[en] The aim of this study is to characterize the factors related to peptidoglycan metabolism in isogenic hVISA/VISA ST100 strains. Recently, we reported the increase in IS256 transposition in invasive hVISA ST100 clinical strains isolated from the same patient (D1 and D2) before and after vancomycin treatment and two laboratory VISA mutants (D23C9 and D2P11) selected from D2 in independent experiments. High performance liquid chromatography-mass spectrometry (HPLC-MS) analysis of peptidoglycan muropeptides showed increased proportion of monomeric muropeptides and a concomitant decrease in the proportion of tetrameric muropeptide in D2 and derived mutants when compared to the original strain D1. In addition, strain D2 and its derived mutants showed an increase in cell wall thickness with increased pbp2 gene expression. The VISA phenotype was not stable in D2P11 and showed a reduced autolysis profile. On the other hand, the mutant D23C9 differentiates from D2 and D2P11 in the autolysis profile, and pbp4 transcription profile. D2-derived mutants exhibited differences in the susceptibility to other antimicrobials. Our results highlight the possibility of selection of different VISA phenotypes from a single hVISA-ST100 genetic background.
Disciplines :
Microbiology
Author, co-author :
Di Gregorio, Sabrina; 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Microbiología, Buenos Aires, Argentina
Fernandez, Silvina; 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Microbiología, Buenos Aires, Argentina
Cuirolo, Arabela; 2 Unité de Physiologie et génétique bactériennes, Département de Sciences de la vie, Centre d'Ingénierie des Protéines, Université de Liège , Liège, Belgique
Verlaine, Olivier ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'Ingénierie des Protéines (CIP)
Amoroso, Ana Maria ; Université de Liège - ULiège > Integrative Biological Sciences (InBioS)
Mengin-Lecreulx, Dominique; 3 Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, France
Famiglietti, Angela; 4 Universidad de Buenos Aires, Hospital de Clínicas José de San Martín, Laboratorio de Bacteriología Clínica, Buenos Aires, Argentina
Joris, Bernard ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'Ingénierie des Protéines (CIP)
Mollerach, Marta; 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Microbiología, Buenos Aires, Argentina
Language :
English
Title :
Different Vancomycin-Intermediate Staphylococcus aureus Phenotypes Selected from the Same ST100-hVISA Parental Strain.
Publication date :
January 2017
Journal title :
Microbial Drug Resistance: Mechanism, Epidemiology, and Disease
Hiramatsu, K. 1998. The emergence of Staphylococcus aureus with reduced susceptibility to vancomycin in Japan. Am. J. Med. 104:7S-10S
Howden, B.P., J.K. Davies, P.D. Johnson, T.P. Stinear, and M.L. Grayson. 2010. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin. Microbiol. Rev. 23:99-139
Howden, B.P., A.Y. Peleg, and T.P. Stinear. 2014. The evolution of vancomycin intermediate Staphylococcus aureus (VISA) and heterogenous-VISA. Infect. Genet. Evol. 21:575-582
Boyle-Vavra, S., S.K. Berke, J.C. Lee, and R.S. Daum. 2000. Reversion of the glycopeptide resistance phenotype in Staphylococcus aureus clinical isolates. Antimicrob. Agents Chemother. 44:272-277
Sakoulas, G., R.C. Moellering, Jr., and G.M. Eliopoulos. 2006. Adaptation of methicillin-resistant Staphylococcus aureus in the face of vancomycin therapy. Clin. Infect. Dis. 42 Suppl. 1:S40-S50
Galbusera, E., A. Renzoni, D.O. Andrey, A. Monod, C. Barras, P. Tortora, A. Polissi, and W.L. Kelley. 2011. Sitespecific mutation of Staphylococcus aureus VraS reveals a crucial role for the VraR-VraS sensor in the emergence of glycopeptide resistance. Antimicrob. Agents Chemother. 55:1008-1020
Howden, B.P., T.P. Stinear, D.L. Allen, P.D. Johnson, P.B. Ward, and J.K.Davies. 2008.Genomic analysis reveals a point mutation in the two-component sensor gene graS that leads to intermediate vancomycin resistance in clinical Staphylococcus aureus. Antimicrob. Agents Chemother. 52:3755-3762
Matsuo, M., L. Cui, J. Kim, and K. Hiramatsu. 2013. Comprehensive identification of mutations responsible for heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA)-to-VISA conversion in laboratory-generated VISA strains derived from hVISA clinical strain Mu3. Antimicrob. Agents Chemother. 57:5843-5853
Shoji, M., L. Cui, R. Iizuka, A. Komoto, H.M. Neoh, Y. Watanabe, T. Hishinuma, and K. Hiramatsu. 2011. walK and clpP mutations confer reduced vancomycin susceptibility in Staphylococcus aureus. Antimicrob. Agents Chemother. 55:3870-3881
Watanabe, Y., L. Cui, Y. Katayama, K. Kozue, and K. Hiramatsu. 2011. Impact of rpoB mutations on reduced vancomycin susceptibility in Staphylococcus aureus. J. Clin. Microbiol. 49:2680-2684
Jansen, A., M. Turck, C. Szekat, M. Nagel, I. Clever, and G. Bierbaum. 2007. Role of insertion elements and yycFG in the development of decreased susceptibility to vancomycin in Staphylococcus aureus. Int. J. Med. Microbiol. 297:205-215
Maki, H., N. McCallum, M. Bischoff, A. Wada, and B. Berger-Bachi. 2004. tcaA inactivation increases glycopeptide resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 48:1953-1959
McEvoy, C.R., B. Tsuji, W. Gao, T. Seemann, J.L. Porter, K. Doig, D. Ngo, B.P. Howden, and T.P. Stinear. 2013. Decreased vancomycin susceptibility in Staphylococcus aureus caused by IS256 tempering of WalKR expression. Antimicrob. Agents Chemother. 57:3240-3249
Di Gregorio, S., S. Fernandez, B. Perazzi, N. Bello, A. Famiglietti, and M. Mollerach. 2016. Increase in IS256 transposition in invasive vancomycin heteroresistant Staphylococcus aureus isolate belonging to ST100 and its derived VISA mutants. Infect. Genet. Evol. 43:197-202
Hanaki, H., K. Kuwahara-Arai, S. Boyle-Vavra, R.S. Daum, H. Labischinski, and K. Hiramatsu. 1998. Activated cellwall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J. Antimicrob. Chemother. 42:199-209
de Jonge, B.L., Y.S. Chang, D. Gage, and A. Tomasz. 1992. Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin binding protein 2A. J. Biol. Chem. 267:11248-11254
Galleni, M., B. Lakaye, S. Lepage, M. Jamin, I. Thamm, B. Joris, and J.M. Frere. 1993. A new, highly sensitive method for the detection and quantification of penicillin-binding proteins. Biochem. J. 291(Pt 1):19-21
Malachowa, N., and F.R. DeLeo. 2010. Mobile genetic elements of Staphylococcus aureus. Cell. Mol. Life Sci. 67:3057-3071
Sieradzki, K., and A. Tomasz. 2003. Alterations of cell wall structure and metabolism accompany reduced susceptibility to vancomycin in an isogenic series of clinical isolates of Staphylococcus aureus. J. Bacteriol. 185:7103-7110
Bustin, S.A., V. Benes, J.A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M.W. Pfaffl, G.L. Shipley, J. Vandesompele, and C.T. Wittwer. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55:611-622
Hellemans, J., G. Mortier, A. De Paepe, F. Speleman, and J. Vandesompele. 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8:R19
Valihrach, L., and K. Demnerova. 2012. Impact of normalization method on experimental outcome using RTqPCR in Staphylococcus aureus. J. Microbiol. Methods 90:214-216
Vandesompele, J., K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe, and F. Speleman. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:RESEARCH0034
Di Rienzo, J.A., F. Casanoves, M.G. Balzarini, L. Gonzalez, M. Tablada, and C.W. Robledo. 2013. InfoStat versión 2013. Available at www.infostat.com.ar (accessed July 23, 2013)
Aubry-Damon, H., C.J. Soussy, and P. Courvalin. 1998. Characterization of mutations in the rpoB gene that confer rifampin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 42:2590-2594
Kato, Y., T. Suzuki, T. Ida, and K. Maebashi. 2010. Genetic changes associated with glycopeptide resistance in Staphylococcus aureus: predominance of amino acid substitutions in YvqF/VraSR. J. Antimicrob. Chemother. 65:37-45
Chen, H.Y., C.C. Chen, C.S. Fang, Y.T. Hsieh, M.H. Lin, and J.C. Shu. 2011. Vancomycin activates sigma(B) in vancomycin-resistant Staphylococcus aureus resulting in the enhancement of cytotoxicity. PLoS One 6:e24472
Schreiber, F., C. Szekat, M. Josten, H.G. Sahl, and G. Bierbaum. 2013. Antibiotic-induced autoactivation of IS256 in Staphylococcus aureus. Antimicrob. Agents Chemother. 57: 6381-6384
Hiramatsu, K., Y. Kayayama, M. Matsuo, Y. Aiba, M. Saito, T. Hishinuma, and A. Iwamoto. 2014. Vancomycinintermediate resistance in Staphylococcus aureus. J. Glob. Antimicrob. Resist. 2:12
Memmi, G., S.R. Filipe, M.G. Pinho, Z. Fu, and A. Cheung. 2008. Staphylococcus aureus PBP4 is essential for betalactam resistance in community-acquiredmethicillin-resistant strains. Antimicrob. Agents Chemother. 52:3955-3966
Sieradzki, K., and A. Tomasz. 1999. Gradual alterations in cell wall structure and metabolism in vancomycin-resistant mutants of Staphylococcus aureus. J. Bacteriol. 181:7566-7570
Cafiso, V., T. Bertuccio, D. Spina, S. Purrello, F. Campanile, C. Di Pietro, M. Purrello, and S. Stefani. Modulating activity of vancomycin and daptomycin on the expression of autolysis cell-wall turnover and membrane charge genes in hVISA and VISA strains. PLoS One 7:e29573
Cui, L., E. Tominaga, H.M. Neoh, and K. Hiramatsu. 2006. Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob. Agents Chemother. 50: 1079-1082
Rincon, S., D. Panesso, L. Diaz, L.P. Carvajal, J. Reyes, J.M. Munita, and C.A. Arias. 2014. Resistance to ''last resort'' antibiotics in Gram-positive cocci: the postvancomycin era. Biomedica 34 Suppl. 1:191-208
Lopez Furst, M.J., L. de Vedia, S. Fernandez, N. Gardella, M.C. Ganaha, S. Prieto, E. Carbone, N. Lista, F. Rotryng, G.I. Morera, M. Mollerach, and M.E. Stryjewski. 2013. Prospective multicenter study of community-associated skin and skin structure infections due to methicillin-resistant Staphylococcus aureus in Buenos Aires, Argentina. PLoS One 8:e78303
Gardella, N., R. Picasso, S.C. Predari,M. Lasala,M. Foccoli, G. Benchetrit,A. Famiglietti,M. Catalano, M.Mollerach, and G. Gutkind. 2005. Methicillin-resistant Staphylococcus aureus strains in Buenos Aires teaching hospitals: replacement of the multidrug resistant South American clone by another susceptible to rifampin, minocycline and trimethoprimsulfamethoxazole. Rev. Argent. Microbiol. 37:156-160
Vidaillac, C., S. Gardete, R. Tewhey, G. Sakoulas, G.W. Kaatz, W.E. Rose, A. Tomasz, and M.J. Rybak. 2013. Alternative mutational pathways to intermediate resistance to vancomycin in methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 208:67-74.