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Abstract 29 

In the last few years, governments all around the world have agreed upon migrating towards 30 

carbon-neutral economies as a strategy for restraining the effects of climate change. A major 31 

obstacle limiting this achievement is greenhouse gases emissions, for which the aviation sector 32 

is a key contributor because of its dependence on fossil fuels. As an alternative, biofuels with 33 

similar characteristics to current fossil-fuels and fully compatible with the existing petroleum 34 

infrastructure (i.e., drop-in biofuels) are being developed. In this regard, microalgae are a 35 

promising feedstock thanks to, among other aspects, their potential for lipid accumulation. This 36 

review outlines the development status, opportunities, and challenges of different technologies 37 

that are capable of or applicable to transform microalgae into aviation fuels. To this effect, a 38 

baseline of the existing jet fuels and the requirements for potential aviation biofuels is initially 39 

presented. Then, microalgae production and valorization techniques are discussed with an 40 

emphasis on the thermochemical pathways. Finally, an assessment of the present techno-41 

economic feasibility of microalgae-derived aviation fuels is discussed, along with the authors’ 42 

point of view on the suitability of these techniques. Further developments are needed to reduce 43 

the costs of cultivation and harvesting of microalgae, and a biorefinery approach might improve 44 

the economics of the overall process. In addition, while each of the conversion routes described 45 

has its advantages and drawbacks, they converge upon the need of optimizing the 46 

deoxygenation techniques and the proportion of the suitable type of hydrocarbons that match 47 

fuel requirements.  48 
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1. Introduction 87 

 88 

For decades now, fossil fuels have been ubiquitous in our daily lives, from lighting and heating 89 

our homes to propelling our cars and planes, allowing people to travel the world [1]. However, 90 

the overexploitation of these non-renewable resources has contributed to the problem of climate 91 

change. The conversion of petroleum into fuels promotes the release of greenhouse gases 92 

(GHG), such as carbon dioxide, methane, NOx and SOx gases, which has encouraged 93 

politicians to adopt multiple initiatives and milestones to reduce GHG emissions [2,3]. This 94 

juncture is illustrated by the European Union (EU) policies, the Paris Agreement, the goals of 95 

the United Nations (UN) Intergovernmental Panel On Climate Change (IPCC), and the targets 96 

adopted by the International Civil Aviation Organization (ICAO) [4–10]. Some of these policies 97 

aim to minimize the use of fossil fuels for transportation [11,12]. According to the data 98 

published by the International Energy Agency (IEA), about 66% of the world oil was consumed 99 

in transportation in 2019 [13], a trend that is expected to increase in the years to come [14]. In 100 

parallel, the projections of the UN show that global population is expected to increase by 2 101 

billion in the next 30 years and is projected to reach nearly 11 billion in 2100 [15,16]. Assuming 102 

that this increase in population will lead to an increase in their mobility, the energy demand for 103 

transportation will also continue to expand [17]. In fact, oil demand for transportation is 104 

expanding continuously with expectations to increase by 1.3% annually until 2030 [18,19]. 105 

According to a new prediction from Airbus for 2038, it is expected that the aircraft fleet for 106 

both civil aviation and freighters will double in the next twenty years [20].  107 

Increasing population, mobility, and the associated environmental and economic issues 108 

motivates the development of alternative and sustainable transportation fuels, such as biofuels. 109 

Biofuels are made by converting biomass (vegetable oils, agricultural wastes, domestic wastes) 110 

into suitable products [21]. Solid biofuels like wood residues, wood pellets, biochar, or 111 
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animal/vegetal wastes are typically burned to provide heat and light [22]. Liquid (bio-gasoline, 112 

biodiesel, bioethanol, biojet fuel) and gaseous (biogas) biofuels are commonly used for 113 

transportation means to reduce fossil fuel reliance. Their development for land transportation 114 

is less critical due to the emergence of other alternatives to current petroleum-based gasoline 115 

and diesel (e.g., hydrogen, electrical vehicles) [12]. Nevertheless, air transport requires 116 

compliance with specific fuel properties, aircraft design (wings and turbines), and higher safety 117 

standards than land transportation, which tightens the fossil fuel dependence of the aviation 118 

sector [17]. This challenge motivates in this review the development of drop-in biofuels, i.e., 119 

biofuels with similar characteristics to current fossil-fuels and fully compatible with the existing 120 

petroleum infrastructure [23].  121 

The exploitation of renewable feedstocks for the production of biofuels is typically limited by: 122 

(i) biomass feedstock availability, (ii) alternative exploitation of biomass (e.g., food 123 

production), and (iii) their intrinsic chemical and physical properties [23,24]. First generation 124 

biofuels come from edible crops such as corn, sugarcane, soybean, and rapeseed. Although the 125 

production processes of bioethanol and biodiesel are known, controlled, and scaled up, first 126 

generation biofuels have an impact on food prices and food security, leading to concerns about 127 

the ethical exploitation of crops for biofuels but not for food [12,25,26]. Additional drawbacks 128 

are the utilization of non-sustainable fertilizers or reliance of deforestation, implying indirect 129 

land-use change [27]. 130 

Overcoming these limitations has been a challenge over the years, which prompted the 131 

emergence of second- and third-generation biofuels [28]. Second generation biofuels are 132 

produced from lignocellulose, often present in agricultural residues, forestry waste, and 133 

biomass industrial wastes or municipal wastes [29,30]. This review will not cover the biofuel 134 

production pathways exploiting lignocellulosic biomass; the reader can refer to other recent 135 

review papers published on the subject [31–36]. Microalgae, the feedstock for third-generation 136 
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biofuels, seem to be a promising biomass source to produce biofuels. They are mainly 137 

composed of lipids and sugars, two potential precursors of hydrocarbons [37]. Some of the 138 

benefits of using microalgae as a feedstock for biofuel production are presented in Section 3. 139 

Currently, only 3% of the primary energy consumed for transportation is represented by 140 

biofuels, but IEA projected that 21% will be necessary by 2050 to reduce GHG emissions [38]. 141 

This review discusses the development of drop-in biofuels applicable in the aviation industry 142 

(i.e., biojet fuels). Initially, the baseline for drop-in biojet fuels is described in Section 2. Then, 143 

cultivation strategies and production techniques of microalgae as the third-generation feedstock 144 

is presented in Section 3. In addition, an overview of thermochemical conversion pathways 145 

including lipid and biomass valorization and economic feasibility of these existing processes is 146 

provided in Sections 4 and 5. Finally, potential strategies that could be investigated in the future 147 

are discussed in Section 6. 148 

 149 

2. Fossil-based jet fuels & drop-in biofuels 150 

 151 

Kerosene is a middle distillate of the crude oil refining process upgraded for its use as aviation 152 

fuel [39], also called jet fuel. It is a transparent liquid mix of hydrocarbons (paraffins, 153 

naphthenes, aromatics, and limited amount of olefins) with a chain length between 6 to 16 154 

carbons [39,40]. In general, jet fuel varies in composition, where a typical distribution shows 155 

around 20% v/v of normal paraffins, 40% v/v of iso-paraffins, and the rest being aromatics, 156 

naphthenes, and trace elements such as sulfur and additives.  157 

There are mainly two types of fossil fuels used in civil aviation: Jet A-1 and Jet-A [41]. Jet A-158 

1 is the worldwide used jet fuel for commercial flights, which is completely compatible with 159 

all existing turbines. Jet A, which has a higher freezing point, is mostly available in the U.S. 160 

[17,42]. In addition to these two major jet fuels, Jet-B is a blend of gasoline and kerosene which 161 
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is used in very cold climates (e.g., Alaska and some parts of Canada) [41,43]. Having a typical 162 

boiling range of 150 to 300 °C, jet fuels can be used for civil or military aviation, implying lots 163 

of specifications and requirements [40,44]. In the 1960s, the American Society of Testing and 164 

Materials (ASTM) established the specifications for Jet A-1 [45], which limit the concentration 165 

of aromatics at a maximum of 25% v/v, together with 3% for naphthalene and 3000 parts per 166 

million (ppm) for sulfur among other aspects [46–48]. Correspondingly, for drop-in biojet fuels 167 

to meet the ASTM standards and be compatible with existing fuel infrastructures, they have to 168 

fill in a range of characteristics including [46,49]: 169 

- High energy density, facilitating long distance flight. 170 

- Low viscosity, a parameter determining fuel pump-requirements. 171 

- Low freezing point, facilitating high altitude flight. 172 

- High flashpoint, the temperature needed for the fuel to produce vapor and form an 173 

ignitable mixture in air. Flashpoint is an essential safety consideration. 174 

- Good chemical and thermal stability. Fuel can be used to cool engine components and 175 

increase aircraft performance.  176 

- Wide availability. To have a significant positive impact on fuel price and environment, 177 

the fuel must be available in significant quantities. 178 

 179 

The chemical and physical properties of jet fuels depend on the number of carbon atoms present 180 

in the hydrocarbons (carbon number) and the way these atoms are arranged. Generally, an 181 

increase in carbon number implies an increase in the boiling point, freezing point, density, and 182 

energy density (energy per unit volume) of the fuel but a decrease in its volatility and specific 183 

energy (energy per unit mass). Concerning the configuration, an aromatic ring (benzene) will 184 

result in a higher freezing point, boiling point, density, and a lower specific energy compared 185 

to a paraffin [50]. Table 1 compares some properties of potential biojet fuels, such as 186 

hydrotreated vegetable oils and Fischer-Tropsch fuels with those of jet A1 [50,51]. 187 
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Table 1. Properties of some potential biojet fuels compared to conventional jet-fuel. 188 

Property 
Fischer 

Tropsch fuels 

Hydrotreated 

vegetable oils 
Jet A1 

Specific energy (MJ/kg) 43 43 43 

Viscosity (at 40°C) (mm²/s) 3 3 1.3a 

Flashpoint (°C) 70 100 38 

Freezing point (°C) -30 -29 -47 

a As reference, the viscosity of Jet-A1 at -20°C, the testing temperature required in the jet fuel specifications, is 189 
reported to be 8 mm2/s [45,50]. 190 

 191 

Another factor that alters fuel properties is oxygen content. Two common ways to express the 192 

oxygen content in biofuels are the oxygen-to-carbon ratio (O/C) and the effective hydrogen-to-193 

carbon ratio (H/C), as is shown in Figure 1. Figure 1a displays the inverse linear correlation 194 

between the energy density of a biofuel (MJ/L) and the O/C ratio [23]. A high O/C ratio or 195 

oxygen content decreases the energy density of the biofuel [52]. It can also attract water 196 

molecules, limiting the fuel’s compatibility with the existing infrastructure. For the aviation 197 

sector, first-generation biofuels are difficult to meet the energy density requirement [41].  198 

 199 

Figure 1. a) Effect of O/C ratio on the energy density of a biofuel. b) Effective H/C ratio for fractions contained 200 

in biomass. Adapted from Karatzos et al., 2014 [23]. 201 
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On the other hand, H/C (calculated using Eq. 1 [53]) describes how rich in hydrogen and how 202 

energy dense the biofuel is [23].  203 

𝐻/𝐶 =
𝑛(𝐻) − 2𝑛(𝑂)

𝑛(𝐶)
                                                          (𝐸𝑞. 1) 204 

In conventional fossil fuels (gasoline, diesel, kerosene), H/C is close to 2, the “ideal” value due 205 

to the very low or even no oxygen in petroleum (Figure 1b). Hence, the effective H/C ratio for 206 

drop-in biofuel feedstocks must be as close to 2 as possible, highlighting the potential of lipids 207 

to be employed as raw materials [23,53]. However, due to the presence of oxygen in such 208 

compounds, there is a necessity to understand, control, and optimize deoxygenation strategies 209 

to effectively convert oxygen containing biomass into hydrocarbons (explained in Section 4) 210 

with a low O/C and high H/C ratio that are comparable to petroleum-based fuels. 211 

 212 

3. Microalgae as renewable feedstocks 213 

3.1 Benefits of using microalgae as feedstock 214 

Microalgal biomass exhibits clear benefits over biomass from other plants [39,54–56]. 215 

Primarily, in contrast to crop plants used for second generation biofuels production, microalgae 216 

do not need arable land to grow, preserving agricultural areas and avoiding environmental 217 

problems related to deforestation. Microalgae can be easily cultivated in seawater or 218 

wastewater, which is critical for countries where drinking water is a scarce resource [57–59]. 219 

Secondly, it has been shown that microalgal photosynthetic efficiency, when supplemented 220 

with carbon dioxide, is in general superior to that of plants [60,61]. Moreover, microalgae do 221 

not have lignin within their cell wall, which avoids expensive pre-treatments to convert its 222 

fractions into valuable products [62]. Microalgae are able to grow continuously for a very long 223 

time, with many species capable of doubling their biomass in less than a day [63]. Besides, 224 
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some microalgal strains are able to accumulate more than 80% of the total weight of their dry 225 

biomass in lipids after induction of various stresses [57–59] or particular growing conditions, 226 

such as nitrogen starvation or lower temperatures compared with the optimum growth [64–66]. 227 

Because of their rich lipid content and fast growth, microalgae show a production yield much 228 

higher than plants, ranging approximately from 3 to 7.5 tons of lipids per hectare and per year, 229 

depending on the culture condition and the selected strain, against, for instance, 0.4 tons.ha-1.y-230 

1 for soybeans or 0.7 tons.ha-1.y-1 for rapeseed [67–70]. Table 2 shows different strains studied 231 

for biofuel production and their lipid content.  232 

Similar to plants, the storage lipid biosynthesis pathway in microalgae starts with glucose, 233 

which is mostly produced during the photosynthesis reaction [71]. Glucose is then used for the 234 

synthesis of Triacylglycerol (TAG) or storage polysaccharides biosynthesis [71]. Microalgae 235 

are also rich in polyunsaturated fatty acids (PUFA) which are also suitable for aviation fuels 236 

[72]. For a given quantity, microalgae crude oil contains about 80% of the energy delivered by 237 

the same amount of crude oil petroleum, with an average of 35.8 kJ/kg [73]. 238 

Table 2. Some microalgal species studied for biofuel production and their corresponding lipid content (% DW). 239 

Microalgal species Phylum 
Lipid content 

(% dry weight) 
Reference 

Neochloris oleoabundans Chlorophyta 29 – 65  [57,74] 

Chlorella protothecoides  Chlorophyta 14 – 57.8 [57,75] 

Botryococcus braunii Chlorophyta 25 – 80  [76,77] 

Chlorella vulgaris  Chlorophyta 5 – 58  [57,78] 

Nannochloropsis salina  Ochrophyta 22 [77] 

 240 

Carbohydrates are distributed in many locations within the cell, with variable proportions 241 

according to the species and culture conditions [79]. For example, some green algae contain 242 

cellulose, hemicellulose in the cell wall and starch used as storage polysaccharide [80]. Reserve 243 

carbohydrate production can be stimulated by the same stresses or condition as those applied to 244 
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promote lipids accumulation, although depending on the species one metabolite will be 245 

preferentially synthesized over the other [81,82]. As shown in Table 3, carbohydrate content is 246 

variable depending on the algal species.  247 

Table 3. Carbohydrate content (% DW) in different microalgal and cyanobacteria species. 248 

Microalgal species Phylum 
Carbohydrate content 

(% dry weight) 
Reference 

Chlorella vulgaris  Chlorophyta 9 [83] 

Tetraselmis sp.  Chlorophyta 24 [84] 

Scenedesmus obliquus  Chlorophyta 46.6 [65] 

Spirulina sp. Cyanobacteria 20 [83] 

Nannochloropsis sp.  Ochrophyta 15 – 50  [85] 

Porphyridium cruentum  Rhodophyta 40 [83] 

 249 

3.2 Production techniques  250 

Many promising cultivation systems for large-scale microalgae production exist [86]. 251 

Depending on the cultivated species, they are exploited for photosynthetic pigments such as 252 

secondary carotenoids (e.g. astaxanthin), PUFAs as food supplement [87], in wastewater 253 

treatment [59], or for third generation biofuel production [88]. Regardless of the reason for algal 254 

biomass production, apart from the water-based culture media (or seawater-based for marine 255 

species), it is essential to provide nutrients such as nitrogen, phosphorous, iron and metal trace 256 

elements by supplying inexpensive inorganic salts. In addition, it is important to provide a light 257 

source and carbon dioxide for the photosynthetic reaction, and to guarantee a temperature 258 

generally between 25°C and 35°C [89]. Optimum conditions for microalgal growth depend 259 

primarily on the microalgal strain, the desired application and the technology selected, but its 260 

control is essential to optimize the productivity. The main variables are temperature and pH, 261 

but the nutrient supply, light and CO2 assimilation are also significant [89].  262 
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In large-scale cultures, continuous process mode is commonly applied. Besides, natural light is 263 

preferred to artificial illumination in order to improve economics. However, the geographical 264 

location, sunshine duration, and the desired metabolite production also influence the choice of 265 

the light source. Two main strategies are preferred: open-ponds, which are open to the outside 266 

environment, and photobioreactors, which are closed systems isolating the algal cells from the 267 

outside environment [89,90]. 268 

Different types of open-ponds systems have been studied, including shallow ponds, tanks, 269 

circular ponds and raceway ponds [86]. Raceway pond is the most commonly used system for 270 

third generation biofuel production since it features relatively high biomass productivity and 271 

low cost (Figure 2) [91,92].  272 

 273 

Figure 2. Schematic aerial view of a raceway pond. Adapted from Chisti (2007) [63]. 274 

 275 

Raceway ponds are artificial pools with an oval shape in which the microalgae are continuously 276 

circulating in a closed loop like an automotive raceway circuit. Current flow is permanently 277 

maintained by a paddlewheel to avoid cell sedimentation and driven by baffles around bends 278 

[63]. Fresh medium and nutrients are supplied exclusively during the day, below the paddle 279 

wheel to ensure their entry into the loop. During the night, about 25% of the biomass produced 280 
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can be lost due to respiration metabolism. This percentage depends on light intensity and 281 

temperature during the day, as well as temperature at night [63]. Harvesting is performed 282 

upstream of the paddlewheel before the algae return to the circulation loop. In order to improve 283 

photosynthetic yield, CO2 may be sparged from the bottom of the raceway pond, to increase the 284 

dissolved carbon dioxide concentration in the water [63,93,94]. Furthermore, to obtain a high 285 

biomass productivity in a dense culture broth, raceway pond depth is generally ranged between 286 

10 and 40 cm to ensure maximum sunlight uptake by the microalgae [95]. 287 

Nevertheless, biomass productivity may be affected by water losses through evaporation, CO2 288 

losses to the atmosphere during cell respiration (mostly during the night) [73], damage to the 289 

photosynthetic apparatus due to photoinhibition and low control on contamination by other 290 

microalgae or microorganisms [96]. Because of contamination issues, extremophile microalgae 291 

are widely preferred in open-pond cultures. For instance, Arthrospira platensis is well adapted 292 

to high pH [97]. Dunaliella salina cultures are capable of growing in highly saline environments 293 

[98,99]. 294 

On the other hand, photobioreactors involve higher capital and operation costs, but offer higher 295 

biomass productivity than open-ponds. This is the result of strict control on culture conditions 296 

such as temperature, pH, dissolved CO2 and nutrients availability, which can be optimized 297 

depending on the cultivated strain [57,99–101].  298 

A typical configuration for a photobioreactor is presented in Figure 3. They have a set of 299 

horizontal transparent tubes, called solar collector, which main goal is to ensure the best 300 

sunlight exposure. Helicoidal tubes fixed vertically on a supporting frame also exist but are less 301 

interesting for biofuel production as they have a lower biomass productivity [63]. To maximize 302 

land surface, tubes may be oriented in parallel to each other and to the ground, in a fence-wise 303 

position [63]. Tube diameters should be limited to 20 cm to ensure photosynthetic efficiency 304 

and thus biomass productivity [102,103]. 305 
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 306 

Figure 3. Schematic view of a tubular photobioreactor. Adapted from Chisti 2008 [104]. 307 

 308 

Since photobioreactors are isolated from the outside environment, gas transfer is not possible 309 

through the solar collector tubes, leading to a dissolved oxygen accumulation during the light 310 

phase of photosynthesis. High oxygen concentrations may inhibit photosynthesis and reduce 311 

productivity through oxidative damage in excess of solar radiation [103,105]. Therefore, the 312 

degassing column provides gas exchange with the atmosphere to evacuate the dissolved oxygen 313 

accumulated in the medium [63]. The degassing column can also be equipped with a carbon 314 

dioxide supply in order to improve photosynthetic efficiency, with caution of detrimental raises 315 

in pH [106]. Optimizing simultaneously the light and CO2 assimilation would increase the 316 

productivity, the biomass concentration and the lipid content [107].  317 

The temperature can be controlled by a heat exchanger located next to the degassing column, 318 

which could be expensive but reduces biomass loss, especially due to respiration at night [108]. 319 

Photobioreactors are also equipped with a pump in order to maintain a constant flow to prevent 320 

sedimentation and to allow microalgae circulation through the different parts of the system. 321 

Mechanical pumps are easier to operate but they can damage biomass and reduce productivity 322 

[109–111]. To avoid excessive mechanical stress on the cells, it is also possible to maintain 323 

flow with air-lift pumps, which are more expensive and complicated to design, but have been 324 
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promising [112,113]. As in open ponds, nutrients are supplied during the day before the entry 325 

of the medium in the solar collector tubes, while biomass is harvested just after passing through 326 

these tubes (Figure 3) [63].  327 

In raceway ponds, dry weight biomass productivity are between 0.03 gDW.L-1.day-1 and 0.2 328 

gDW.L-1.day-1 [114]. Conversely, in enclosed photobioreactors biomass productivity range 329 

between 0.05 to 1.5 gDW.L-1.day-1 [99,114]. Nevertheless, high energy consumption and 330 

expensive installation and maintenance costs make photobioreactors less interesting than 331 

raceway ponds for biofuel production [88].  332 

In addition to the conventional suspended cultivation, attached cultivation systems are being 333 

proposed as an option to facilitate the large-scale implementation of microalgae-based biofuels. 334 

In this approach, biofilms of microalgae adhere to the surface of a supporting material, where 335 

they grow provided they remain in contact with the culture media, a light source and carbon 336 

dioxide. However, the attachment mechanisms will vary depending on the microalgal strains 337 

and the distinct solid matrices, which cluster most of the current research [115]. Among the 338 

proposed bioreactors for this type of cultivation, fixed beds are the most promising. If designed 339 

appropriately, they would increase efficiency and productivity, by optimizing the CO2 mass 340 

transfer, and the nutrients and light uptakes [115,116]. Crucial parameters such as the film and 341 

medium thickness, and the support design and disposition would avoid photo-limitation, photo-342 

inhibition and pressure built-ups. A culture medium depth between 0.5 and 3 cm is advised, 343 

while the solid supports must be reusable, not expensive and efficient. Pressure built ups can 344 

be handled by hydraulically flowing the packing out of the column at the end of the growing 345 

phase, simplifying the scrapping of the biofilm [115,116]. 346 

 347 
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3.3 Harvesting techniques 348 

Another challenge to microalgae-based biofuel production lies in the downstream process [88]. 349 

Harvesting is a real challenge for biofuels to be cost-efficient and represents 20% to 30% of the 350 

total production costs [117]. Most commonly used harvesting techniques include flocculation, 351 

flotation, sedimentation, filtration and centrifugation. A qualitative comparison is proposed in 352 

Figure 4, based on data analyzed from the literature [99,118–120]. Both filtration and 353 

centrifugation render high recovery efficiencies and can process large volumes of culture, 354 

crucial for an industrial application. Notably, filtration offers the flexibility of employing 355 

adaptable membranes in terms of pores diameter and size, which represents an advantage when 356 

processing different microalgal strains. However, operational costs could increase because of 357 

filter clogging and vacuum pressures (when needed). Centrifugation, on the other hand, seems 358 

to be the best harvesting operation for dewatering, but it is energy intensive which contributes 359 

to its significant cost [119,120]. 360 

 361 

Figure 4. Comparison of some harvesting techniques. Generated referring to Chen et al., 2011 [118], Esteves et 362 
al., 2020 [120] and Tan et al., 2020 [119]. 363 

Flocculation requires the use of flocculant agents to create aggregates of cells which are then 364 

removed from the culture. Chemical agents (often metallic salts) or bio-flocculants are 365 

frequently employed; the formers carry the drawbacks of being toxic and must be considered 366 
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for wastewater treatment, albeit very efficient, while bio-flocculants are not necessarily 367 

expensive and they do not impose a purification step afterwards [119]. Flotation is based on the 368 

capture of algal cells into gas bubbles, which are then collected in the surface of a tank for an 369 

easy harvesting. This allows a high throughput of the slurry for the biomass conversion 370 

processes. Nevertheless, the gas bubbles are often generated by energy consuming systems, 371 

such as dissolved or dispersed air equipment, or electrolytic cells, which decreases the appeal 372 

of an industrial scalability [119,120]. Sedimentation by gravity is reported to be the cheapest 373 

and easiest harvesting technique, but it is also the underperformer between common operations, 374 

and its long-associated times end-up by undermining this alternative for mass production. 375 

Furthermore, cells can suffer from deterioration during these long sedimentation times [120].  376 

Harvest in photobioreactors is more efficient in terms of recovered biomass per volume and 377 

biomass concentration, as reported from Molina Grima et al. [117]. In addition, because water 378 

does not suffer evaporation inside enclosed photobioreactors, large quantities of water can be 379 

recycled to recreate the fresh medium [63,99].  380 

All of the above-mentioned techniques have their advantages and drawbacks, and they are not 381 

suitable for every microalgal strain. In consequence, the selection and optimization of the 382 

selected method (or methods, if combined) must be based primarily on the application for the 383 

microalgal biomass, process economy and industrial scalability [120].  384 

 385 

4. Thermochemical conversion pathways 386 

Thermochemical pathways have been the focus of the research and development of drop-in 387 

biofuels using microalgae as feedstock, given the advantages of exploiting either the entire 388 

microalgal biomass or an extracted lipid fraction. In fact, valorization of lipids is very attractive 389 

thanks to their high effective hydrogen to carbon ratio (Figure 1b) and low oxygen content (1-390 
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2%) [23,121] In consequence, this review covers pyrolysis, hydro-processed esters and fatty 391 

acids (HEFA), gasification, and hydrothermal processing as promising technologies for drop-392 

in biojet fuel production. Figure 5 shows a suggested distribution of these processes based on 393 

their optimization (refer to each section for more information).  394 

 395 

Figure 5. Microalgae thermochemical conversion pathways to bio-jet fuels. 396 

 397 

4.1 Pyrolysis 398 

Microalgae oil is abundant in aliphatic structures [122]. The native distribution of fatty acid 399 

chain lengths in microalgae oil yields diesel-range alkanes [123], which have boiling points 400 

near or higher than the high temperature limit required for both commercial and military jet 401 

fuels [124,125]. When considering the lower temperature limit, the product will have a freezing 402 

point higher than -40 °C and -47 °C specified on Jet-A and JP-8 requirements, respectively. 403 

These limitations lead to the necessity of upgrading microalgae oil to meet the desired physical 404 

properties of jet fuel (e.g., freezing point and flash point). Pyrolysis, as a rising technology 405 

adopted in converting vegetable oils and waste cooking oils, has the potential of 406 

thermochemically upgrading microalgae oil to jet fuel.  407 
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4.1.1 General reaction mechanism 408 

Pyrolysis removes oxygen in triglycerides or fatty acids and cracks primary products to 409 

hydrocarbons of different types and carbon lengths [122]. Deoxygenation can occur via 410 

multiple exothermic reaction pathways [126–128]. Decarboxylation (Eq. 2) or decarbonylation 411 

(Eq. 3), where oxygen is lost in the form of CO2 and CO respectively, can both proceed in either 412 

the absence or presence of hydrogen. The resulting hydrocarbons, alkanes and alkenes, 413 

respectively, contain one carbon atom less than that present in the original fatty acid [129]. If 414 

H2 is not present, alkenes can also be formed from unsaturated fatty acid chains due to the lack 415 

of hydrogenation reactions [123]. In comparison, hydrodeoxygenation (Eq. 4), where oxygen 416 

is removed as H2O, produces alkanes with the same number of carbon atoms as in the original 417 

fatty acid. Therefore, carbon chain length of the resulting alkanes/alkenes can be used to judge 418 

the deoxygenation mechanism. Heavy hydrocarbons produced from the deoxygenation process 419 

undergo a set of reactions to generate hydrocarbon fuels of different properties (Figure 6), in 420 

which process linear hydrocarbons can oligomerize and then undergo cyclization and 421 

aromatization [130]. The latter process leads to naphthalene and alkylbenzenes which are 422 

precursors to coke formation [131]. Selectivity towards reaction type and the extent of each 423 

reaction depend on the catalyst properties and reaction conditions [132,133]. It is noted that 424 

hydrodeoxygenation requires excess hydrogen [134]. The high cost associated with it hinders 425 

the application of this process [135]. As a result, deoxygenation process with absence or less 426 

consumption of hydrogen has been investigated [132,133,136–139]. 427 

 428 

 429 
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 430 

 431 

Figure 6. General proposed reaction pathway of converting vegetable oils into biofuels (modified from Naji et al., 432 
2021) [131]. 433 

 434 

4.1.2 Catalytic pyrolysis of model fatty acids 435 

Palmitic acid and stearic acid are often selected as model saturated fatty acids because of their 436 

natural presence in vegetable oils and microalgae oil, while oleic and linoleic acid are selected 437 

as model monounsaturated and polyunsaturated fatty acids (PUFA), respectively [140–144]. In 438 

general, saturated fatty acid pyrolysis can proceed via two routes: i) removal of oxygen through 439 

hydrodeoxygenation, decarboxylation, or decarbonylation, followed by cracking and 440 

isomerization to shorter alkanes and alkenes, ii) direct cracking of the acids to shorter-chain 441 

fatty acids and hydrocarbons; the resulting acids are further deoxygenated to hydrocarbons. 442 

Details of these two routes are plotted in Figure 7 [145,146].  443 
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 444 

Figure 7. General reaction pathway of catalytic pyrolysis of palmitic acid and stearic acid. Generated referring 445 
to Liu et al., 2015 [145] and Amber and Kamal, 2019 [146]. 446 

The catalytic pyrolysis pathways of oleic acid are summarized in Figure 8 [147,148]. When 447 

hydrogen supply is sufficient, i.e., catalytic pyrolysis with an external source of hydrogen, oleic 448 

acid can be hydrogenated to stearic acid where oxygen is sequentially eliminated to form either 449 

heptadecane or octadecane. If deoxygenation occurs without an external hydrogen source, 450 

alkenes, comprised of 8-heptadecene and 1,8-heptadecadiene, will be dominantly produced 451 

through a combination of decarboxylation and decarbonylation reactions as oleic acid remains 452 

unsaturated [148–151]. Pyrolysis of PUFA partially overlaps with that of monounsaturated fatty 453 

acids. Linoleic acid can be analogously hydrogenated from di- to mono-unsaturated acid and 454 

saturated acid, i.e., stearic acid [147]. The hydrogenated products further crack into 455 

hydrocarbons following the pathways summarized in the current section. Even without 456 

hydrogen addition, hydrogenation of PUFA might still take place. Some authors have reported 457 

in situ generation of hydrogen during catalytic pyrolysis [148,152]. Cyclization and 458 

aromatization processes that respectively form cyclic and aromatic products from linear 459 

hydrocarbons during catalytic pyrolysis are significant contributors to in situ hydrogen 460 

generation, along with hydrogen generated from the water gas shift reaction [153,154]. 461 
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 462 

Figure 8. General reaction pathway of catalytic pyrolysis of oleic acid. Generated referring to Snåre et al., 2008 463 
[147]; Krobkrong et al., 2018 [148].  464 

A summary of some studies where catalytic pyrolysis was performed without an external 465 

hydrogen source is shown in Table 4. It is reported that temperature has the greatest impact on 466 

product fractions [132,136,137]. At a higher temperature, pyrolytic products contains a higher 467 

content of non-condensable gases (C1-C5, H2, CO, and CO2) and a shift from predominantly C18 468 

to C43 hydrocarbons to C7 to C12 in the liquid phase due to a more intensive cracking of large 469 

molecules [132]. In addition, the conversion of feedstock appears to get higher as temperature 470 

increases [136]. Despite the advantages of higher conversion and hydrocarbon content in the 471 

jet fuel range, one risk of conducting catalytic pyrolysis at higher temperatures is the conversion 472 

of linear hydrocarbons to aromatic compounds, the level of which is required to be lower than 473 

25% in jet fuel [45,131,136]. Polymerization of aromatics can cover the surface of a catalyst 474 

and block the pores, consequently, producing coke as a by-product [155]. 475 

Different catalysts have been reported to improve the quality of pyrolysis products. 476 

Heterogeneous catalysts, generally supported by metal catalysts, are easier to separate 477 

compared to homogenous catalysts, complementary to the fact that they show higher thermal 478 

stability. Amongst metallic catalysts, palladium and platinum seem to be promising due to not 479 

only their high conversion and selectivity towards deoxygenation products, but also their ability 480 



23 

 

to hydrogenate PUFA in the presence of hydrogen [156,157]. Carbon supports have been 481 

reported as the best for these metals when decarboxylation is preferred [156–158], although 482 

zeolites are an interesting alternative because they are inexpensive and environmentally friendly 483 

[159,160]. They offer high catalyst activity owing to their chemical composition, ion-exchange 484 

capacity, generous surface area and porosity [161].  485 

Table 4. Summary of some catalytic pyrolysis reactions to produce jet fuel without the use of hydrogen. 486 

Feedstock Reactor T (°C) Catalyst Yield (wt%) Reference 

Non-edible 

sunflower oil 

Fixed bed reactor 550°C  ZSM-5 30.1% (hydrocarbon 

fuel) 

[132] 

Soybean oil Benchtop reactor 350-450°C  Na2CO3 40% (jet fuel range) [136] 

350°C HZSM-5 

200°C, 6MPa Pd/AC 

Soybean oil Flow reactor 360-450°C ZSM-5 21% (jet fuel range) [162] 

Non-edible 

waste oil 

Single step reactor 270°C Pb/beta-

zeolite 

31% (jet fuel range) [137] 

Waste oil Batch reactor 300-450°C CaO-

Na2CO3-

ZSM-5 

42.59% (jet fuel 

range) 

[138] 

Non-edible 

camelina oil  

Fixed bed reactor 500°C  Zn/ZSM-5 19.56% 

(hydrocarbon fuel) 

[132] 

Stearic acid  Semi-batch 

reactor 

300°C, 

0.6MPa 
Ni/Cr2O3 12% Conversion, 

60% Selectivity 

(hydrocarbon fuel) 

[156] 

Stearic acid  Semi-batch 

reactor 

300°C, 

0.6MPa 
Pd/C Complete 

conversion and 95% 

Selectivity (alkanes) 

[156] 

Stearic acid  Semi-batch 

reactor 

300°C, 

0.6MPa 

Pt/C 86% Conversion and 

87% Selectivity 

(alkanes) 

[156] 

 487 

4.1.3 Non-catalytic pyrolysis (Thermal pyrolysis) 488 

Non-catalytic pyrolysis thermally degrades lipid feedstock by heat generally between 300-489 

500°C [163] into alkanes, alkenes, alkadienes, carboxylic acids, aromatics, and small amounts 490 

of gaseous products [164,165]. The feasibility of applying this technology in producing 491 

renewable fuels from lipid-based feedstock has been widely studied [164,166–173]. The 492 

detailed reaction mechanisms are difficult to characterize because of the complexity and 493 

multiplicity of reaction pathways and products, but they are influenced by reaction conditions, 494 

such as temperature, residence time, and the presence of other gases in the system [174,175]. A 495 
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primary cracking has been proposed where fatty acids are formed during the thermal cracking 496 

of triglycerides by breakdown of C-O bonds between the portion that corresponds to the 497 

glycerol and the rest of the molecule, followed by a secondary cracking where fatty acids break 498 

down into smaller hydrocarbons [176,177]. The glycerol backbone of triglycerides decomposes 499 

to low molecular weight gaseous products, such as propane [176]. The presence of unsaturation 500 

in fatty acid chains enhances cracking in the proximity of C=C bonds [176,178]. This explains 501 

the simultaneous C-C bond cracking in oleic acid with deoxygenation, which was not reported 502 

in stearic acid pyrolysis [169,172]. Linoleic acid has two double bonds at ω-9 and ω-6 positions 503 

(rather than one in oleic acid), and a portion of ω-6 bonds is reported to crack producing light 504 

alkanes that end up in the generation of non-condensable gas phase products [179]. 505 

Reaction temperature, typically leads to an increase in gas yield due to over-cracking and an 506 

increase in solid formation due to polymerization and/or aromatization as temperature rises; as 507 

a consequence, liquid yield drops [136,168,175]. In contrast, an increase in the residence time 508 

at an optimal temperature does not necessarily lead to over-cracking, but to a polymerization 509 

of low molecular weight species into liquid [168]. This implies that competition exists between 510 

cracking into non-condensable gases and condensation of low molecular weight species into 511 

liquid, which is sensitive to reaction conditions. To optimize cracking without over-cracking 512 

the feedstock, a single-pass reactor operation have been suggested, which offers the opportunity 513 

of reducing capital and operating costs [168]. 514 

4.1.4 Opportunities and challenges of catalytic and non-catalytic pyrolysis in jet fuel 515 

production  516 

The advantages and disadvantages of catalytic and non-catalytic pyrolysis are tabulated in Table 517 

5. Compared to catalytic pyrolysis, non-catalytic pyrolysis has received attention because of its 518 

simplicity and speed [180], requiring no hydrogen and being able to perform under atmospheric 519 

pressure [132]. It also allows flexible usage of various renewable sources of low water content, 520 
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as opposed to refined oil for catalytic pyrolysis [181,182]. In fact, catalytic pyrolysis uses 521 

expensive catalysts applying strict acceptance limits and quality standards to feedstock in order 522 

to avoid catalyst deactivation [174]. Because of this limitation, catalytic pyrolysis generally 523 

does not process low quality lipids, such as microalgae oil or waste cooking oil [183,184].  524 

However, the selectivity of non-catalytic pyrolysis towards the desired products is lower unless 525 

reaction conditions are optimized [168,185]. Its liquid yield is relatively low due to incomplete 526 

cracking or over cracking [145,164]. When cracking is insufficient, the organic liquid phase 527 

still contains fatty acids increasing the acid value and consequently lowering the quality of the 528 

fuel [163,167]. Regardless of the advantages and disadvantages, both technologies provide 529 

value to process economy in a way by which heavy distillation residue from the crude liquid 530 

product can be reused [132].  531 

Table 5. Advantages and disadvantages of catalytic and non-catalytic pyrolysis. 532 

 Advantages Disadvantages 

Catalytic 

Pyrolysis 

Higher selectivity towards desired product  

Higher liquid product yield 

Expensive and complicated process 

High requirements for catalyst and 

feedstock 

Non-

catalytic 

Pyrolysis 

Simple and fast 

No requirement for hydrogen and/or catalyst 

Various feedstock options 

Lower selectivity towards desired 

product 

Lower liquid product yield 

 533 

In addition to the advantages mentioned above, non-catalytic pyrolysis of lipid feedstock allows 534 

multivariable method modifications, that is, large ranges of temperatures, residence times, flow 535 

rates, and pressures can be examined for optimization. The promising result of improving 536 

cracking without over-cracking the feedstock to produce more gas points toward increased 537 

single-pass reactor conversion efficiency, which offers the opportunity of reducing size and 538 

operating costs [168]. Evidence from the study conducted by Kubátová and co-workers 539 

indicates that the ratio of n-alkanes to branched alkanes is different from that of linear alkenes 540 
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to branched alkenes, which is attributed to the different stabilization pathways alkyl radicals 541 

proceed. They further discussed the necessity of optimizing temperature with the purpose of 542 

balancing between kinetic and thermodynamical control – for reasons that they affect radical 543 

reaction mechanisms. Based on the results from previous studies, there is a potential for 544 

applying non-catalytic pyrolysis in jet fuel production. However, thorough optimization is 545 

needed before the process can be commercialized [176]. 546 

 547 

4.2 Hydro-processed esters and fatty acids (HEFA) production 548 

The HEFA fuel production process is the most commercial drop-in biofuel to date, with a 549 

production of more than 4 billion liters/year [52]. This process fulfills the challenges of 550 

microalgal lipids described in previous sections and the resultant jet fuels show high cold flow 551 

properties, making them suitable for high altitude flights [186,187]. The classical HEFA 552 

approach is based on hydrotreating. In excess of hydrogen, hydrodeoxygenation and 553 

hydrogenation reactions occur releasing water and saturating double bonds of unsaturated fatty 554 

acids (Figure 9) [23]. This reaction pathway is preferable because both decarboxylation and 555 

decarbonylation consumes one carbon to remove oxygen. Hydrodeoxygenation reaction takes 556 

place between 280-340°C and 50 to 100 bar depending on the composition of fatty acids in oil 557 

[188]. The linear chain alkanes can then undergo hydrocracking and isomerization steps (Figure 558 

9). The chemical composition of the molecule is preserved but physical properties are modified, 559 

making them more suitable for aviation applications [17].  560 
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 561 

Figure 9. Simplified hydro-processed esters and fatty acids (HEFA) into biofuels production process; 1) 562 
Hydrodeoxygenation and hydrogenation; 2) Hydrocracking and isomerization of long chain hydrocarbon into 563 
suitable biofuels (based on Karatzos et al., 2014)[23]. 564 

 565 

A lot of research and development of catalysts have been carried out on vegetable oils or model 566 

fatty acids since the emergence of this technology. A series of metal-based catalysts can be 567 

exploited to improve the reactions happening during the HEFA process. Molybdenum nitride 568 

supported on alumina was found to be superior to vanadium and tungsten nitrites at 380-410°C 569 

and 70 bar H2, according to Monnier and coworkers, given its high selectivity for 570 

hydrodeoxygenation instead of decarboxylation or decarbonylation [189]. Yang et al. studied 571 

the hydrotreating of oleic acid in a fixed bed reactor with a Ni-W/SiO2-Al2O3 catalyst, finding 572 

that the yield of hydrocarbon production inside the jet fuel range decreased as temperature rose 573 

above 300°C. Lower temperatures promoted the formation of iso-paraffins [190]. Similarly, 574 

Ayandiran et al. studied the potential of copper and iron-based catalysts supported on 575 

aluminosilicate. When operating at 300°C and 20 bar of H2 pressure, they demonstrated that 576 

yield and selectivity could be improved from 59.5% and 73.6% [191] to 71.7% and 76.8%, 577 

respectively, when promoting the catalyst with 1%wt of tin [192]. Finally, Xing et al. evaluated 578 

the hydro-processing of a mixture of fatty acids over Ni/HZSM-5, which included 579 

hydrogenation, hydrocracking and aromatization via the Diels-Alder reactions [193]. They 580 

observed that Ni nanoparticles served as active sites for aromatization reactions, with 581 

approximately 64% aromatic produced at 360°C and 40 bar H2 with a 10% wt loading of Ni. 582 

Overall, the choice of the active metal catalyst (and its loading) will affect the yield and the 583 
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selectivity of the hydrocarbons generated, which have to be taken in consideration in the process 584 

development of drop-in biojet fuels and biofuels in general. 585 

The ASTM group approved in 2011 the HEFA process, allowing hydro-processed esters and 586 

vegetable oils to be blended with conventional jet fuel [186]. A summary of the known 587 

industrial HEFA production facilities and their capacities is shown in Table 6, with Neste oil 588 

being the highest producer, to the best of our knowledge [194].  589 

The main drawback of this promising technology is the high dependence on hydrogen. 590 

Hydrogen is already industrially consumed in petroleum refining process for the 591 

hydrodesulfurization of crude oil and cracking and is often produced from fossil fuels [23]. 592 

However, researchers have been working on the development of alternative hydrogen 593 

production from renewable feedstocks, which have been already reviewed by our group [195]. 594 

Table 6. World production capacity of HEFA from the IEA Bioenergy Task 39 Demonstration plant database 595 
(Values were converted using a density of 0.837 kg/L). 596 

Company Feedstock Billion L/y 

Neste mixed 2.37 

Diamond Green Diesel tallow 0.49 

REG Geismar Tallow 0.27 

Preem Petroleum Tall oil 0.02 

UPM biofuels Tall oil 0.12 

ENI Soy & other oils 0.59 

Cepsa Unknown 0.12 

AltAir Fuels Mixed 0.14 

World total  4.12 

 597 
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4.3 Gasification 598 

Gasification is another type of thermochemical process using high temperatures (600 to 599 

1000°C) in the presence of a gasifying agent to convert biomass to syngas, a mixture of CO, 600 

H2, CH4, light hydrocarbons, and CO2. Gasifying agents are oxidizing substances such as air, 601 

oxygen, steam or carbon dioxide [196,197]. Syngas can be used in specific engines or turbines 602 

to generate heat and electricity, but can also be converted to liquid transportation fuels via the 603 

Fischer-Tropsch process or hydrogen consumption [198]. An oxygen-deficient medium is 604 

generated in the gasifiers, allowing gas phase and solid phase reactions to happen (Table 7) 605 

[199]. Fixed bed (updraft and downdraft) and fluidized bed reactors are the two main types of 606 

gasifiers having both advantages and disadvantages well summarized by Warnecke [200]. 607 

Biomass composition and gasifying agents can also generate organic and inorganic impurities 608 

such as tar, alkali metals, H2S, HCl, or NH3 in different proportions [195,201].  609 

Classical biomass gasification can be divided in four main steps [52,199]: 610 

- Drying (<125°C) refers to the loss of water. Moisture (10-60%) is converted to steam 611 

that can itself serve as gasifying agent.  612 

- Pyrolysis (125-500°C), following some of the mechanisms discussed in Section 4.1. 613 

After this step, 80% of the biomass feed is converted to vapors or gas leaving behind 614 

fractions from incomplete conversion of biomass like tar and biochar (a solid 615 

carbonaceous powder material) [197,199]. Drying and pyrolysis are essential pre-steps 616 

of biomass gasification [202]. 617 

- Gas-solid reactions (>500°C). Biochar reacts with oxygen, steam or gases released 618 

during pyrolysis producing hydrogen [195]. Gas-solid reactions include the carbon-619 

oxygen, Boudouard and carbon-water reactions, and the hydrogenation of the solid 620 

carbon matter, enriching syngas (Table 7). Exothermic reactions will play an important 621 
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role of heat supply to drive the endothermic reactions in the system. However, the 622 

degree of contribution of the exothermic reactions will depend on the concentration of 623 

the gaseous compounds. Heat transfer limitations between gas and solid compounds 624 

makes equilibrium state not reachable [199].  625 

- Gas-phase reactions contribute to the enrichment of the syngas, specially the steam 626 

reforming and the water gas shift reactions. The latter is favored at low temperature due 627 

to its exothermicity. Each gas-phase reaction can be favored via the Le Chatelier 628 

principle by adding steam in the system and increasing partial pressure of hydrogen 629 

[199].  630 

Table 7. Chemical reactions happening during gasification. 631 

Gasification   

 

𝑪𝑯𝑿𝑶𝒚(𝒃𝒊𝒐𝒎𝒂𝒔𝒔) +  𝑶𝟐 + 𝑯𝟐𝑶 (𝒔𝒕𝒆𝒂𝒎) ⇌  𝑪𝑯𝟒 + 𝑪𝑶 + 𝑪𝑶𝟐 + 𝑯𝟐 

+  𝑯𝟐𝑶 (𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 𝒔𝒕𝒆𝒂𝒎) + 𝑪(𝑪𝒉𝒂𝒓) + 𝒕𝒂𝒓 

Gas-solid phase 

𝑪 +
𝟏

𝟐
𝑶𝟐 ⇌  𝑪𝑶 Carbon-oxygen reaction    ∆𝐻 =  −110.5 𝑀𝐽/𝑘𝑚𝑜𝑙 

𝑪 + 𝑪𝑶𝟐 ⇌  𝟐𝑪𝑶 Boudouard reaction           ∆𝐻 =  172.4 𝑀𝐽/𝑘𝑚𝑜𝑙 

𝑪 + 𝑯𝟐𝑶 ⇌ 𝑯𝟐 + 𝑪𝑶 Carbon-water reaction       ∆𝐻 =  131.3 𝑀𝐽/𝑘𝑚𝑜𝑙 

𝑪 + 𝟐𝑯𝟐 ⇌  𝑪𝑯𝟒 Hydrogenation reaction     ∆𝐻 =  −74.8 𝑀𝐽/𝑘𝑚𝑜𝑙 

Gas phase 

𝑪𝑶 +  𝑯𝟐𝑶 ⇌ 𝑯𝟐 + 𝑪𝑶𝟐 Water gas shift reaction    ∆𝐻 =  −41.1 𝑀𝐽/𝑘𝑚𝑜𝑙 

𝑪𝑶 +  𝟑𝑯𝟐 ⇌  𝑪𝑯𝟒 + 𝑯𝟐𝑶 Methanation                      ∆𝐻 =  −206 𝑀𝐽/𝑘𝑚𝑜𝑙 

𝑪𝑯𝟒 + 𝑯𝟐𝑶 ⇌  𝑪𝑶 +  𝟑𝑯𝟐 Steam reforming               ∆𝐻 =  206 𝑀𝐽/𝑘𝑚𝑜𝑙  

 632 

Although syngas can be used for similar applications as natural gas, the difference in energy 633 

density (4-18 MJ/Nm³ and 36 MJ/Nm³, respectively) is quite high, because syngas still features 634 

a high oxygen content. The potential of syngas for liquid biofuels applications is measured by 635 

its H2/CO ratio: higher ratios indicate higher energy density [52]. However, H2/CO ratio can be 636 

modified by feeding steam or hydrogen to the system. Steam initiates water gas shift reactions 637 
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while hydrogen will generate a syngas rich in CH4, a suitable composition for synthetic natural 638 

gas [199]. 639 

A series of parameters affect the set of reactions happening during gasification. Gas yield can 640 

be increased by decreasing the particle size [195,203], increasing temperature [197] and 641 

residence time [204], or avoiding overfeeding or starve-feeding. Char and tar content can be 642 

decreased with smaller granulometry [205] or by using very high temperature (>1000°C) [199]. 643 

Steam to biomass ratio (S/B) measures the supply of steam as a gasifying agent in the system, 644 

impacting both solid-gas phase and gas phase reactions alike [197]. High S/B also reduce tar 645 

during gasification. Utilization of catalysts enrich syngas composition with hydrogen and 646 

carbon monoxide for their further processing into hydrocarbons by the Fischer-Tropsch process 647 

and some of them can decrease the tar content. Ni-based catalysts, alkaline metal oxides, olivine 648 

and dolomites are catalysts generally used for gasification [196,206,207]. 649 

4.4 Hydrothermal processing  650 

Hydrothermal technology is defined as a thermochemical process performed at high 651 

temperature (180-750°C) and high pressure (5-40 MPa) where water can be in a sub- or a super-652 

critical state [208,209]. It consumes biomass in a heated, pressurized and oxygen-free reactor 653 

in a water media where biopolymers undergo chemical transformations including hydrolysis, 654 

depolymerization, pyrolysis, condensation, reforming and gasification to produce biofuels 655 

[210,211]. Based on the primary products, three different regions delimited by a range of 656 

temperature and pressure characterize hydrothermal processing [212,213]: 657 

- Hydrothermal carbonization (HTC) from 180 to 250°C and 2 to 10 MPa, where biomass 658 

is converted into solid fuels. 659 

- Hydrothermal liquefaction (HTL) between 250°C - 375°C and 5-35 MPa, generating a 660 

bio-oil. 661 
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- Hydrothermal Gasification (HTG) above the critical point of water (374°C and 22 MPa) 662 

producing syngas.  663 

The advantage of hydrothermal processing is that wet biomass (>10%wt) can be exploited, 664 

contrary to other methods such as pyrolysis and classical gasification. The moisture content in 665 

microalgal biomass is approximately 80-90%, making this biomass suitable for hydrothermal 666 

processing [214]. Beyond the advantage of using wet biomass, sub-critical or supercritical water 667 

treatment allows the use of water as a reactant, solvent, and catalyst [215].  668 

 669 

Figure 10. Phase diagram of water with region of interest (P° and T°) for hydrothermal liquefaction. Adapted 670 
from Hrncic et al., 2016 [215]. 671 

Increasing temperature and pressure of water radically changes its physical and chemical 672 

properties, as shown in Table 8. In the sub-critical state, below the critical point (Figure 10), 673 

the ionization constant of water (Kw=(H+).(OH-)) increases. Higher concentrations of H+ and 674 

OH- ions are present in the media for hydrolysis or basic reactions to happen [209]. Liquid water 675 

in its subcritical state also decreases both its density and dielectric constant, two critical 676 

parameters affecting the miscibility of a solvent having the ability to dissolve both non-polar 677 

and polar compounds [216]. Above its critical point, both density and dielectric constant 678 

significantly decrease [209]. Ionization of water in those specific conditions is inhibited, 679 

supported by the very low ionization constant (Kw=10-20), promoting the occurrence of free 680 

radical reactions, appropriate for hydrothermal gasification (>375°C) [208]. Affected classical 681 
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properties of water change the chemical reactions happening during sub- or supercritical water 682 

treatment compared to pyrolysis. 683 

Table 8. Physical and chemical properties of water in normal, subcritical and supercritical conditions (taken from 684 
Alper, 2020) [209]. 685 

 Normal water Subcritical water Supercritical water 

Temperature (K) 0 – 373.15  373.15 – 647  > 647 

Phase Liquid Liquid No phase differentiation 

Density (g cm-3) 0.997 (298 K) 0.692 (603 K; 30 MPa) 0.252 (683 K; 30 MPa) 

Dielectric constant 
78.5 (298K, 

0,1MPa) 
18.2 (603 K; 30 MPa) 5.9 (673 K; 25 MPa) 

Ionization constant (mol2 L-2) 10-14 (298 K) 10-11 (573 K) 10-20 (673 K) 

 686 

4.4.1 Hydrothermal liquefaction (HTL) 687 

Performing HTL on microalgae generates a main product called bio-oil, which is water-688 

insoluble and features an energy density close to that of fossil-based oils. Along with this 689 

product, it also generates: (i) an aqueous phase, containing some residual nutrients from the 690 

microalgae culture; (ii) a solid fraction constituted mainly by ashes and traces of hydrogen, 691 

nitrogen and sulfur and (iii) a gas phase with light gases such as CO2, CO, H2, CH4 and few 692 

amounts of ethylene and/or ethane [212,213].  693 

The properties of the bio-oil depend heavily on the feedstock quality and the production 694 

conditions. In fact, the different components present in microalgae, i.e., lipids, proteins, 695 

carbohydrates, and algaenans, undergo degradation during HTL. Under near-to-critical 696 

conditions, water promotes the decomposition of these macromolecules into smaller 697 

compounds, which then react to form the main products. Nevertheless, with temperatures above 698 

the supercritical state and/or times longer than 2 h, the products from the different phases could 699 

interact altogether leading to further decomposition, condensation or repolymerization. As a 700 

result, the bio-oil production yield might decrease, increasing the gas and/or the solid yield 701 

[213].  702 
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The complete breakdown of proteins eventually results in the formation of compounds such as 703 

phenols or nitrogenated heterocyclic hydrocarbons, which are the main source of nitrogen in 704 

the bio-oil. Carbohydrates become the principal source of oxygen as they split into organic 705 

acids, aldehydes, benzene and alcohols. Nonetheless, aldehydes and benzene-like compounds 706 

might repolymerize to produce larger hydrocarbons. Algaenans, on the other hand, are believed 707 

to degrade into alkanes, alkenes, and alkyl-aromatics with variable length [213].  708 

Operating conditions are very important as they can offset even a low lipid content [213,217]. 709 

Overall, it seems that temperatures close to the critical point (300-370°C) and short to moderate 710 

reaction times (5-30 min) enhance the bio-oil yield. By contrast, authors agree that temperatures 711 

beyond 370°C and reaction times of 60 min or more lead to further degradation, thus dropping 712 

the product yield [213,217].  713 

At 300°C, the hydrolysis of lipids into free fatty acids and glycerol is promoted [212]. Several 714 

studies validate the degradation of vegetable oils, such as soybean, linseed and coconut oils, 715 

and sunflower seeds, obtaining more than 95% conversion of lipids under water at subcritical 716 

conditions [216,218–222]. Nevertheless, these fatty acids are very stable in subcritical water. 717 

This behavior has been evaluated by Shin and co-workers, observing no appreciable 718 

degradation under 370°C. Over this point, cracking of PUFA was more frequent, possibly 719 

because of unsaturations, producing small chain carboxylic acids [223].  720 

For drop-in biofuels production, HTL needs to be evaluated for its ability to promote 721 

deoxygenation and cracking of lipids to produce hydrocarbons, which justifies the use of 722 

catalysts. HTL of formic acid, palmitic acid, and oleic acid, without any addition of hydrogen, 723 

have proven to yield alkanes and alkenes related to decarboxylation pathways in the presence 724 

of Pd and/or Pt based-metal catalysts supported on activated carbon [224–227]. They have been 725 

shown to be the most effective catalysts for decarboxylation reactions but find economical 726 

limitations for commercialization [152,228–233]. Alternatively, the addition of base (KOH or 727 
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NaOH) and metal oxide (CeO2 and ZrO2) catalysts investigated by Watanabe et al., both 728 

enhanced decarboxylation reactions with water at subcritical state [234]. Although 729 

decarboxylation reactions are also enhanced in sub- or super-critical water [235], development 730 

of catalysts for decarbonylation have also been developed. 731 

4.4.2 Hydrothermal Gasification (HTG) 732 

HTG is an alternative to classical biomass gasification exploiting wet biomass. It produces a 733 

fuel gas rich in CH4 and H2, depending on the reaction conditions. A temperature range of 734 

350°C to 500°C will mainly produce methane, while a temperature range of 500-800°C will 735 

produce more hydrogen [209,236]. Water in its supercritical state acts as a solvent, gasifying 736 

agent and catalyst for gas-phase reactions like steam reforming and water gas shift reactions, 737 

enriching syngas with hydrogen [212].  738 

Youssef et al. performed HTG of oleic acid at 400-500°C and 250 bar for 30 min with different 739 

commercial catalysts (Ru-, Pt-, Pd-, Ni-based catalysts) [237]. In the absence of catalysts, an 740 

increase in temperature produces more hydrogen. Among the studied catalysts, Ru/Al2O3 741 

activity resulted in the highest production of hydrogen. Moreover, glycerol have been widely 742 

investigated for its ability to produce hydrogen with and without the use of catalysts [236,238–743 

247] but it will not be covered in this review. 744 

  745 
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5. Economic feasibility of thermochemically produced microalgal 746 

aviation biofuels 747 

 748 

In this section, diverse aspects are reviewed related to the economic feasibility of microalgal 749 

aviation biofuels from thermochemical processes. Firstly, the costs related to microalgal 750 

cultivation and harvesting are the most influential parameters that limit the economic feasibility 751 

of biojet fuels, regardless of the thermochemical processing method that is considered [248–752 

254]. Three different modes of cultivation exist: autotrophic, heterotrophic and mixotrophic 753 

[255]. Autotrophic cultivation mode is the most frequently used. However, it can result in a 754 

lower cell density and a higher harvest cost. The heterotrophic mode, on the contrary, would 755 

return higher growth rate and yield and reduce harvest costs, offsetting the additional expense 756 

on nutrients [256,257]. This seems to be the most convenient approach for large-scale 757 

applications in regions with an unreliable sunlight provision, as is the case for some European 758 

latitudes. The mixotrophic mode is currently not widely used due to the relatively lower cell 759 

density and lipid content. 760 

Independently of the cultivation system, an alternative to enhance the productivity and the lipids 761 

content could be a two-step cultivation, where the microalgae are first cultured towards the 762 

highest productivity and then optimized to improve the lipids content and to influence the fatty 763 

acid profile. Depending on the algal strains, lipid accumulation can be induced by creating 764 

stressing conditions compared to the optimum, such as high salinity, nitrogen or phosphorous 765 

depletion in the medium, temperature and/or pH variations and different light intensities [258]. 766 

This should not represent a considerable increase in the capital and operational costs at 767 

industrial scale, given that progressive successions of bioreactors are typically used for this 768 

sector. Nevertheless, a cost-benefit evaluation must still be conducted before considering such 769 

methodology. 770 
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Numerous techno-economic analyses (TEA) indicate that photobioreactor are more costly than 771 

open pond systems, the latter being the focus at the NREL (National Renewable Energy 772 

Laboratory) since 2008 [259–262]. Thomassen et al. (2016) concluded from their TEA that an 773 

open pond cultivation with recycling of the medium with a specialized membrane is still 774 

preferred over a photobioreactor system [263], which is also confirmed by other studies [254]. 775 

Integration of microalgae production/cultivation with wastewater treatment could help in 776 

reducing the costs of wastewater processing [260,264–266]. However, this requires additional 777 

capital costs and energy, which is currently limiting its economic feasibility [267,268]. Thin-778 

layer cascades can be seen as an alternative to conventional open raceway ponds, having lower 779 

greenhouse gas emissions and lower costs [253,269,270]. 780 

Centrifugation is considered to be the costliest harvest method while flocculation and 781 

sedimentation are the least [118–120,255,271–273]. To extract the lipids from the microalgal 782 

cells, drying or dehydration are typically needed due to the high water content. Lin and Lu 783 

(2021) state that the dehydration process has higher capital and operational costs than the lipid 784 

extraction itself [255].  785 

Marx et al, studied the potential of the macroalgae Sargassum fluitans and natans that bloom 786 

in the Atlantic Ocean as feedstock for HTL [274]. Due to the availability of macroalgae, there 787 

is an enormous reduction in the typically large capital (78%) and operational (66%) costs related 788 

to the cultivation/algae production. For their base case scenario, the capital (CAPEX) and 789 

operational expenditures (OPEX) of harvesting and processing were 0.84 USD/L capacity and 790 

0.15 USD/L production respectively, which is significantly lower than the CAPEX and OPEX 791 

of land-based algae production, being 5.03 USD/L and 0.41 USD/L, respectively.  792 

Secondly, the emphasis of published research was mainly on cultivation, HTL and HEFA. 793 

Based on the recent study of Beal et al., the price of conventional jet fuel is considered to equal 794 

0.78 USD/L [275]. Assuming an available microalgal biomass of 51 GT/year to be treated by 795 
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either HEFA or HTL process, the corresponding minimum fuel selling prices (MFSP) were 796 

4.43 USD/L for HTL and 8.96 USD/L for HEFA [275]. These MFSP values correspond with 797 

the selling price of the fuels that yields a net present value for the facility equal to zero after 30 798 

years. These results are also consistent with earlier assessments: Beal et al., who calculated 799 

MFSPs in the range of 2.45-3.02 USD/L for recovered biocrude [179], Jiang et al., who 800 

calculated MFSPs in the range of 1.32-4.23 USD/L for HTL [276] and Quinn and Davis who 801 

calculated MFSPs in the range of 0.53-9.25 USD/L for various scenarios [184]. In addition, 802 

Bessette et al., studied six biofuel pathways and concluded that the combination of flash 803 

hydrolysis with HTL and mineralization for renewable jet fuel was economically the most 804 

attractive, with a break-even jet fuel selling price of 0.91 USD/L [277]. Furthermore, Klein-805 

Marcuschamer et al., developed a simulation model in Aspen Plus based on HEFA production 806 

from Nannochloropsis sp., cultivated in open raceway ponds. From their analysis, a MFSP of 807 

8.45 USD/L was calculated, with CAPEX as the biggest driver with a contribution of 808 

approximately 90 % from harvesting and cultivation [278]. HTL is a promising technology, 809 

which is at low technology readiness level compared with other thermochemical methods such 810 

as pyrolysis. Further research to improve the techno-economic feasibility of this method is 811 

required [279,280]. 812 

Thirdly, economic feasibility for pyrolysis and gasification, upgrading of bio-oil and biomass-813 

to-liquids pathway are currently lacking and should be part of future work. The combination of 814 

gasification with Fischer-Tropsch synthesis requires substantial improvements as it is costly 815 

and energy intensive, only costs effective when operated at large scale [121]. Conversely, 816 

pyrolysis is a highly interesting technology, as its application has been proven successful on a 817 

commercial scale for petroleum-based fuels. However, drying increases the costs and limits its 818 

economic feasibility. In addition, the upgrading of the bio-oil towards aviation biofuels needs 819 

to be improved, involving the design/selection of catalysts, reduction of H2-intake and the 820 
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optimization of the deoxygenation. Moreover, the processing of bio-oil in existing, 821 

conventional refineries would also offer opportunities to improve the economic feasibility 822 

[121]. Techno-economic studies related to the upgrading of microalgal bio-oil should also be 823 

part of future work. 824 

Finally, we want to highlight that at present there is no economically feasible microalgal 825 

aviation biofuel production on a commercial scale, despite trial and pilot microalgae plants and 826 

demonstration flights with microalgal aviation biofuels [281–285]. Moreover, to make 827 

microalgal biorefineries and advanced drop-in aviation biofuels economically feasible, the 828 

whole algal biomass needs to be valorized in an integrated biorefinery [254,286–290]. This 829 

entails the valorization of the lipid fraction to biofuels and the valorization of the so-called 830 

residual biomass into high added value coproducts (such as e.g., polyunsaturated fatty acids, 831 

carotenoids, proteins, pigments, biosorbents, nutrients and biosurfactants) [250,289]. Note that 832 

it is a high business risk for investors to invest in plants that solely focus on biofuel production 833 

due to the relatively low price of conventional aviation biofuels [288]. Moreover, particularly 834 

for aviation biofuels, properties and restrictions with respect to compliance to fuel standards 835 

are quite severe and nontrivial to meet. In summary, research on more cost-effective microalgal 836 

cultivation and harvesting, catalyst development, minimization of hydrogen consumption, 837 

process optimization, microalgal biorefinery product portfolio optimization and a cost-effective 838 

upscaling are required [251]. Geopolitical conflicts can also severely impact fossil fuel prices 839 

and consequently the competitiveness and economic viability of drop-in aviation biofuels. 840 

 841 

 842 

 843 

 844 
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6. Upgrading Strategies & Perspectives 845 

 846 

6.1 Olefin metathesis  847 

Olefin metathesis, an important organic reaction in industry, could be a potential alternative to 848 

cracking, allowing the conversion of oil into biojet fuel [291]. Typically, olefin metathesis can 849 

be described as a reaction by which the chemical substituents located around the double bond 850 

of alkenes are exchanged [292]. The mechanism implying metal transition based-catalysts was 851 

described by Hérisson and Chauvin in 1970 and was confirmed by Grubbs in 2004 [293,294]. 852 

Transition metal based catalysts are exploited for olefins metathesis in the petrochemical 853 

[295,296] and polymer [297] industry, but can also be used for renewable feedstocks like 854 

unsaturated fatty acids [298].  855 

 856 

Figure 11. Self-metathesis and cross-metathesis of olefins. Adapted from Zimmerer, 2020 [299]. 857 

 858 

There are different types of metathesis [294,299] but for the production of straight chain 859 

hydrocarbons included in the composition of biojet fuels, two types of olefin metathesis will be 860 

discussed: self-metathesis (SM) and cross-metathesis (CM) (Figure 11). While during self-861 

metathesis two identical olefins react with each other, cross-metathesis involves two different 862 

olefins [299]. Researchers have notably studied the distribution of products generated with the 863 

metathesis and of triglycerides, fatty acids or fatty esters, emphasizing important applications 864 

as plastics, waxes, lubricants, cosmetics or biofuels [300,301]. In this section, we discuss the 865 



41 

 

potential of metathesis and in particular cross-metathesis as a sustainable pathway for the 866 

production of drop-in biojet fuels from microalgal oils.  867 

6.1.1 Cross-metathesis as a new upgrading strategy 868 

This technology could be very promising to extend all the unsaturated hydrocarbons below C6 869 

to longer chains in order to enrich the amount of hydrocarbons in the appropriate range for bio-870 

jet fuels [302]. Although a lot of work was achieved concerning catalyst development with the 871 

emergence of first- and second-generation Grubbs catalysts, limitations still remain concerning 872 

the prediction of the selectivity of cross-metathesis reactions [302]. From a thermodynamic 873 

point of view, the difference in stability and reactivity of the generated alkenes does not 874 

constitute a significant driving force to increase the selectivity towards the formation of one 875 

molecule in particular.  876 

Chatterjee et al. published a categorization of olefin reactivity to predict product selectivity 877 

based on four distinct types of olefins [302]. For terminal olefins, categorized as type-1 olefins, 878 

cross-metathesis produce a mixture of non-selective products; the cross-metathesis of two type-879 

1 olefins will lead to an equilibrium reaction between the desired cross-products (in this case, 880 

kerosene range alkenes) and homodimerized products undergoing secondary metathesis 881 

reactions. The proportion of cross-products are affected by the equivalence ratio between both 882 

original olefins (Figure 12). However, for biofuels applications the lack of selectivity is not a 883 

major problem provided that the carbon number of the cross-products hydrocarbon chains is in 884 

the range of bio-jet fuels.  885 
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 886 

Figure 12. Cross-metathesis between two types I olefins leading to a mix of hydrocarbons (Adapted from 887 
Chatterjee et al., 2003) [302]. 888 

 889 

Rouen et al. have worked on the conversion of linear α-olefins (C5-C8) from bio-sourced 890 

Fischer-Tropsch feeds into longer ones (C9-C13) as precursors for plasticizers and detergents 891 

[303]. Ruthenium-based catalysts with unsymmetrical N-heterocyclic carbenes (NHC) ligands 892 

achieve high activity and high metathesis selectivity [304,305]. Minimization of cross-893 

metathesis side-products like homodimers is a key point to achieve high selectivity up to 99% 894 

[302,303]. The loss of selectivity is initiated by the formation of hydride complexes 895 

(decomposition of the metal alkylidene complex) promoting isomerization of the alkenes and 896 

secondary metathesis products [306,307]. 1,4-benzoquinone compounds have shown 897 

effectiveness as additives during cross-metathesis to prevent olefin isomerization [308].  898 

Note that this process would maintain an appreciable proportion of olefins in the biofuel which 899 

could compromise the properties of the resultant jet fuel, hence the need of transforming those 900 

alkenes into alkanes. For this purpose, catalytic hydrogenation could be implemented fueled by 901 

a renewable source of hydrogen. 902 

6.1.2 Ethenolysis as a green efficient tool to cleave C-C bond 903 

Ethenolysis is a particular cross-metathesis reaction which involve ethylene and an internal 904 

olefin as reactants, generating products with a terminal double bond [309,310]. This specific 905 

cross-metathesis reaction could be an interesting alternative to break C-C bonds of long chain 906 

unsaturated hydrocarbons (sourced from the lipids of microalgae) due to the low cost and 907 
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abundance of ethylene, but also thanks to the gentle conditions needed (20 to 80°C and 4 to 10 908 

bar) [294,309]. Intramolecular self-metathesis is also possible if the two unsaturations are 909 

present in the hydrocarbon chain [310]. The mechanism of ethenolysis follows the steps 910 

described by Hérisson and Chauvi (Figure 13) [293], involving the consecutive coordination of 911 

two olefins to the metal to generate metallacyclobutane intermediates, releasing new alkylidene 912 

and olefin species [294,299,311]. Other more advanced mechanisms were proposed, justifying 913 

phenomena such as isomerization or fragmentation of olefins [293,312]. 914 

 915 

Figure 13. Hérisson and Chauvin metathesis mechanism adjusted for ethenolysis (Adapted from Bidange et al., 916 
2016) [309]. 917 

 918 

The turnover number (TON) of a catalyst is a crucial parameter reflecting the economical aspect 919 

of the ethenolysis process (a TON > 50000 is an economical interesting value) [313]. 920 

Commercially, the Grubbs and Hoveyda-Grubbs catalysts are the most commonly used Ru 921 

based catalysts in cross-metathesis reactions. However, very low TON (600-8000) [314] have 922 

motivated researchers to improve the development of catalysts, with new complexes, more pure 923 

ethylene gas or decreasing catalyst loading, significantly increasing the TON to 340000 924 

[310,315].  925 

An important challenge for ethenolysis is to find the balance between productivity and 926 

selectivity [310]. An excess of ethylene shifts the equilibrium towards the ethenolysis products, 927 

increasing the selectivity by inhibiting self-metathesis at the expense of productivity. However, 928 

the production of unstable methylidene complexes compromise the integrity of the catalyst 929 
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[310]. This and other limitations, like homometathesis, have been reported and are well 930 

explained in the review published by Bidange et al. [309]. Pressure of ethylene, its solubility in 931 

the solvent and temperature are important parameters for the improvement of this equilibrium 932 

[309]. Moreover, the use of small-chain internal olefin avoids the formation of such unstable 933 

complexes, generating internal olefins at the end of the process. As such, butenolysis, a cross-934 

metathesis using 2-butene instead of ethylene, has reported high conversion (90%) and high 935 

TON (23000 – 93000) using a second generation Hoveyda-Grubbs catalyst [299,316].  936 

 937 

6.2 Ketonization of carboxylic acids 938 

 939 

A notable amount of carboxylic acids (~10%) could be produced via the thermal decomposition 940 

of biomass [317,318]. Their acidity and viscosity imply corrosion and operational difficulties. 941 

Ketonic decarboxylation or ketonization of carboxylic acids is highly relevant for the upgrading 942 

of bio-based streams to jet fuel grades. Ketonization (Eq. 5) was initially discovered by Friedel 943 

in 1858 [319]. Through this reaction, oxygen content and acidity are reduced, while forming C-944 

C bonds in order to produce ketones [320]. Furthermore, the carbon chain can be almost 945 

doubled due to the formation of symmetric ketones. Depending on the carbon chain length of 946 

the starting carboxylic acid, this also modulates the volatility of the products. These ketones 947 

can be processed additionally via the catalytic hydrogenation or dehydration to produce liquid 948 

fuels with high energy content, such as kerosene and jet fuel [321]. However, the need for 949 

hydrogen is reduced since 3 oxygen atoms (out of the 4 that are present in the starting 950 

molecules) are already eliminated. Therefore, ketonization could become an interesting 951 

technique to valorize the residual small chain fatty acids resulting from over-cracking of the 952 

feedstock, as well as an alternative decarboxylation pathway, provided the upgrading of the 953 

produced ketones. For instance, valeric acid has the potential of a proper chemical building 954 
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block to produce valuable compounds, including fuel and fuel additives for the transportation 955 

sector [322,323].  956 

 957 

     958 

Developing high performance heterogeneous catalysts for the ketonization reaction is 959 

important. In this regard, Gliński, et al. performed the ketonization of propanoic acid over 960 

numerous oxide catalysts [324]. Results have been summarized in Figure 14, which indicates 961 

that excluding zinc and chromium, the other metal oxides from the lanthanide and transition 962 

metal groups exhibited superior catalytic performance.  963 

 964 

Figure 14. Ketonization of propanoic acid over various catalysts at GHSV = 11,100 h-1, and T= 350~450℃ [324] 965 
(redrawn with copyright permission). 966 

 967 

In another work, Parida and Mishra studied the ketonization of acetic acid over ZrO2 based 968 

catalysts promoted by alkali metal cations, with sodium being the most effective one [325]. 969 

Similarly, Nagashima et al. have claimed that an increase in the carboxylic acid chain length 970 

could lead to a decline in the reactivity [326]. Table 9 list several metal oxides catalysts (solely 971 

or promoted) used in ketonization reaction along with the desired product, reaction conditions, 972 

and yield [327].  973 
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Reaction mechanisms depend on the type of catalyst employed. Generally, conventional 974 

catalysts can be categorized into highly basic (e.g. magnesium, barium, and calcium oxides) 975 

and amphoteric groups (like zirconium, titanium, and cerium oxides). Amphoteric groups, with 976 

higher lattice energy, usually show higher catalytic activity and durability [327,328]. They 977 

seemingly promote a surface ketonization, although the detailed mechanism is still on debate. 978 

In contrast, for highly basic groups, the C-C bond formation occurs through bulk ketonization. 979 

During this pathway, metal carboxylate salts and lattice hydroxyls are primarily formed after 980 

the deprotonation of the carboxylic acids. Then, metal carbonates and ketones are produced via 981 

the thermal decomposition of the salt. Eventually, lattice hydroxyls and carbonates react, 982 

recovering the metal catalyst and releasing carbon dioxide and water [327].  983 

 984 

Table 9. Studied catalysts for the ketonization of different resources; reaction conditions and obtained yield. 985 

Feed Catalyst Product 
P 

(bar) 
T (℃) 

Feed 

Flow rate 

Yield 

(%) 
Ref. 

Propanoic acid CeO2–Mn2O3 3-pentanone 1 375 5 h−1 65 [326] 

Propanoic acid Co-Mo/Al2O3 3-pentanone 1 400 - 44 [329] 

Propanoic+Butyric 

acid 

Ce-

MnOx/MCM-

41 

3-Hexanone - 410 6 cm3.h−1 14 [330] 

Octadecanoic acid TiO2 C35 ketone 1 380 0.5 g.gcat–

1.h–1 

89 [331] 

Capric acid TiO2 10-

nonadecanone 

1 350 3.17 h−1 70 [332] 

Acetic acid TiO2 Acetone 1 360 With 125 

ml/min He at 

25℃ in 

bubbler 

69 [333] 

Acetic acid Pt/TiO2 Acetaldehyde - 400 With 90 

ml/min H2 at 

25℃ in 

bubbler 

30 [334] 

Ethyl acetate 

12.5% v/v 

H-USY Ethylene 1 450 2.16 h-1 48 [335] 

Acetic acid ZrO2-C Acetone - 340 Batch 

reactor 

38 [336] 

Dodecanoic acid Pt/MgO Triocsane 30 400 1.2 g min−1 58 [337] 

Dodecanoic acid La/ZrO2 Ketones - 400 Batch 

reactor 

40 [338] 

Hexanoic acid MnOx 6-Undecanone - 360 4 h−1 68 [339] 

Valeric acid 10%CeO2-ZrO2 5-nonanone 1 450 - 73 [340] 

γ-valerolactone Pd(1%)/Nb2O5 5-nonanone 35 325 1.2 h−1 84 [341] 

Hexanedioic acid Ba(OH)4 Cyclopentanone - 285~295 - 75~80 [342] 

hexanedioic acid NaOH Cyclopentanone - 350 Batch 90 [343] 
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 986 

It is believed that the carrier gas could influence the chemical composition on the catalyst 987 

surface. Zaytseva, et al. studied the ketonization of valeric acid over Ce/ZrO2 catalysts under 988 

hydrogen and nitrogen atmosphere. They reported that H2 could improve the valeric acid 989 

conversion significantly compared to when nitrogen was used. This could possibly be explained 990 

by the formation of solid solution with uniform cerium distribution, greater Lewis site content, 991 

the presence of O-vacancies [344] and the reductive capability of H2 [345]. 992 

 993 

7. Suitability of thermochemical pathways for biojet fuel production 994 

Among the thermochemical pathways discussed in this review, the suitability of each 995 

technology to produce different grades of biojet fuels depends on feedstock type, product 996 

specifications, and technology efficiency and performance. Considering the high moisture 997 

content in microalgal feedstock, HTL can be a suitable technology because of its advantage in 998 

processing wet biomass, whereas drying of the feedstock is needed prior to pyrolysis, HEFA, 999 

and Gasification-FT. Lipid accumulation in microalgae makes the lipid conversion pathway—1000 

HEFA another technology of choice. While the physical compositions of microalgae make HTL 1001 

and HEFA preferable, the characteristics of the liquid product are also factors for assessing the 1002 

suitability for biojet production. Jet fuel properties depend on the ratio between major 1003 

hydrocarbon classes: linear alkanes, branched alkanes, cycloalkanes, and aromatics. Although 1004 

HEFA, FT, and HTL have been ASTM certified to produce drop-in biojet fuels, they can be 1005 

blended with petroleum-based jet fuel to a maximum of 50% by volume due to the low contents 1006 

of aromatics and cycloalkanes. However, these compounds can be formed through cyclization 1007 

and aromatization in catalytic and non-catalytic pyrolysis. As a result, pyrolytic biojet fuel may 1008 

not need an addition of aromatics to meet jet fuel specifications; a contrary example would be 1009 

Fischer-Tropsch Synthesized Paraffinic Kerosene with Aromatics derived from non-petroleum 1010 
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sources (FT-SPK/A) [281]. The chemical compositions also determine other important 1011 

properties such as flash point, freezing point, viscosity, etc. as illustrated in Section 2. FT and 1012 

HEFA processes, despite the limited aromatic content, require suitable catalysts that provide 1013 

high selectivity towards jet-range hydrocarbons; they are therefore suitable for targeting 1014 

specific product compositions that fulfill the standards of different jet fuels. In addition to high 1015 

selectivity, HEFA has been reported to have the highest lipid-to-fuel energy conversion 1016 

efficiency of 76% compared with other biojet fuel production pathways [346]. Given the 1017 

advantages and limitations of individual pathways, their suitability to produce biojet fuel relies 1018 

on multiple factors, including feedstock selection, upstream and downstream processes. 1019 

 1020 

8. Future Implications 1021 

It should be noted that technical challenges still exist in some thermochemical technologies. 1022 

Future studies on biojet fuel production could aim for reducing the limitations of current 1023 

technologies while maintaining the drop-in properties of current biojet. Investigations could 1024 

focus on improving feedstock pretreatment, for instance, improving the efficiency of cell 1025 

disruption. Multiple different pretreatments could be applied to increase lipid extraction yield. 1026 

Development of new catalysts to improve jet fuel selectivity and increase production efficiency 1027 

could be another approach. Along with catalysts, alternative sources of hydrogen, as a needed 1028 

agent for catalyst functioning in general, could be examined, e.g., recycling the pyrolytic gas to 1029 

the reactor, hydrogen from electrolysis. To improve fossil jet and biojet blending ratio, research 1030 

could also include pathways to co-produce cycloalkanes and aromatics in HEFA and FT 1031 

processes. During biojet production, many upgrading processes are almost identical to those 1032 

used in traditional refineries. Co-processing biocrude intermediates at a traditional refinery thus 1033 

could be a future direction for biojet production. This would prevent the high capital and 1034 
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operational costs of reproducing a biorefinery. However, co-processing conditions and 1035 

production allocation would require further studies.  1036 

Conclusions 1037 

Production of drop-in biojet fuels using microalgae as feedstock is a promising alternative to 1038 

remove the dependence on fossil fuels of the aviation sector. Microalgae consume less water, 1039 

occupy less space for cultivation and typically have a high lipid content, which is optimal for 1040 

jet fuel production. In addition, it is reported that heterotrophic cultivation could eventually 1041 

reduce harvest costs at industrial scale, which is interesting for some European countries where 1042 

climate conditions do not secure a constant sunlight provision.  1043 

Amongst the different existing technologies to valorize lipids, HEFA production has the 1044 

greatest commercial development to date. Nonetheless, its dependence on hydrogen is a major 1045 

drawback. In this case, catalytic pyrolysis and hydrothermal liquefaction are interesting 1046 

technologies as they can be carried out without the addition of hydrogen and they allow to 1047 

obtain the right mixture of hydrocarbons providing good fuel properties. Both technologies are 1048 

more promising when employing Pd or Pt-based catalysts supported on activated carbon, as 1049 

they promote the decarboxylation of fatty acid, improving its productivity and selectivity 1050 

towards alkanes. Nevertheless, the cost of these catalysts is not negligible and drying is 1051 

necessary for catalytic pyrolysis, which increases significantly the capital and operational costs. 1052 

Conversely, HTL is amenable to wet biomass as feedstock.  1053 

Even though these processes also produce small-chain hydrocarbons, alternatives such as cross-1054 

metathesis are prominent to increase the jet-fuel range molecules, provided that a renewable 1055 

source of hydrogen is available to upgrade the produced olefins. Similarly, an interesting 1056 

alternative pathway to transform bio-oil could be the ketonization of fatty acids, but this 1057 

technology still requires more development. 1058 
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Finally, beyond optimization of the reaction mechanisms, there are other options to improve 1059 

their economic feasibility. For instance, integrating wastewater from the HTL stage into the 1060 

microalgal cultivation could reduce operational costs associated with nutrients, and valorizing 1061 

all potential high-value co-products adopting a biorefinery approach would increase incomes at 1062 

industrial scale. However, more data is still needed to evaluate these opportunities.  1063 
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