Paper published in a journal (Scientific congresses and symposiums)
On extended boundary sequences of morphic and Sturmian words
Rigo, Michel; Stipulanti, Manon; Whiteland, Markus
2022In Leibniz International Proceedings in Informatics, 241, p. 79
Peer Reviewed verified by ORBi
 

Files


Full Text
arXiv.pdf
Author postprint (757.46 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Combinatorics on words; Boundary sequences; Sturmian words; Numeration systems; Automata; Graph of addition
Abstract :
[en] Generalizing the notion of the boundary sequence introduced by Chen and Wen, the $n$th term of the $\ell$-boundary sequence of an infinite word is the finite set of pairs $(u,v)$ of prefixes and suffixes of length $\ell$ appearing in factors $uyv$ of length $n+\ell$ ($n\ge \ell\ge 1$). Otherwise stated, for increasing values of $n$, one looks for all pairs of factors of length $\ell$ separated by $n-\ell$ symbols. For the large class of addable numeration systems $U$, we show that if an infinite word is $U$-automatic, then the same holds for its $\ell$-boundary sequence. In particular, they are both morphic (or generated by an HD0L system). We also provide examples of numeration systems and $U$-automatic words with a boundary sequence that is not $U$-automatic. In the second part of the paper, we study the $\ell$-boundary sequence of a Sturmian word. We show that it is obtained through a sliding block code from the characteristic Sturmian word of the same slope. We also show that it is the image under a morphism of some other characteristic Sturmian word.
Disciplines :
Mathematics
Author, co-author :
Rigo, Michel  ;  Université de Liège - ULiège > Département de mathématique
Stipulanti, Manon  ;  Université de Liège - ULiège > Mathematics
Whiteland, Markus ;  Université de Liège - ULiège > Mathematics
Language :
English
Title :
On extended boundary sequences of morphic and Sturmian words
Publication date :
2022
Event name :
47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)
Event place :
Vienne, Austria
Event date :
du 22 août au 26 août 2022
Audience :
International
Journal title :
Leibniz International Proceedings in Informatics
ISSN :
1868-8969
Publisher :
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Germany
Volume :
241
Pages :
Paper 79
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 23 August 2022

Statistics


Number of views
65 (1 by ULiège)
Number of downloads
26 (0 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
0
OpenCitations
 
0

Bibliography


Similar publications



Contact ORBi