[en] Renal ischemia/reperfusion (I/R) causes acute kidney injury (AKI). Ischemic preconditioning (IPC) attenuates I/R-associated AKI. Whole-body irradiation induces renal IPC in mice. Still, the mechanisms remain largely unknown. Furthermore, the impact of kidney-centered irradiation on renal resistance against I/R has not been studied. Renal irradiation (8.5Gy) was done in male 8-12-week-old C57bl/6 mice using Small Animal Radiation Therapy (SmART) device. Left renal I/R was performed by clamping the renal pedicles for 30 minutes, with simultaneous right nephrectomy, at 7, 14, and 28 days post-irradiation. The renal reperfusion lasted 48 hours. Following I/R, blood urea nitrogen (BUN) and creatinine (SCr) levels were lower in pre-irradiated mice compared to controls, so was the histological Jablonski score of AKI. The metabolomics signature of renal I/R was attenuated in pre-irradiated mice. The numbers of PCNA-, CD11b-, and F4-80-positive cells in the renal parenchyma post-I/R were reduced in pre-irradiated versus control groups. Such an IPC was significantly observed as early as D14 post-irradiation. RNA-Seq showed an up-regulation of angiogenesis- and stress response-related signaling pathways in irradiated non-ischemic kidneys at D28. RT-qPCR confirmed the increased expression of VEGF, ALK5, HO1, PECAM1, NOX2, HSP70, and HSP27 in irradiated kidneys compared to controls. In addition, irradiated kidneys showed an increased CD31-positive vascular area compared to controls. A 14-day gavage of irradiated mice with the anti-angiogenic drug Sunitinib before I/R abrogated the irradiation-induced IPC at both functional and structural levels. Our observations suggest that kidney-centered irradiation activates pro-angiogenic pathways and induces IPC, with preserved renal function and attenuated inflammation post-I/R.
Disciplines :
Urology & nephrology
Author, co-author :
Khbouz, Badr ; Université de Liège - ULiège > Département des sciences cliniques > Néphrologie
LALLEMAND, François ; Centre Hospitalier Universitaire de Liège - CHU > > Service médical de radiothérapie
Cirillo, Arianna ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Rowart, Pascal ; Université de Liège - ULiège > Département des sciences cliniques > Néphrologie ; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
Legouis, David; Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland ; Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, Geneva, Switzerland
Noël, Agnès ; Université de Liège - ULiège > GIGA > GIGA Cancer
De Tullio, Pascal ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
de Seigneux, Sophie; Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, Geneva, Switzerland
JOURET, François ; Centre Hospitalier Universitaire de Liège - CHU > > Service de néphrologie
Language :
English
Title :
Kidney-targeted irradiation triggers renal ischaemic preconditioning in mice.
Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, Goldstein SL, Cerdá J, Chawla LS. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol 14: 607-625, 2018. doi:10.1038/s41581-018-0052-0.
Ali T, Khan I, Simpson W, Prescott G, Townend J, Smith W, MacLeod A. Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J Am Soc Nephrol 18: 1292- 1298, 2007. doi:10.1681/ASN.2006070756.
Singh AP, Junemann A, Muthuraman A, Jaggi AS, Singh N, Grover K, Dhawan R. Animal models of acute renal failure. Pharmacol Rep 64: 31-44, 2012. doi:10.1016/S1734-1140(12)70728-4.
Bonventre JJV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121: 4210-4221, 2011. doi:10.1172/JCI45161.
Rowart P, Erpicum P, Detry O, Weekers L, Gr-egoire C, Lechanteur C, Briquet A, Beguin Y, Krzesinski J-M, Jouret F. Mesenchymal stromal cell therapy in ischemia/reperfusion injury. J Immunol Res 2015: 1-8, 2015. doi:10.1155/2015/602597.
Erpicum P, Rowart P, Poma L, Krzesinski J-M, Detry O, Jouret F. Administration of mesenchymal stromal cells before renal ischemia/reperfusion attenuates kidney injury and may modulate renal lipid metabolism in rats. Sci Rep 7: 8687, 2017. doi:10.1038/s41598-017- 08726-z.
Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298: 229-317, 2012. doi:10.1016/B978-0-12-394309-5.00006-7.
Erpicum P, Rowart P, Defraigne J-O, Krzesinski J-M, Jouret F. What we need to know about lipid-associated injury in case of renal ischemia-reperfusion. Am J Physiol Renal Physiol 315: F1714-F1719, 2018. doi:10.1152/ajprenal.00322.2018.
Legrand M, Rossignol P. Cardiovascular consequences of acute kidney injury. N Engl J Med 382: 2238-2247, 2020. doi:10.1056/NEJMra1916393.
Erpicum P, Detry O, Weekers L, Bonvoisin C, Lechanteur C, Briquet A, Beguin Y, Krzesinski J-M, Jouret F. Mesenchymal stromal cell therapy in conditions of renal ischaemia/reperfusion. Nephrol Dial Transplant 29: 1487-1493, 2014. doi:10.1093/ndt/gft538.
Gameiro J, Fonseca JA, Outerelo C, Lopes JA. Acute kidney injury: from diagnosis to prevention and treatment strategies. J ClinMed 9: 1704, 2020. doi:10.3390/jcm9061704.
Veighey K, MacAllister R. Clinical applications of remote ischaemic preconditioning in native and transplant acute kidney injury. Pediatr Nephrol 30: 1749-1759, 2015. doi:10.1007/s00467-014- 2965-6.
Tu YP, Chen SC, Liu YH, Chen CF, Hour TC. Postconditioning with far-infrared irradiation increases heme oxygenase-1 expression and protects against ischemia/reperfusion injury in rat testis. Life Sci 92: 35-41, 2013. doi:10.1016/j.lfs.2012.10.019.
Lakyová L, Toporcer T, Tome-cková V, Sabo J, Radonõak J. Lowlevel laser therapy for protection against skeletal muscle damage after ischemia-reperfusion injury in rat hindlimbs. Lasers Surg Med 42: 665-672, 2010. doi:10.1002/lsm.20967.
Nomura T, Li X-H, Ogata H, Sakai K, Kondo T, Takano Y, Magae J. Suppressive effects of continuous low-dose-rate c irradiation on diabetic nephropathy in type II diabetes mellitus model mice. Radiat Res 176: 356-365, 2011. doi:10.1667/rr2559.1.
Taylor K, Lemon JA, Phan N, Boreham DR. Low-dose radiation from 18 F-FDG PET does not increase cancer frequency or shorten latency but reduces kidney disease in cancer-prone Trp53þ/- mice. Mutagenesis 29: 289-294, 2014. doi:10.1093/mutage/geu017.
Kim J, Park JW, Park KM. Increased superoxide formation induced by irradiation preconditioning triggers kidney resistance to ischemia- reperfusion injury in mice. Am J Physiol Renal Physiol 296: F1202-F1211, 2009. doi:10.1152/ajprenal.90592.2008.
Verhaegen F, Granton P, Tryggestad E. Small animal radiotherapy research platforms. Phys Med Biol 56: R55-R83, 2011. doi:10.1088/0031-9155/56/12/R01.
Grandinetti J, Zhong Y, Shen C, Jia X. Design and experimental validation of a unilateral magnet for MRI-guided small animal radiation experiments. J Magn Reson 332: 107062, 2021. doi:10.1016/j. jmr.2021.107062.
Clarkson R, Lindsay PE, Ansell S, Wilson G, Jelveh S, Hill RP, Jaffray DA. Characterization of image quality and image-guidance performance of a preclinical microirradiator. Med Phys 38: 845-856, 2011. doi:10.1118/1.3533947.
Christensen JG. A preclinical review of sunitinib, a multitargeted receptor tyrosine kinase inhibitor with anti-angiogenic and antitumour activities. Ann Oncol 18, Suppl 10: x3-x10, 2007. doi:10.1093/annonc/mdm408.
Jouret F, Leenders J, Poma L, Defraigne J-O, Krzesinski J-M, de Tullio P. Nuclear magnetic resonance metabolomic profiling of mouse kidney, urine and serum following renal ischemia/reperfusion injury. PLoS One 11: e0163021, 2016. doi:10.1371/journal.pone.0163021.
T€ogel FE, Westenfelder C. Mesenchymal stem cells: a new therapeutic tool for AKI. Nat Rev Nephrol 6: 179-183, 2010. doi:10.1038/nrneph.2009.229.
Kaushal GP, Shah SV. Challenges and advances in the treatment of AKI. J Am Soc Nephrol 25: 877-883, 2014. doi:10.1681/ASN.2013070780.
Donis N, Jiang Z, D'Emal C, Hulin A, Debuisson M, Dulgheru R, Nguyen ML, Postolache A, Lallemand F, Coucke P, Martinive P, Herzog M, Pamart D, Terrell J, Pincemail J, Drion P, Delvenne P, Nchimi A, Lancellotti P, Oury C. Differential biological effects of dietary lipids and irradiation on the aorta, aortic valve, and the mitral valve. Front Cardiovasc Med 9: 839720, 2022. doi:10.3389/fcvm.2022.839720.
Jablonski P, Howden BO, Rae DA, Birrell CS, Marshall VC, Tange J. An experimental model for assessment of renal recovery from warm ischemia. Transplantation 35: 198-204, 1983. doi:10.1097/00007890-198303000-00002.
Weekers L, de Tullio P, Bovy C, Poma L, Mar-ee R, Bonvoisin C, Defraigne J-O, Krzesinski J-M, Jouret F. Activation of the calciumsensing receptor before renal ischemia/reperfusion exacerbates kidney injury. Am J Transl Res 7: 128-138, 2015.
Chade AR, Tullos NA, Harvey TW, Mahdi F, Bidwell GL. Renal therapeutic angiogenesis using a bioengineered polymer-stabilized vascular endothelial growth factor construct. J Am Soc Nephrol 27: 1741-1752, 2016. doi:10.1681/ASN.2015040346.
Kim YG, Suga SI, Kang DH, Jefferson JA, Mazzali M, Gordon KL, Matsui K, Breiteneder-Geleff S, Shankland SJ, Hughes J, Kerjaschki D, Schreiner GF, Johnson RJ. Vascular endothelial growth factor accelerates renal recovery in experimental thrombotic microangiopathy. Kidney Int 58: 2390-2399, 2000. doi:10.1046/j.1523-1755.2000. 00422.x.
Engel JE, Williams ML, Williams E, Azar C, Taylor EB, Bidwell GL, Chade AR. Recovery of renal function following kidney specific VEGF therapy in experimental renovascular disease. Am J Nephrol 51: 891-902, 2020. doi:10.1159/000511260.
Khbouz B, Rowart P, Poma L, Dahlke E, Bottner M, Stokes M, Bolen G, Rahmouni S, Theilig F, Jouret F. The genetic deletion of the dual specificity phosphatase 3 (DUSP3) attenuates kidney damage and inflammation following ischaemia/reperfusion injury in mouse. Acta Physiol (Oxf) 234: e13735, 2021. doi:10.1111/apha.13735.
Wever KE, Menting TP, Rovers M, van der Vliet JA, Rongen GA, Masereeuw R, Ritskes-Hoitinga M, Hooijmans CR, Warl-e M. Ischemic preconditioning in the animal kidney, a systematic review and meta-analysis. PLoS One 7: e32296, 2012. doi:10.1371/journal. pone.0032296.
Pallet N, Thervet E, Timsit MO. Angiogenic response following renal ischemia reperfusion injury: new players. Progres en Urologie 24, Suppl 1: S20-S25, 2014. doi:10.1016/S1166-7087(14)70059-4.
Quarmby S, Kumar P, Wang J, Macro JA, Hutchinson JJ, Hunter RD, Kumar S. Irradiation induces upregulation of CD31 in human endothelial cells. Arterioscler Thromb Vasc Biol 19: 588-597, 1999. doi:10.1161/01.atv.19.3.588.
Sonveaux P, Brouet A, Havaux X, Gr-egoire V, Dessy C, Balligand J-L, Feron O. Irradiation-induced angiogenesis through the up-regulation of the nitric oxide pathway: implications for tumor radiotherapy. Cancer Res 63: 1012-1019, 2003.
Kozin SV, Duda DG, Munn LL, Jain RK. Neovascularization after irradiation: what is the source of newly formed vessels in recurring tumors? J Natl Cancer Inst 104: 899-905, 2012. doi:10.1093/jnci/djs239.
Ebos JML, Lee CR, Christensen JG, Mutsaers AJ, Kerbel RS. Multiple circulating proangiogenic factors induced by sunitinib malate are tumor- independent and correlate with antitumor efficacy. Proc Natl Acad Sci USA 104: 17069-17074, 2007. doi:10.1073/pnas.0708148104.
Norton K-A, Han Z, Popel AS, Pandey NB. Antiangiogenic cancer drug sunitinib exhibits unexpected proangiogenic effects on endothelial cells. Onco Targets Ther 7: 1571-1582, 2014. doi:10.2147/OTT.S65055.
Neubig RR. Mind your salts: when the inactive constituent isn't. Mol Pharmacol 78: 558-559, 2010. doi:10.1124/mol.110.067645.
Geubelle P, Gilissen J, Dilly S, Poma L, Dupuis N, Laschet C, Abboud D, Inoue A, Jouret F, Pirotte B, Hanson J. Identification and pharmacological characterization of succinate receptor agonists. Br J Pharmacol 174: 796-808, 2017. doi:10.1111/bph.13738.
Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC, Eyassu F, Shirley R, Hu C-H, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa ASH, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515: 431-435, 2014. doi:10.1038/nature13909.