor, S.S., Rosendahl, L., Rudolf, A., Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36 (2011), 2328–2342, 10.1016/j.energy.2011.03.013.
Yang, C., Wang, S., Yang, J., Xu, D., Li, Y., Li, J., Zhang, Y., Hydrothermal liquefaction and gasification of biomass and model compounds: a review. Green Chem. 22 (2020), 8210–8232, 10.1039/d0gc02802a.
López Barreiro, D., Prins, W., Ronsse, F., Brilman, W., Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass Bioenergy 53 (2013), 113–127, 10.1016/j.biombioe.2012.12.029.
Patil, V., Tran, K.Q., Giselrød, H.R., Towards sustainable production of biofuels from microalgae. Int. J. Mol. Sci. 9 (2008), 1188–1195, 10.3390/ijms9071188.
Hrnčič, M.K., Kravanja, G., Knez, Ž., Hydrothermal treatment of biomass for energy and chemicals. Energy 116 (2016), 1312–1322, 10.1016/j.energy.2016.06.148.
Holliday, R.L., King, J.W., List, G.R., Hydrolysis of vegetable oils in sub- and supercritical water. Ind. Eng. Chem. Res. 36 (1997), 932–935, 10.1021/ie960668f.
Kader, E.A., El Enin, S.A.A., Hawash, S.I., Hydrothermal liquefaction of microalgae (spirulina platensis) under subcritical water conditions for bio-fuel production. Int. J. Eng. Innov. Technol. 5 (2015), 48–56, 10.17605/OSF.IO/S8FRV.
Ravber, M., Knez, Z., Škerget, M., Hydrothermal degradation of fats, carbohydrates and proteins in sunflower seeds after treatment with subcritical water. Chem. Biochem. Eng. Q., 2015, Assoc. of Chemists and Chemical Engineers of Croatia, 351–355, 10.15255/CABEQ.2015.2193.
Ki, O.L., Lan, T.N.P., Edi, S.F., Suryadi, I., Ju, Y.H., Effect of subcritical water on homogeneous catalysis of used cooking oil hydrolysis. RSC Adv. 6 (2016), 64977–64985, 10.1039/c6ra14807g.
Almeida, L., Corazza, M.L., Sassaki, G.L., Voll, F.A.P., Experimental study and kinetic modeling of waste frying soybean oil hydrolysis in subcritical water. React. Kinet. Mech. Catal. 121 (2017), 439–452, 10.1007/s11144-017-1175-1.
Ryu, J.H., Park, S.Y., Bae, S.Y., Shin, H.Y., Process optimization of fatty acids production from soybean oil via continuous subcritical water-mediated hydrolysis. J. Chem. Eng. Jpn. 47 (2014), 399–405, 10.1252/jcej.13we160.
Shin, H.Y., Ryu, J.H., Park, S.Y., Bae, S.Y., Thermal stability of fatty acids in subcritical water. J. Anal. Appl. Pyrolysis 98 (2012), 250–253, 10.1016/j.jaap.2012.08.003.
Fu, J., Lu, X., Savage, P.E., Catalytic hydrothermal deoxygenation of palmitic acid. Energy Environ. Sci., 2010, Royal Society of Chemistry, 311–317, 10.1039/b923198f.
Hossain, M.Z., Jhawar, A.K., Chowdhury, M.B.I., Xu, W.Z., Wu, W., Hiscott, D.V., Charpentier, P.A., Using subcritical water for decarboxylation of oleic acid into fuel-range hydrocarbons. Energy Fuel. 31 (2017), 4013–4023, 10.1021/acs.energyfuels.6b03418.
Blakey, S., Rye, L., Wilson, C.W., Aviation gas turbine alternative fuels: a review. Proc. Combust. Inst. 33 (2011), 2863–2885, 10.1016/j.proci.2010.09.011.
Mäki-Arvela, P., Snåre, M., Eränen, K., Myllyoja, J., Murzin, D.Y., Continuous decarboxylation of lauric acid over Pd/C catalyst. Fuel 87 (2008), 3543–3549, 10.1016/j.fuel.2008.07.004.
Na, J.G., Yi, B.E., Han, J.K., Oh, Y.K., Park, J.H., Jung, T.S., Han, S.S., Yoon, H.C., Kim, J.N., Lee, H., Ko, C.H., Deoxygenation of microalgal oil into hydrocarbon with precious metal catalysts: optimization of reaction conditions and supports. Energy 47 (2012), 25–30, 10.1016/j.energy.2012.07.004.
Tian, Q., Qiao, K., Zhou, F., Chen, K., Wang, T., Fu, J., Lu, X., Ouyang, P., Direct production of aviation fuel range hydrocarbons and aromatics from oleic acid without an added hydrogen donor. Energy Fuel. 30 (2016), 7291–7297, 10.1021/acs.energyfuels.6b00978.
Kubičková, I., Snåre, M., Eränen, K., Mäki-Arvela, P., Murzin, D.Y., Hydrocarbons for Diesel Fuel via Decarboxylation of Vegetable Oils. 2005, Catal. Today, 197–200, 10.1016/j.cattod.2005.07.188.
Snåre, M., Kubičková, I., Mäki-Arvela, P., Eränen, K., Wärnå, J., Murzin, D.Y., Production of diesel fuel from renewable feeds: kinetics of ethyl stearate decarboxylation. Chem. Eng. J. 134 (2007), 29–34, 10.1016/j.cej.2007.03.064.
Watanabe, M., Iida, T., Inomata, H., Decomposition of a long chain saturated fatty acid with some additives in hot compressed water. Energy Convers. Manag. 47 (2006), 3344–3350, 10.1016/j.enconman.2006.01.009.
Mo, N., Tandar, W., Savage, P.E., Aromatics from saturated and unsaturated fatty acids via zeolite catalysis in supercritical water. J. Supercrit. Fluids 102 (2015), 73–79, 10.1016/j.supflu.2015.03.018.
Susanti, R.F., Dianningrum, L.W., Yum, T., Kim, Y., Lee, B.G., Kim, J., High-yield hydrogen production from glucose by supercritical water gasification without added catalyst. Int. J. Hydrogen Energy 37 (2012), 11677–11690, 10.1016/j.ijhydene.2012.05.087.
Youssef, E.A., Nakhla, G., Charpentier, P.A., Oleic acid gasification over supported metal catalysts in supercritical water: hydrogen production and product distribution. Int. J. Hydrogen Energy 36 (2011), 4830–4842, 10.1016/j.ijhydene.2011.01.116.
Houcinat, I., Outili, N., Meniai, A.H., Optimization of gas production and efficiency of supercritical glycerol gasification using response surface methodology. Biofuels 9 (2018), 625–633, 10.1080/17597269.2018.1433968.
Xu, D., Wang, S., Hu, X., Chen, C., Zhang, Q., Gong, Y., Catalytic gasification of glycine and glycerol in supercritical water. Int. J. Hydrogen Energy 34 (2009), 5357–5364, 10.1016/j.ijhydene.2008.08.055.
Li, S., Savage, P.E., Guo, L., Stability and activity maintenance of sol-gel Ni-MxOy (M=Ti, Zr, Ta) catalysts during continuous gasification of glycerol in supercritical water. J. Supercrit. Fluids 148 (2019), 137–147, 10.1016/j.supflu.2019.02.028.
Zhu, C., Wang, R., Jin, H., Lian, X., Guo, L., Huang, J., Supercritical water gasification of glycerol and glucose in different reactors: the effect of metal wall. Int. J. Hydrogen Energy 41 (2016), 16002–16008, 10.1016/j.ijhydene.2016.06.085.
Cengiz, N.Ü., Yildiz, G., Sert, M., Selvi Gökkaya, D., Saʇlam, M., Yüksel, M., Ballice, L., Hydrothermal gasification of a biodiesel by-product crude glycerol in the presence of phosphate based catalysts. Int. J. Hydrogen Energy 40 (2015), 14806–14815, 10.1016/j.ijhydene.2015.08.097.
Yu-Wu, Q.M., Weiss-Hortala, E., Barna, R., Boucard, H., Bulza, S., Glycerol and bioglycerol conversion in supercritical water for hydrogen production. Environ. Technol. (United Kingdom), 2012, Taylor and Francis Ltd., 2245–2255, 10.1080/09593330.2012.728738.
Müller, J.B., Vogel, F., Tar and coke formation during hydrothermal processing of glycerol and glucose. Influence of temperature, residence time and feed concentration. J. Supercrit. Fluids 70 (2012), 126–136, 10.1016/j.supflu.2012.06.016.
Guo, S., Guo, L., Cao, C., Yin, J., Lu, Y., Zhang, X., Hydrogen production from glycerol by supercritical water gasification in a continuous flow tubular reactor. Int. J. Hydrogen Energy 37 (2012), 5559–5568, 10.1016/j.ijhydene.2011.12.135.
Chakinala, A.G., Brilman, D.W.F., Van Swaaij, W.P.M., Kersten, S.R.A., Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind. Eng. Chem. Res., 2010, American Chemical Society, 1113–1122, 10.1021/ie9008293.
May, A., Salvadó, J., Torras, C., Montané, D., Catalytic gasification of glycerol in supercritical water. Chem. Eng. J. 160 (2010), 751–759, 10.1016/j.cej.2010.04.005.
Bagnato, G., Boulet, F., Sanna, A., Effect of Li-LSX zeolite, NiCe/Al2O3 and NiCe/ZrO2 on the production of drop-in bio-fuels by pyrolysis and hydrotreating of Nannochloropsis and isochrysis microalgae. Energy 179 (2019), 199–213, 10.1016/j.energy.2019.04.204.
Graciano, J.E.A., Chachuat, B., Alves, R.M.B., Enviro-economic assessment of thermochemical polygeneration from microalgal biomass. J. Clean. Prod. 203 (2018), 1132–1142, 10.1016/j.jclepro.2018.08.227.
Misra, N., Panda, P.K., Parida, B.K., Mishra, B.K., Way forward to achieve sustainable and cost-effective biofuel production from microalgae: a review. Int. J. Environ. Sci. Technol. 13 (2016), 2735–2756, 10.1007/s13762-016-1020-5.
Oh, Y.K., Hwang, K.R., Kim, C., Kim, J.R., Lee, J.S., Recent developments and key barriers to advanced biofuels: a short review. Bioresour. Technol. 257 (2018), 320–333, 10.1016/j.biortech.2018.02.089.
Coppens, J., Grunert, O., Van Den Hende, S., Vanhoutte, I., Boon, N., Haesaert, G., De Gelder, L., The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J. Appl. Phycol. 28 (2016), 2367–2377, 10.1007/s10811-015-0775-2.
Portner, B.W., Endres, C.H., Brück, T., Garbe, D., Life cycle greenhouse gas emissions of microalgal fuel from thin-layer cascades. Bioproc. Biosyst. Eng. 44 (2021), 2399–2406, 10.1007/s00449-021-02612-9.
Thanigaivel, S., Vickram, S., Dey, N., Gulothungan, G., Subbaiya, R., Govarthanan, M., Karmegam, N., Kim, W., The urge of algal biomass-based fuels for environmental sustainability against a steady tide of biofuel conflict analysis: is third-generation algal biorefinery a boon?. Fuel, 317, 2022, 123494, 10.1016/j.fuel.2022.123494.
Lin, C.Y., Lu, C., Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: a review. Renew. Sustain. Energy Rev., 136, 2021, 110445, 10.1016/j.rser.2020.110445.
Yin, Z., Zhu, L., Li, S., Hu, T., Chu, R., Mo, F., Hu, D., Liu, C., Li, B., A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: environmental pollution control and future directions. Bioresour. Technol., 301, 2020, 122804, 10.1016/j.biortech.2020.122804.
Albrecht, K.O., Zhu, Y., Schmidt, A.J., Billing, J.M., Hart, T.R., Jones, S.B., Maupin, G., Hallen, R., Ahrens, T., Anderson, D., Impact of heterotrophically stressed algae for biofuel production via hydrothermal liquefaction and catalytic hydrotreating in continuous-flow reactors. Algal Res. 14 (2016), 17–27, 10.1016/j.algal.2015.12.008.
Poh, Z.L., Amalina Kadir, W.N., Lam, M.K., Uemura, Y., Suparmaniam, U., Lim, J.W., Show, P.L., Lee, K.T., The effect of stress environment towards lipid accumulation in microalgae after harvesting. Renew. Energy 154 (2020), 1083–1091, 10.1016/j.renene.2020.03.081.
Davis, R., Aden, A., Pienkos, P.T., Techno-economic analysis of autotrophic microalgae for fuel production. Appl. Energy 88 (2011), 3524–3531, 10.1016/j.apenergy.2011.04.018.
Xin, C., Addy, M.M., Zhao, J., Cheng, Y., Cheng, S., Mu, D., Liu, Y., Ding, R., Chen, P., Ruan, R., Comprehensive techno-economic analysis of wastewater-based algal biofuel production: a case study. Bioresour. Technol. 211 (2016), 584–593, 10.1016/j.biortech.2016.03.102.
Li, Y., Chen, Y.F., Chen, P., Min, M., Zhou, W., Martinez, B., Zhu, J., Ruan, R., Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour. Technol. 102 (2011), 5138–5144, 10.1016/j.biortech.2011.01.091.
Pienkos, P.T., Darzins, A., The promise and challenges of microalgal-derived biofuels. Biofuels, Bioprod. Biorefining. 3 (2009), 431–440, 10.1002/bbb.159.
Thomassen, G., Egiguren Vila, U., Van Dael, M., Lemmens, B., Van Passel, S., A techno-economic assessment of an algal-based biorefinery. Clean Technol. Environ. Policy 18 (2016), 1849–1862, 10.1007/s10098-016-1159-2.
Cox, K., Renouf, M., Dargan, A., Turner, C., Klein-Marcuschamer, D., Environmental life cycle assessment (LCA) of aviation biofuel from microalgae, Pongamia pinnata, and sugarcane molasses. Biofuels, Bioprod. Biorefining. 8 (2014), 579–593, 10.1002/bbb.1488.
Haddad, M., Fawaz, Z., Evaluation of microalgal alternative jet fuel using the AHP method with an emphasis on the environmental and economic criteria. Environ. Prog. Sustain. Energy 32 (2012), 721–733, 10.1002/ep.11638.
Couto, E., Calijuri, M.L., Assemany, P., Biomass production in high rate ponds and hydrothermal liquefaction: wastewater treatment and bioenergy integration. Sci. Total Environ., 724, 2020, 138104, 10.1016/j.scitotenv.2020.138104.
Vo Hoang Nhat, P., Ngo, H.H., Guo, W.S., Chang, S.W., Nguyen, D.D., Nguyen, P.D., Bui, X.T., Zhang, X.B., Guo, J.B., Can algae-based technologies be an affordable green process for biofuel production and wastewater remediation?. Bioresour. Technol. 256 (2018), 491–501, 10.1016/j.biortech.2018.02.031.
Darda, S., Papalas, T., Zabaniotou, A., Biofuels journey in Europe: currently the way to low carbon economy sustainability is still a challenge. J. Clean. Prod. 208 (2019), 575–588, 10.1016/j.jclepro.2018.10.147.
Morales-Amaral, M. del M., Gómez-Serrano, C., Acién, F.G., Fernández-Sevilla, J.M., Molina-Grima, E., Outdoor production of Scenedesmus sp. in thin-layer and raceway reactors using centrate from anaerobic digestion as the sole nutrient source. Algal Res. 12 (2015), 99–108, 10.1016/j.algal.2015.08.020.
Acién Fernández, F.G., Fernández Sevilla, J.M., Molina Grima, E., Costs Analysis of Microalgae Production. second ed., 2019, Elsevier B.V., 10.1016/b978-0-444-64192-2.00021-4.
Chen, J., Techno-economic analysis of biodiesel production from microalgae: a review. Trends Renew. Energy. 3 (2017), 141–152, 10.17737/tre.2017.3.2.0035.
Ramos Tercero, E.A., Domenicali, G., Bertucco, A., Autotrophic production of biodiesel from microalgae: an updated process and economic analysis. Energy 76 (2014), 807–815, 10.1016/j.energy.2014.08.077.
Marx, U.C., Roles, J., Hankamer, B., Sargassum blooms in the Atlantic Ocean – from a burden to an asset. Algal Res., 54, 2021, 102188, 10.1016/j.algal.2021.102188.
Beal, C.M., Cuellar, A.D., Wagner, T.J., Sustainability Assessment of Alternative Jet Fuel for the, vol. 144, 2021, U.S. Department of Defense, Biomass and Bioenergy, 105881, 10.1016/j.biombioe.2020.105881.
Jiang, Y., Jones, S.B., Zhu, Y., Snowden-Swan, L., Schmidt, A.J., Billing, J.M., Anderson, D., Techno-economic uncertainty quantification of algal-derived biocrude via hydrothermal liquefaction. Algal Res., 39, 2019, 101450, 10.1016/j.algal.2019.101450.
Bessette, A.P., Teymouri, A., Martin, M.J., Stuart, B.J., Resurreccion, E.P., Kumar, S., Life cycle impacts and techno-economic implications of flash hydrolysis in algae processing. ACS Sustain. Chem. Eng. 6 (2018), 3580–3588, 10.1021/acssuschemeng.7b03912.
Klein-Marcuschamer, D., Turner, C., Allen, M., Gray, P., Dietzgen, R.G., Gresshoff, P.M., Hankamer, B., Heimann, K., Scott, P.T., Stephens, E., Speight, R., Nielsen, L.K., Technoeconomic analysis of renewable aviation fuel from microalgae, Pongamia pinnata, and sugarcane. Biofuels, Bioprod. Biorefining. 7 (2013), 416–428, 10.1002/bbb.1404.
Chiaramonti, D., Prussi, M., Buffi, M., Rizzo, A.M., Pari, L., Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production. Appl. Energy 185 (2017), 963–972, 10.1016/j.apenergy.2015.12.001.
Pearce, M., Shemfe, M., Sansom, C., Techno-economic analysis of solar integrated hydrothermal liquefaction of microalgae. Appl. Energy 166 (2016), 19–26, 10.1016/j.apenergy.2016.01.005.
Doliente, S.S., Narayan, A., Tapia, J.F.D., Samsatli, N.J., Zhao, Y., Samsatli, S., Bio-aviation fuel: a comprehensive review and analysis of the supply chain components. Front. Energy Res., 8, 2020, 10.3389/fenrg.2020.00110.
Chiaramonti, D., Horta Nogueira, L.A., Riazi, M.R., Aviation biofuels: processes, opportunities, constraints, and perspectives. Biofuels Prod. Process. Technol., first ed., 2017, CRC Press, 295–318, 10.1201/9781315155067-11.
Bwapwa, J.K., Anandraj, A., Trois, C., Conceptual process design and ‐ simulation of microalgae oil ‐conversion to aviation fuel. Biofuels, Bioprod. Biorefining. 12 (2018), 935–948, 10.1002/bbb.1890.
Richter, S., Braun-Unkhoff, M., Naumann, C., Riedel, U., Paths to alternative fuels for aviation. CEAS Aeronaut. J. 9 (2018), 389–403, 10.1007/s13272-018-0296-1.
Mawhood, R., Gazis, E., De Jong, S., Hoefnagels, R., Slade, R., Production pathways for renewable jet fuel: a review of commercialization status and future prospects. Biofuels, Bioprod. Biorefining. 10 (2016), 462–484, 10.1002/bbb.1644.
Praveenkumar, R., Lee, K., Lee, J., Oh, Y.K., Breaking dormancy: an energy-efficient means of recovering astaxanthin from microalgae. Green Chem. 17 (2015), 1226–1234, 10.1039/c4gc01413h.
Chen, B., Wan, C., Mehmood, M.A., Chang, J.S., Bai, F., Zhao, X., Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–A review. Bioresour. Technol. 244 (2017), 1198–1206, 10.1016/j.biortech.2017.05.170.
Nakagawa, Y., Tamura, M., Tomishige, K., Recent development of production technology of diesel- and jet-fuel-range hydrocarbons from inedible biomass, Fuel Process. Technol. 193 (2019), 404–422, 10.1016/j.fuproc.2019.05.028.
Moon, M., Park, W.K., Lee, S.Y., Hwang, K.R., Lee, S., Kim, M.S., Kim, B., Oh, Y.K., Lee, J.S., Utilization of whole microalgal biomass for advanced biofuel and biorefinery applications. Renew. Sustain. Energy Rev., 160, 2022, 112269, 10.1016/j.rser.2022.112269.
Thomassen, G., Van Dael, M., Lemmens, B., Van Passel, S., A review of the sustainability of algal-based biorefineries: towards an integrated assessment framework. Renew. Sustain. Energy Rev. 68 (2017), 876–887, 10.1016/j.rser.2016.02.015.
Wang, M., Chen, M., Fang, Y., Tan, T., Highly efficient conversion of plant oil to bio-aviation fuel and valuable chemicals by combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating. Biotechnol. Biofuels, 11, 2018, 30, 10.1186/s13068-018-1020-4.
Debecker, D.P., Stoyanova, M., Rodemerck, U., Colbeau-Justinc, F., Boissère, C., Chaumonnot, A., Bonduelle, A., Sanchez, C., Aerosol route to nanostructured WO3-SiO2-Al 2O3 metathesis catalysts: toward higher propene yield. Appl. Catal. Gen. 470 (2014), 458–466, 10.1016/j.apcata.2013.06.041.
Hérisson, J.-L., Chauvin, Y., Catalyse de transformation des oléfines par les complexes du tungstène. Makromol. Chem. 141 (1970), 161–176, 10.1002/macp.1971.021410112.
Yelchuri, V., Srikanth, K., Prasad, R.B.N., Karuna, M.S.L., Olefin metathesis of fatty acids and vegetable oils. J. Chem. Sci., 131, 2019, 39, 10.1007/s12039-019-1615-8.
Mol, J.C., Industrial applications of olefin metathesis. J. Mol. Catal. Chem. 213 (2004), 39–45, 10.1016/j.molcata.2003.10.049.
Maksasithorn, S., Praserthdam, P., Suriye, K., Debecker, D.P., Preparation of super-microporous WO3-SiO2 olefin metathesis catalysts by the aerosol-assisted sol-gel process. Microporous Mesoporous Mater. 213 (2015), 125–133, 10.1016/j.micromeso.2015.04.020.
Phillips, J.H., Latest industrial uses of olefin metathesis. Organomet. Chem. Ind. A Pract. Approach., 2020, 259–282, 10.1002/9783527819201.ch10.
Chikkali, S., Mecking, S., Refining of plant oils to chemicals by olefin metathesis. Angew. Chem. Int. Ed. 51 (2012), 5802–5808, 10.1002/anie.201107645.
Zimmerer, J., Williams, L., Pingen, D., Mecking, S., Mid-chain carboxylic acids by catalytic refining of microalgae oil. Green Chem. 19 (2017), 4865–4870, 10.1039/c7gc01484h.
Mol, J.C., Buffon, R., Metathesis in oleochemistry. J. Braz. Chem. Soc. 9 (1998), 1–11, 10.1590/S0103-50531998000100002.
Marx, V.M., Sullivan, A.H., Melaimi, M., Virgil, S.C., Keitz, B.K., Weinberger, D.S., Bertrand, G., Grubbs, R.H., Cyclic alkyl amino carbene (caac) ruthenium complexes as remarkably active catalysts for ethenolysis. Angew. Chem. Int. Ed. 54 (2015), 1919–1923, 10.1002/anie.201410797.
Chatterjee, A.K., Choi, T.L., Sanders, D.P., Grubbs, R.H., A general model for selectivity in olefin cross metathesis. J. Am. Chem. Soc. 125 (2003), 11360–11370, 10.1021/ja0214882.
Rouen, M., Queval, P., Borré, E., Falivene, L., Poater, A., Berthod, M., Hugues, F., Cavallo, L., Baslé, O., Olivier-Bourbigou, H., Mauduit, M., Selective metathesis of α-olefins from bio-sourced fischer-tropsch feeds. ACS Catal. 6 (2016), 7970–7976, 10.1021/acscatal.6b01428.
Nelson, D.J., Queval, P., Rouen, M., Magrez, M., Toupet, L., Caijo, F., Borré, E., Laurent, I., Crévisy, C., Baslé, O., Mauduit, M., Percy, J.M., Synergic effects between N-heterocyclic carbene and chelating benzylidene-ether ligands toward the initiation step of hoveyda-grubbs type Ru complexes. ACS Catal. 3 (2013), 259–264, 10.1021/cs400013z.
Trnka, T.M., Morgan, J.P., Sanford, M.S., Wilhelm, T.E., Scholl, M., Choi, T.L., Ding, S., Day, M.W., Grubbs, R.H., Synthesis and activity of ruthenium alkylidene complexes coordinated with phosphine and N-heterocyclic carbene ligands. J. Am. Chem. Soc. 125 (2003), 2546–2558, 10.1021/ja021146w.
Dinger, M.B., Mol, J.C., Degradation of the second-generation Grubbs metathesis catalyst with primary alcohols and oxygen - isomerization and hydrogenation activities of monocarbonyl complexes. Eur. J. Inorg. Chem. 2003 (2003), 2827–2833, 10.1002/ejic.200200702.
Hong, S.H., Sanders, D.P., Lee, C.W., Grubbs, R.H., Prevention of undesirable isomerization during olefin metathesis. J. Am. Chem. Soc. 127 (2005), 17160–17161, 10.1021/ja052939w.
Bidange, J., Fischmeister, C., Bruneau, C., Ethenolysis: a green catalytic tool to cleave carbon–carbon double bonds. Chem. Eur J. 22 (2016), 12226–12244, 10.1002/chem.201601052.
Zimmerer, J., Olefin Metathesis of Microalgae Lipids. 2020 http://nbn-resolving.de/urn:nbn:de:bsz:352-2-szhqy2y4drq28.
Mol, J.C., Application of olefin metathesis in oleochemistry: an example of green chemistry. Green Chem. 4 (2002), 5–13, 10.1039/b109896a.
Nickel, A., Ung, T., Mkrtumyan, G., Uy, J., Lee, C.W., Stoianova, D., Papazian, J., Wei, W.H., Mallari, A., Schrodi, Y., Pederson, R.L., A highly efficient olefin metathesis process for the synthesis of terminal alkenes from fatty acid esters. Top. Catal., 2012, Springer, 518–523, 10.1007/s11244-012-9830-2.
Schrodi, Y., Ung, T., Vargas, A., Mkrtumyan, G., Lee, C.W., Champagne, T.M., Pederson, R.L., Hong, S.H., Ruthenium olefin metathesis catalysts for the ethenolysis of renewable feedstocks, Clean - Soil. Air, Water 36 (2008), 669–673, 10.1002/clen.200800088.
Patel, J., Elaridi, J., Jackson, W.R., Robinson, A.J., Serelis, A.K., Such, C., Cross-metathesis of unsaturated natural oils with 2-butene. High conversion and productive catalyst turnovers. Chem. Commun., 2005, 5546–5547, 10.1039/b511626k.
Bennett, J.A., Parlett, C.M.A., Isaacs, M.A., Durndell, L.J., Olivi, L., Lee, A.F., Wilson, K., Acetic acid ketonization over Fe3O4/SiO2 for pyrolysis bio-oil upgrading. ChemCatChem 9 (2016), 1648–1654, 10.1002/cctc.201601269.
Gholizadeh, M., Hu, X., Liu, Q., A mini review of the specialties of the bio-oils produced from pyrolysis of 20 different biomasses. Renew. Sustain. Energy Rev., 114, 2019, 109313, 10.1016/j.rser.2019.109313.
Friedel, C., Ueber s. g. gemischte Acetone. Ann. Der Chemie Und Pharm. 108 (1858), 122–125, 10.1002/jlac.18581080124.
Pulido, A., Oliver-Tomas, B., Renz, M., Boronat, M., Corma, A., Ketonic decarboxylation reaction mechanism: a combined experimental and dft study. ChemSusChem 6 (2012), 141–151, 10.1002/cssc.201200419.
Díaz-Pérez, M.A., Serrano-Ruiz, J.C., Catalytic production of jet fuels from biomass. Molecules, 25, 2020, 802, 10.3390/molecules25040802.
Corma, A., Oliver-Tomas, B., Renz, M., Simakova, I.L., Conversion of levulinic acid derived valeric acid into a liquid transportation fuel of the kerosene type. J. Mol. Catal. Chem. 388–389 (2014), 116–122, 10.1016/j.molcata.2013.11.015.
Lange, J.-P., Price, R., Ayoub, P.M., Louis, J., Petrus, L., Clarke, L., Gosselink, H., Valeric biofuels: a platform of cellulosic transportation fuels. Angew. Chem. Int. Ed. 49 (2010), 4479–4483, 10.1002/anie.201000655.
Gliński, M., Zalewski, G., Burno, E., Jerzak, A., Catalytic ketonization over metal oxide catalysts. XIII. Comparative measurements of activity of oxides of 32 chemical elements in ketonization of propanoic acid. Appl. Catal. Gen. 470 (2014), 278–284, 10.1016/j.apcata.2013.10.047.
Parida, K., Mishra, H.K., Catalytic ketonisation of acetic acid over modified zirconia. J. Mol. Catal. Chem. 139 (1999), 73–80, 10.1016/s1381-1169(98)00184-8.
Nagashima, O., Sato, S., Takahashi, R., Sodesawa, T., Ketonization of carboxylic acids over CeO2-based composite oxides. J. Mol. Catal. Chem. 227 (2005), 231–239, 10.1016/j.molcata.2004.10.042.
Boekaerts, B., Sels, B.F., Catalytic advancements in carboxylic acid ketonization and its perspectives on biomass valorisation. Appl. Catal. B Environ., 283, 2021, 119607, 10.1016/j.apcatb.2020.119607.
Simakova, I.L., Murzin, D.Y., Transformation of bio-derived acids into fuel-like alkanes via ketonic decarboxylation and hydrodeoxygenation: design of multifunctional catalyst, kinetic and mechanistic aspects. J. Energy Chem. 25 (2016), 208–224, 10.1016/j.jechem.2016.01.004.
Bayahia, H., Deoxygenation of propionic acid in gas phase over cobalt molybdenum catalyst. Asian J. Chem. 28 (2016), 2745–2748, 10.14233/ajchem.2016.20107.
Murkute, A.D., Jackson, J.E., Miller, D.J., Supported mesoporous solid base catalysts for condensation of carboxylic acids. J. Catal. 278 (2011), 189–199, 10.1016/j.jcat.2010.12.001.
Lee, K., Kim, M.Y., Choi, M., Effects of fatty acid structures on ketonization selectivity and catalyst deactivation. ACS Sustain. Chem. Eng. 6 (2018), 13035–13044, 10.1021/acssuschemeng.8b02576.
Oliver-Tomas, B., Renz, M., Corma, A., Direct conversion of carboxylic acids (C n) to alkenes (C 2n−1) over titanium oxide in absence of noble metals. J. Mol. Catal. Chem. 415 (2016), 1–8, 10.1016/j.molcata.2016.01.019.
Martinez, R., Ketonization of acetic acid on titania-functionalized silica monoliths. J. Catal. 222 (2004), 404–409, 10.1016/j.jcat.2003.12.002.
Pestman, R., Koster, R.M., Pieterse, J.A.Z., Ponec, V., Reactions of carboxylic acids on oxides. J. Catal. 168 (1997), 255–264, 10.1006/jcat.1997.1623.
Phung, T.K., Casazza, A.A., Perego, P., Capranica, P., Busca, G., Catalytic pyrolysis of vegetable oils to biofuels: catalyst functionalities and the role of ketonization on the oxygenate paths. Fuel Process. Technol. 140 (2015), 119–124, 10.1016/j.fuproc.2015.08.042.
Wu, K., Yang, M., Pu, W., Wu, Y., Shi, Y., Hu, H., Carbon promoted ZrO2 catalysts for aqueous-phase ketonization of acetic acid. ACS Sustain. Chem. Eng. 5 (2017), 3509–3516, 10.1021/acssuschemeng.7b00226.
Corma, A., Renz, M., Schaverien, C., Coupling fatty acids by ketonic decarboxylation using solid catalysts for the direct production of diesel, lubricants, and chemicals. ChemSusChem 1 (2008), 739–741, 10.1002/cssc.200800103.
Zaidi, S., Asikin-Mijan, N., Hussain, A.S., Mastuli, M.S., Alharthi, F.A., Alghamdi, A.A., Taufiq-Yap, Y.H., Facile synthesis of nanosized La/ZrO2 catalysts for ketonization of free fatty acid and biomass feedstocks. J. Taiwan Inst. Chem. Eng. 121 (2021), 217–228, 10.1016/j.jtice.2021.04.013.
Lee, Y., Choi, J.-W., Suh, D.J., Ha, J.-M., Lee, C.-H., Ketonization of hexanoic acid to diesel-blendable 6-undecanone on the stable zirconia aerogel catalyst. Appl. Catal. Gen. 506 (2015), 288–293, 10.1016/j.apcata.2015.09.008.
Shutilov, A.A., Simonov, M.N., Zaytseva, Y.A., Zenkovets, G.A., Simakova, I.L., Phase composition and catalytic properties of ZrO2 and CeO2-ZrO2 in the ketonization of pentanoic acid to 5-nonanone. Kinet. Catal. 54 (2013), 184–192, 10.1134/s0023158413020134.
Serrano-Ruiz, J.C., Wang, D., Dumesic, J.A., Catalytic upgrading of levulinic acid to 5-nonanone. Green Chem., 12, 2010, 574, 10.1039/b923907c.
Renz, M., Corma, A., Ketonic decarboxylation catalysed by weak bases and its application to an optically pure substrate. Eur. J. Org Chem., 2004, 2036–2039, 10.1002/ejoc.200300778 2004.
Zaytseva, Y.A., Panchenko, V.N., Simonov, M.N., Shutilov, A.A., Zenkovets, G.A., Renz, M., Simakova, I.L., Parmon, V.N., Effect of gas atmosphere on catalytic behaviour of zirconia, ceria and ceria–zirconia catalysts in valeric acid ketonization. Top. Catal. 56 (2013), 846–855, 10.1007/s11244-013-0045-y.
Tosoni, S., Pacchioni, G., Acetic acid ketonization on tetragonal zirconia: role of surface reduction. J. Catal. 344 (2016), 465–473, 10.1016/j.jcat.2016.10.002.
Bauen, A., Bitossi, N., German, L., Harris, A., Leow, K., Sustainable Aviation Fuels: status, challenges and prospects of drop-in liquid fuels, hydrogen and electrification in aviation. Johnson Matthey Technol. Rev. 64 (2020), 263–278, 10.1595/205651320X15816756012040.