Article (Scientific journals)
Three-dimensional ab initio description of vibration-assisted electron knock-on displacements in graphene
Chirita, Alexandru; Markevich, Alexander; Tripathi, Mukesh et al.
2022In Physical Review. B, 105 (23)
Peer Reviewed verified by ORBi
 

Files


Full Text
PhysRevB.105.235419.pdf
Publisher postprint (1.1 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Ab initio; Atomic vibration; Damage mechanism; Electron irradiation damage; Electron-beam; First-principle theory; Full three-dimensional; Out-of-plane direction; Vibration assisted; Vibration influence; Electronic, Optical and Magnetic Materials; Condensed Matter Physics
Abstract :
[en] Transmission electron microscopy characterization may damage materials, but an electron beam can also induce interesting dynamics. Elastic knock-on is the main electron irradiation damage mechanism in metals including graphene, and although atomic vibrations influence its cross section, only the out-of-plane direction has been considered so far. Here, we present a full three-dimensional first-principles theory of knock-on displacements including the effect of temperature on vibrations to describe dynamics into arbitrary directions. We validate the model with previously precisely measured knock-on damage of pristine graphene, where we show that the isotropic out-of-plane approximation correctly describes the cross section. We then apply our methodology to reversible jumps of pyridinic nitrogen atoms, whose probability under irradiation is measured at 55 and 60 keV. Direct displacement requiring a high emission angle and an alternative pathway via intermittent N adatom creation and recombination are computationally explored but are unable to explain the observed rates, implying stronger inelastic effects at the defect than in pristine graphene.
Research center :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Physics
Author, co-author :
Chirita, Alexandru ;  University of Vienna, Faculty of Physics, Vienna, Austria ; University of Vienna, Vienna Doctoral School in Physics, Vienna, Austria
Markevich, Alexander;  University of Vienna, Faculty of Physics, Vienna, Austria
Tripathi, Mukesh ;  University of Vienna, Faculty of Physics, Vienna, Austria ; École Polytechnique Fédérale de Lausanne (EPFL), Bm 2143, Lausanne, Switzerland
Pike, Nicholas  ;  Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Verstraete, Matthieu  ;  Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Kotakoski, Jani ;  University of Vienna, Faculty of Physics, Vienna, Austria
Susi, Toma ;  University of Vienna, Faculty of Physics, Vienna, Austria
Language :
English
Title :
Three-dimensional ab initio description of vibration-assisted electron knock-on displacements in graphene
Publication date :
15 June 2022
Journal title :
Physical Review. B
ISSN :
2469-9950
eISSN :
2469-9969
Publisher :
American Physical Society
Volume :
105
Issue :
23
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
Tier-1 supercomputer
CÉCI : Consortium des Équipements de Calcul Intensif
Funders :
FWF - Austrian Science Fund [AT]
F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]
FWB - Fédération Wallonie-Bruxelles [BE]
Funding text :
A.C., A.M., and T.S. were supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 756277-ATMEN), M.T. by the Austrian Science Fund (FWF) via Project No. P 28322-N36, and N.A.P. and M.J.V. by the Belgian Fonds National de la Recherche Scientifique (FNRS) under Grant No. T.0103.19-ALPS, and ULiège and the Fédération Wallonie-Bruxelles (ARC DREAMS G.A. 21/25-01). We acknowledge computational resources by the Vienna Scientific Cluster (VSC) and by the Consortium des Equipements de Calcul Intensif (CECI), funded by FRS-FNRS G.A. 2.5020.11; and the Zenobe Tier-1 supercomputer funded by the Walloon Government G.A. 1117545.
Commentary :
5 pages, 2 figures, 1 table (+ supplement)
Available on ORBi :
since 29 September 2022

Statistics


Number of views
34 (1 by ULiège)
Number of downloads
16 (0 by ULiège)

Scopus citations®
 
3
Scopus citations®
without self-citations
0
OpenCitations
 
0

Bibliography


Similar publications



Contact ORBi