Abstract :
[en] A Business Intelligence (BI) tool has been developed in order to facilitate the analysis of territorial risks for the Brussels emergency services. Our hypothesis is that a hybrid SOLAP combining raster and vector data cubes can improve the analysis of the spatial distribution of recurrent risks, by allowing the comparison between risk density maps built using Kernel Density Estimation (KDE) and risk density maps based on absolute numbers of interventions per geographic vector entity. We use here a unique metamodel for the instantiation of the cube models, the management of SOLAP operations (filters, drillings) and the navigation in a hybrid raster/vector constellation. We propose a decomposition of the raster cubes into cuboids in order to guarantee fast drilling operations for the user. Another originality of this SOLAP tool is the possibility to integrate a geographic dimension level that evolves according to the positioning of the rescue stations simulated by the user while taking into account the speed constraints of the Brussels road network.
Scopus citations®
without self-citations
0