[en] We study the Hölderian regularity of Gaussian wavelets series and show that
they display, almost surely, three types of points: slow, ordinary and rapid.
In particular, this fact holds for the Fractional Brownian Motion. We also show
that this property is satisfied for a multifractal extension of Gaussian
wavelet series. Finally, we remark that the existence of slow points is
specific to these functions.
Disciplines :
Mathematics
Author, co-author :
Esser, Céline ; Université de Liège - ULiège > Département de mathématique > Analyse mathématique et ses interactions avec la théorie des probabilités
Loosveldt, Laurent ; Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Language :
English
Title :
Slow, ordinary and rapid points for Gaussian Wavelets Series and application to Fractional Brownian Motions
Publication date :
2022
Journal title :
ALEA: Latin American Journal of Probability and Mathematical Statistics
eISSN :
1980-0436
Publisher :
Instituto Nacional de Matematica Pura e Aplicada, Brazil
Aubry, J.-M. and Bastin, F. A walk from multifractal analysis to functional analysis with Sv spaces, and back. In Recent developments in fractals and related fields, Appl. Numer. Harmon. Anal., pp. 93-106. Birkhauser Boston, Boston, MA (2010). MR2742989.
Ayache, A. Multifractional stochastic fields. Wavelet strategies in multifractional frameworks. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2019). ISBN 978-981-4525-65-7. MR3839281.
Ayache, A. and Bertrand, P. R. A process very similar to multifractional Brownian motion. In Recent developments in fractals and related fields, Appl. Numer. Harmon. Anal., pp. 311-326. Birkhauser Boston, Boston, MA (2010). MR2743002.
Ayache, A., Esser, C., and Kleyntssens, T. Different possible behaviors of wavelet leaders of the Brownian motion. Statist. Probab. Lett., 150, 54-60 (2019). MR3922488.
Ayache, A. and Taqqu, M. S. Rate optimality of wavelet series approximations of fractional Brownian motion. J. Fourier Anal. Appl., 9 (5), 451-471 (2003). MR2027888.
Bastin, F., Esser, C., and Jaffard, S. Large deviation spectra based on wavelet leaders. Rev. Mat. Iberoam., 32 (3), 859-890 (2016). MR3556054.
Bingham, N. H. Variants on the law of the iterated logarithm. Bull. London Math. Soc., 18 (5), 433-467 (1986). MR847984.
Christensen, J. P. R. Topology and Borel structure. Descriptive topology and set theory with applications to functional analysis and measure theory. North-Holland Mathematics Studies, Vol. 10. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York (1974). MR0348724.
Clausel, M. and Nicolay, S. Some prevalent results about strongly monoHolder functions. Nonlinearity, 23 (9), 2101-2116 (2010). MR2672638.
Clausel, M. and Nicolay, S. Wavelets techniques for pointwise anti-Holderian irregularity. Constr. Approx., 33 (1), 41-75 (2011). MR2747056.
Cohen, A., Daubechies, I., and Feauveau, J.-C. Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math., 45 (5), 485-560 (1992). MR1162365.
Daubechies, I. Ten lectures on wavelets, volume 61 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992). ISBN 0-89871-274-2. MR1162107.
Esser, C. and Jaffard, S. Divergence of wavelet series: a multifractal analysis. Adv. Math., 328, 928-958 (2018). MR3771146.
Esser, C., Kleyntssens, T., and Nicolay, S. A multifractal formalism for non-concave and nonincreasing spectra: the leaders profile method. Appl. Comput. Harmon. Anal., 43 (2), 269-291 (2017). MR3668039.
Hunt, B. R., Sauer, T., and Yorke, J. A. Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces. Bull. Amer. Math. Soc. (N.S.), 27 (2), 217-238 (1992). MR1161274.
Jaffard, S. Beyond Besov spaces. I. Distributions of wavelet coefficients. J. Fourier Anal. Appl., 10 (3), 221-246 (2004a). MR2066421.
Jaffard, S. Wavelet techniques in multifractal analysis. In Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2, volume 72 of Proc. Sympos. Pure Math., pp. 91-151. Amer. Math. Soc., Providence, RI (2004b). MR2112122.
Jaffard, S. and Meyer, Y. Wavelet methods for pointwise regularity and local oscillations of functions. Mem. Amer. Math. Soc., 123 (587), x+110 (1996). MR1342019.
Kahane, J.-P. Some random series of functions, volume 5 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition (1985). ISBN 0-521-24966-X; 0-521-45602-9. MR833073.
Khintchine, A. Über einen Satz der Wahrscheinlichkeitsrechnung. Fund. Math., 6, 9-20 (1924). DOI: 10.4064/fm-6-1-9-20.
Khoshnevisan, D. and Shi, Z. Fast sets and points for fractional Brownian motion. In Séminaire de Probabilités XXXIV, pp. 393-416. Springer Berlin Heidelberg (2000). DOI: 10.1007/BFb0103816.
Kreit, D. and Nicolay, S. Generalized pointwise Holder spaces defined via admissible sequences. J. Funct. Spaces, pp. Art. ID 8276258, 11 (2018). MR3812831.
Loosveldt, L. and Nicolay, S. Generalized Tf spaces: on the trail of Calderón and Zygmund. Dissertationes Math., 554, 64 (2020). MR4166514.
Loosveldt, L. and Nicolay, S. Generalized spaces of pointwise regularity: toward a general framework forthe WLM. Nonlinearity, 34 (9), 6561-6586 (2021). MR4304490.
Mallat, S. A Wavelet Tour of Signal Processing. Academic Press (2009). ISBN 978-0-12-374370-1. DOI: 10.1016/B978-0-12-374370-1.X0001-8.
Marcus, M. B. Holder conditions for Gaussian processes with stationary increments. Trans. Amer. Math. Soc., 134, 29-52 (1968). MR230368.
Marcus, M. B. and Rosen, J. Moduli of continuity of local times of strongly symmetric Markov processes via Gaussian processes. J. Theoret. Probab., 5 (4), 791-825 (1992). MR1182681.
Meyer, Y. Wavelets and operators, volume 37 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1992). ISBN 0-521-42000-8; 0-521-45869-2. Translated from the 1990 French original by D. H. Salinger. MR1228209.
Meyer, Y., Sellan, F., and Taqqu, M. S. Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motion. J. Fourier Anal. Appl., 5 (5), 465-494 (1999). MR1755100.
Monrad, D. and Rootzén, H. Small values of Gaussian processes and functional laws of the iterated logarithm. Probab. Theory Related Fields, 101 (2), 173-192 (1995). MR1318191.
Orey, S. Growth rate of certain Gaussian processes. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, pp. 443-451. Univ. California Press, Berkeley, Calif. (1972). MR0402897.
Orey, S. and Taylor, S. J. How often on a Brownian path does the law of iterated logarithm fail? Proc. London Math. Soc. (3), 28, 174-192 (1974). MR359031.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.