Fragment-based drug discovery; High throughput virtual screening; Metallo-β-lactamase; NDM-1; STD NMR screening; Anti-Bacterial Agents; beta-Lactamase Inhibitors; beta-Lactams; beta-Lactamases; beta-lactamase NDM-1; Anti-Bacterial Agents/chemistry; Anti-Bacterial Agents/pharmacology; Drug Discovery; beta-Lactamase Inhibitors/chemistry; beta-Lactamase Inhibitors/pharmacology; beta-Lactamases/chemistry; Pharmacology; Organic Chemistry; General Medicine
Abstract :
[en] Hydrolysis of β-lactam drugs, a major class of antibiotics, by serine or metallo-β-lactamases (SBL or MBL) is one of the main mechanisms for antibiotic resistance. New Delhi Metallo-β-lactamase-1 (NDM-1), an acquired metallo-carbapenemase first reported in 2009, is currently considered one of the most clinically relevant targets for the development of β-lactam-β-lactamase inhibitor combinations active on NDM-producing clinical isolates. Identification of scaffolds that could be further rationally pharmacomodulated to design new and efficient NDM-1 inhibitors is thus urgently needed. Fragment-based drug discovery (FBDD) has become of great interest for the development of new drugs for the past few years and combination of several FBDD strategies, such as virtual and NMR screening, can reduce the drawbacks of each of them independently. Our methodology starting from a high throughput virtual screening on NDM-1 of a large library (more than 700,000 compounds) allowed, after slicing the hit molecules into fragments, to build a targeted library. These hit fragments were included in an in-house untargeted library fragments that was screened by Saturation Transfer Difference (STD) Nuclear Magnetic Resonance (NMR). 37 fragments were finally identified and used to establish a pharmacophore. 10 molecules based on these hit fragments were synthesized to validate our strategy. Indenone 89 that combined two identified fragments shows an inhibitory activity on NDM-1 with a Ki value of 4 μM.
Disciplines :
Microbiology Biochemistry, biophysics & molecular biology Life sciences: Multidisciplinary, general & others
Author, co-author :
Caburet, Jérémy; Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France, Univ. Grenoble Alpes, CNRS, CEA, LCBM, 38000, Grenoble, France
Boucherle, Benjamin; Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
Bourdillon, Sofiane; Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
Simoncelli, Giorgia; Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, 53100, Siena, Italy
Verdirosa, Federica; Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, 53100, Siena, Italy
Krimm, Isabelle; Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, 69373, France
This work has been partially supported by Labex Arcane and CBH-EUR-GS (ANR-17-EURE-0003). The authors wish to acknowledge the ICMG Nanobio Platform (FR 2607), on which the NMR and MS experiment were performed.
Erlanson, D.A., Introduction to fragment-based drug discovery. Davies, T.G., Hyvönen, M., (eds.) Fragm.-Based Drug Discov. X-Ray Crystallogr, 2012, Springer Berlin Heidelberg, Berlin, Heidelberg, 1–32, 10.1007/128_2011_180.
Basarab, G.S., Manchester, J.I., Bist, S., Boriack-Sjodin, P.A., Dangel, B., Illingworth, R., Sherer, B.A., Sriram, S., Uria-Nickelsen, M., Eakin, A.E., Fragment-to-Hit-to-Lead discovery of a novel pyridylurea scaffold of ATP competitive dual targeting type II topoisomerase inhibiting antibacterial agents. J. Med. Chem. 56 (2013), 8712–8735, 10.1021/jm401208b.
Rognan, D., Fragment-based approaches and computer-aided drug discovery. Davies, T.G., Hyvönen, M., (eds.) Fragm.-Based Drug Discov. X-Ray Crystallogr, 2011, Springer Berlin Heidelberg, Berlin, Heidelberg, 201–222, 10.1007/128_2011_182.
de Esch, I.J.P., Erlanson, D.A., Jahnke, W., Johnson, C.N., Walsh, L., Fragment-to-Lead medicinal chemistry publications in 2020. J. Med. Chem. 65 (2022), 84–99, 10.1021/acs.jmedchem.1c01803.
Meini, M.-R., Llarrull, L.I., Vila, A.J., Overcoming differences: the catalytic mechanism of metallo-β-lactamases. FEBS Lett. 589 (2015), 3419–3432, 10.1016/j.febslet.2015.08.015.
WHO publishes list of bacteria for which new antibiotics are urgently needed, (n.d.). https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed September 1, 2021).
Ambler, R.P., Baddiley, J., Abraham, E.P., The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 289 (1980), 321–331, 10.1098/rstb.1980.0049.
Yong, D., Toleman, M.A., Giske, C.G., Cho, H.S., Sundman, K., Lee, K., Walsh, T.R., Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 53 (2009), 5046–5054, 10.1128/AAC.00774-09.
Kumarasamy, K.K., Toleman, M.A., Walsh, T.R., Bagaria, J., Butt, F., Balakrishnan, R., Chaudhary, U., Doumith, M., Giske, C.G., Irfan, S., Krishnan, P., Kumar, A.V., Maharjan, S., Mushtaq, S., Noorie, T., Paterson, D.L., Pearson, A., Perry, C., Pike, R., Rao, B., Ray, U., Sarma, J.B., Sharma, M., Sheridan, E., Thirunarayan, M.A., Turton, J., Upadhyay, S., Warner, M., Welfare, W., Livermore, D.M., Woodford, N., Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis. 10 (2010), 597–602, 10.1016/S1473-3099(10)70143-2.
Linciano, P., Cendron, L., Gianquinto, E., Spyrakis, F., Tondi, D., Ten years with New Delhi Metallo-β-lactamase-1 (NDM-1): from structural insights to inhibitor design. ACS Infect. Dis. 5 (2019), 9–34, 10.1021/acsinfecdis.8b00247.
Venatorx Pharmaceuticals, Inc. A Phase 3, Randomized, Double-Blind, Active Controlled Noninferiority Study Evaluating the Efficacy, Safety, and Tolerability of cefepime/VNRX-5133 in Adults with Complicated Urinary Tract Infections (cUTI), Including Acute Pyelonephritis. 2021, clinicaltrials.gov https://clinicaltrials.gov/ct2/show/NCT03840148. (Accessed 31 August 2021)
Zalacain, M., Lozano, C., Llanos, A., Sprynski, N., Valmont, T., De Piano, C., Davies, D., Leiris, S., Sable, C., Ledoux, A., Morrissey, I., Lemonnier, M., Everett, M., Novel specific metallo-β-lactamase inhibitor ANT2681 restores meropenem activity to clinically effective levels against NDM-positive Enterobacterales. Antimicrob. Agents Chemother., 65, 2021, 10.1128/AAC.00203-21 e00203-e00221.
Groundwater, P.W., Xu, S., Lai, F., Váradi, L., Tan, J., Perry, J.D., Hibbs, D.E., New Delhi metallo-β-lactamase-1: structure, inhibitors and detection of producers. Future Med. Chem. 8 (2016), 993–1012, 10.4155/fmc-2016-0015.
Schrödinger. Suite Schrödinger. 2011, LLC, New York, NY.
ChemBioFrance - Infrastructure de recherche, (n.d.). https://chembiofrance.cn.cnrs.fr/en/composante/chimiotheque (accessed September 1, 2021).
Wishart, D.S., Feunang, Y.D., Guo, A.C., Lo, E.J., Marcu, A., Grant, J.R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon, A., Knox, C., Wilson, M., DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46 (2018), D1074–D1082, 10.1093/nar/gkx1037.
Sterling, T., Irwin, J.J., Zinc 15 – ligand discovery for everyone. J. Chem. Inf. Model. 55 (2015), 2324–2337, 10.1021/acs.jcim.5b00559.
Lipinski, C.A., Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Underst. Chall. Rule 5 Compd 101 (2016), 34–41, 10.1016/j.addr.2016.04.029.
GOLD (Cambridge Crystallographic Data Center, CCDC, UK), n.d.
Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R., Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267 (1997), 727–748, 10.1006/jmbi.1996.0897.
Sander, T., Freyss, J., von Korff, M., Rufener, C., DataWarrior: an open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 55 (2015), 460–473, 10.1021/ci500588j.
Liu, T., Naderi, M., Alvin, C., Mukhopadhyay, S., Brylinski, M., Break down in order to build up: decomposing small molecules for fragment-based drug design with eMolFrag. J. Chem. Inf. Model. 57 (2017), 627–631, 10.1021/acs.jcim.6b00596.
Song, J., Mishima, M., Rappoport, Z., Isomeric solid enols on ring- and amide-carbonyls of substituted 2-carbanilido-1,3-indandiones. Org. Lett. 9 (2007), 4307–4310, 10.1021/ol7018554.
Fuentes de Arriba, Á.L., Lenci, E., Sonawane, M., Formery, O., Dixon, D.J., Iridium-catalyzed reductive strecker reaction for late-stage amide and lactam cyanation. Angew. Chem. Int. Ed. 56 (2017), 3655–3659, 10.1002/anie.201612367.
Day, J.A., Cohen, S.M., Investigating the selectivity of metalloenzyme inhibitors. J. Med. Chem. 56 (2013), 7997–8007, 10.1021/jm401053m.
Guo, Y., Wang, J., Niu, G., Shui, W., Sun, Y., Zhou, H., Zhang, Y., Yang, C., Lou, Z., Rao, Z., A structural view of the antibiotic degradation enzyme NDM-1 from a superbug. Protein Cell 2 (2011), 384–394, 10.1007/s13238-011-1055-9.
Proschak, A., Martinelli, G., Frank, D., Rotter, M.J., Brunst, S., Weizel, L., Burgers, L.D., Fürst, R., Proschak, E., Sosič, I., Gobec, S., Wichelhaus, T.A., Nitroxoline and its derivatives are potent inhibitors of metallo-β-lactamases. Eur. J. Med. Chem., 228, 2022, 113975, 10.1016/j.ejmech.2021.113975.
Chrysanthopoulos, P.K., Mujumdar, P., Woods, L.A., Dolezal, O., Ren, B., Peat, T.S., Poulsen, S.-A., Identification of a new zinc binding chemotype by fragment screening. J. Med. Chem. 60 (2017), 7333–7349, 10.1021/acs.jmedchem.7b00606.
Chen, A.Y., Thomas, P.W., Stewart, A.C., Bergstrom, A., Cheng, Z., Miller, C., Bethel, C.R., Marshall, S.H., Credille, C.V., Riley, C.L., Page, R.C., Bonomo, R.A., Crowder, M.W., Tierney, D.L., Fast, W., Cohen, S.M., Dipicolinic acid derivatives as inhibitors of New Delhi metallo-β-lactamase-1. J. Med. Chem. 60 (2017), 7267–7283, 10.1021/acs.jmedchem.7b00407.
Brindisi, M., Brogi, S., Giovani, S., Gemma, S., Lamponi, S., De Luca, F., Novellino, E., Campiani, G., Docquier, J.-D., Butini, S., Targeting clinically-relevant metallo- β-lactamases: from high-throughput docking to broad-spectrum inhibitors. J. Enzym. Inhib. Med. Chem. 31 (2016), 98–109, 10.3109/14756366.2016.1172575.
Falconer, S.B., Reid-Yu, S.A., King, A.M., Gehrke, S.S., Wang, W., Britten, J.F., Coombes, B.K., Wright, G.D., Brown, E.D., Zinc chelation by a small-molecule adjuvant potentiates meropenem activity in Vivo against NDM-1-producing Klebsiella pneumoniae. ACS Infect. Dis. 1 (2015), 533–543, 10.1021/acsinfecdis.5b00033.
Muhammad, Z., Skagseth, S., Boomgaren, M., Akhter, S., Fröhlich, C., Ismael, A., Christopeit, T., Bayer, A., Leiros, H.-K.S., Structural studies of triazole inhibitors with promising inhibitor effects against antibiotic resistance metallo-β-lactamases. Bioorg. Med. Chem., 28, 2020, 115598, 10.1016/j.bmc.2020.115598.
Rivière, G., Oueslati, S., Gayral, M., Créchet, J.-B., Nhiri, N., Jacquet, E., Cintrat, J.-C., Giraud, F., van Heijenoort, C., Lescop, E., Pethe, S., Iorga, B.I., Naas, T., Guittet, E., Morellet, N., NMR characterization of the influence of zinc(II) ions on the structural and dynamic behavior of the New Delhi metallo-β-lactamase-1 and on the binding with flavonols as inhibitors. ACS Omega 5 (2020), 10466–10480, 10.1021/acsomega.0c00590.
Hanaya, K., Suetsugu, M., Saijo, S., Yamato, I., Aoki, S., Potent inhibition of dinuclear zinc(II) peptidase, an aminopeptidase from Aeromonas proteolytica, by 8-quinolinol derivatives: inhibitor design based on Zn2+ fluorophores, kinetic, and X-ray crystallographic study. JBIC, J. Biol. Inorg. Chem. 17 (2012), 517–529, 10.1007/s00775-012-0873-4.
Boukherrouba, E., Larosa, C., Nguyen, K.-A., Caburet, J., Lunven, L., Bonnet, H., Fortuné, A., Boumendjel, A., Boucherle, B., Chierici, S., Peuchmaur, M., Exploring the structure-activity relationship of benzylidene-2,3-dihydro-1H-inden-1-one compared to benzofuran-3(2H)-one derivatives as inhibitors of tau amyloid fibers. Eur. J. Med. Chem., 231, 2022, 114139, 10.1016/j.ejmech.2022.114139.
Meguellati, A., Ahmed-Belkacem, A., Yi, W., Haudecoeur, R., Crouillère, M., Brillet, R., Pawlotsky, J.-M., Boumendjel, A., Peuchmaur, M., B-ring modified aurones as promising allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Eur. J. Med. Chem. 80 (2014), 579–592, 10.1016/j.ejmech.2014.04.005.
Zouhiri, F., Mouscadet, J.-F., Mekouar, K., Desmaële, D., Savouré, D., Leh, H., Subra, F., Le Bret, M., Auclair, C., d'Angelo, J., Structure−Activity relationships and binding mode of styrylquinolines as potent inhibitors of HIV-1 integrase and replication of HIV-1 in cell culture. J. Med. Chem. 43 (2000), 1533–1540, 10.1021/jm990467o.
Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J.Y., Wang, L., Lupyan, D., Dahlgren, M.K., Knight, J.L., Kaus, J.W., Cerutti, D.S., Krilov, G., Jorgensen, W.L., Abel, R., Friesner, R.A., OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theor. Comput. 12 (2016), 281–296, 10.1021/acs.jctc.5b00864.
Zhang, H., Ma, G., Zhu, Y., Zeng, L., Ahmad, A., Wang, C., Pang, B., Fang, H., Zhao, L., Hao, Q., Active site conformational fluctuations promote the enzymatic activity of NDM-1. Antimicrob. Agents Chemother., 2018, 10.1128/AAC.01579-18 AAC.01579-18.
Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V., Mee, R.P., Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. Des. 11 (1997), 425–445, 10.1023/A:1007996124545.
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Ding, Williams F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J., Gaussian 16 Rev. C.01. 2016 Wallingford, CT.
Yu, H.S., He, X., Li, S.L., Truhlar, D.G., MN15: a Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 7 (2016), 5032–5051, 10.1039/C6SC00705H.
Weigend, F., Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8 (2006), 1057–1065, 10.1039/B515623H.
Weigend, F., Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7 (2005), 3297–3305, 10.1039/B508541A.
Tremey, E., Bonnot, F., Moreau, Y., Berthomieu, C., Desbois, A., Favaudon, V., Blondin, G., Houée-Levin, C., Nivière, V., Hydrogen bonding to the cysteine ligand of superoxide reductase: acid–base control of the reaction intermediates. JBIC, J. Biol. Inorg. Chem. 18 (2013), 815–830, 10.1007/s00775-013-1025-1.
Nazarian, Z., Forsyth, C., Double cyclization of O-acylated hydroxyamides generates 1,6-dioxa-3,9-diazaspiro[4.4]nonanes a new class of oxy-oxazolidinones. RSC Adv. 6 (2016), 55534–55538, 10.1039/C6RA11604C.
Perry, C.J., Parveen, Z., The cyclisation of substituted phthalanilic acids in acetic acid solution. A kinetic study of substituted N-phenylphthalimide formation. J. Chem. Soc. Perkin Trans. 2 (2001), 512–521, 10.1039/b008399m.
Mierina, I., Stikute, A., Mishnev, A., Jure, M., An alternative way to analogues of avenanthramides and their antiradical activity. Monatshefte Für Chem. Chem. Mon. 150 (2019), 85–101, 10.1007/s00706-018-2288-6.
Malamidou-Xenikaki, E., Spyroudis, S., Tsanakopoulou, M., Studies on the reactivity of aryliodonium ylides of 2-hydroxy-1,4-naphthoquinone: reactions with amines. J. Org. Chem. 68 (2003), 5627–5631, 10.1021/jo0343679.
Wiget, P.A., Manzano, L.A., Pruet, J.M., Gao, G., Saito, R., Monzingo, A.F., Jasheway, K.R., Robertus, J.D., Anslyn, E.V., Sulfur incorporation generally improves Ricin inhibition in pterin-appended glycine-phenylalanine dipeptide mimics. Bioorg. Med. Chem. Lett. 23 (2013), 6799–6804, 10.1016/j.bmcl.2013.10.017.
Hackbusch, S., Franz, A.H., Acylation of trans-2-substituted cyclohexanols: the impact of substituent variation on the pyridine-induced reversal of diastereoselectivity. ARKIVOC (Gainesville, FL, U. S.), 2015, 172–194, 10.3998/ark.5550190.p009.321 2015.
Pessoa-Mahana, H., Kosche C, J., Ron H, N., Recabarren-Gajardo, G., Saitz B, C., Araya-Maturana, R., David Pessoa-Mahana, C., Solvent-free microwave synthesis of 3-(4-benzo[b]thiophene-2-carbonyl)-1-piperazinyl-1-benzo[b]thiophen-2-yl-1-propanones. New hetero bis-ligands with potential 5-HT1A serotonergic activity. Heterocycles, 75, 2008, 1913, 10.3987/COM-08-11326.
Christensen, M.K., Erichsen, K.D., Olesen, U.H., Tjørnelund, J., Fristrup, P., Thougaard, A., Nielsen, S.J., Sehested, M., Jensen, P.B., Loza, E., Kalvinsh, I., Garten, A., Kiess, W., Björkling, F., Nicotinamide phosphoribosyltransferase inhibitors, design, preparation, and structure–activity relationship. J. Med. Chem. 56 (2013), 9071–9088, 10.1021/jm4009949.
Mekouar, K., Mouscadet, J.-F., Desmaële, D., Subra, F., Leh, H., Savouré, D., Auclair, C., d'Angelo, J., Styrylquinoline derivatives: a new class of potent HIV-1 integrase inhibitors that block HIV-1 replication in CEM cells. J. Med. Chem. 41 (1998), 2846–2857, 10.1021/jm980043e.
Delapierre, G., Brunel, J.M., Constantieux, T., Buono, G., Design of a new class of chiral quinoline–phosphine ligands. Synthesis and application in asymmetric catalysis. Tetrahedron Asymmetry 12 (2001), 1345–1352, 10.1016/S0957-4166(01)00220-8.
Legru, A., Verdirosa, F., Hernandez, J.-F., Tassone, G., Sannio, F., Benvenuti, M., Conde, P.-A., Bossis, G., Thomas, C.A., Crowder, M.W., Dillenberger, M., Becker, K., Pozzi, C., Mangani, S., Docquier, J.-D., Gavara, L., 1,2,4-Triazole-3-thione compounds with a 4-ethyl alkyl/aryl sulfide substituent are broad-spectrum metallo-β-lactamase inhibitors with re-sensitization activity. Eur. J. Med. Chem., 226, 2021, 113873, 10.1016/j.ejmech.2021.113873.
Martin, M.J., Corey, B.W., Sannio, F., Hall, L.R., MacDonald, U., Jones, B.T., Mills, E.G., Harless, C., Stam, J., Maybank, R., Kwak, Y., Schaufler, K., Becker, K., Hübner, N.-O., Cresti, S., Tordini, G., Valassina, M., Cusi, M.G., Bennett, J.W., Russo, T.A., McGann, P.T., Lebreton, F., Docquier, J.-D., Anatomy of an extensively drug-resistant Klebsiella pneumoniae outbreak in Tuscany, Italy. Proc. Natl. Acad. Sci. USA, 118, 2021, e2110227118, 10.1073/pnas.2110227118.
Clinical and Laboratory Standards Institute (CLSI). 2015. M07-A10: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard - tenth ed., (n.d.).