Eprint already available on another site (E-prints, working papers and research blog)
Mutual Dependence: A Novel Method for Computing Dependencies Between Random Variables
Agarwal, Rahul; Sacré, Pierre; Sarma, Sridevi V.
2015
 

Files


Full Text
1506.00673.pdf
Author postprint (4.81 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Mathematics - Statistics; Statistics - Machine Learning; Statistics - Theory
Abstract :
[en] In data science, it is often required to estimate dependencies between different data sources. These dependencies are typically calculated using Pearson's correlation, distance correlation, and/or mutual information. However, none of these measures satisfy all the Granger's axioms for an "ideal measure". One such ideal measure, proposed by Granger himself, calculates the Bhattacharyya distance between the joint probability density function (pdf) and the product of marginal pdfs. We call this measure the mutual dependence. However, to date this measure has not been directly computable from data. In this paper, we use our recently introduced maximum likelihood non-parametric estimator for band-limited pdfs, to compute the mutual dependence directly from the data. We construct the estimator of mutual dependence and compare its performance to standard measures (Pearson's and distance correlation) for different known pdfs by computing convergence rates, computational complexity, and the ability to capture nonlinear dependencies. Our mutual dependence estimator requires fewer samples to converge to theoretical values, is faster to compute, and captures more complex dependencies than standard measures.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Agarwal, Rahul
Sacré, Pierre  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Robotique intelligente
Sarma, Sridevi V.
Language :
English
Title :
Mutual Dependence: A Novel Method for Computing Dependencies Between Random Variables
Publication date :
2015
Available on ORBi :
since 16 September 2022

Statistics


Number of views
24 (2 by ULiège)
Number of downloads
18 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi