Article (Scientific journals)
Slow, ordinary and rapid points for Gaussian Wavelets Series and application to Fractional Brownian Motions
Esser, Céline; Loosveldt, Laurent
2022In ALEA: Latin American Journal of Probability and Mathematical Statistics, 19, p. 1471–1495
Peer Reviewed verified by ORBi
 

Files


Full Text
2203.05472.pdf
Author preprint (369.57 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Mathematics - Probability; Mathematics - Functional Analysis; 42C40 26A16 60G15 60G22 60G17
Abstract :
[en] We study the Hölderian regularity of Gaussian wavelets series and show that they display, almost surely, three types of points: slow, ordinary and rapid. In particular, this fact holds for the Fractional Brownian Motion. We also show that this property is satisfied for a multifractal extension of Gaussian wavelet series. Finally, we remark that the existence of slow points is specific to these functions.
Disciplines :
Mathematics
Author, co-author :
Esser, Céline  ;  Université de Liège - ULiège > Département de mathématique > Analyse mathématique et ses interactions avec la théorie des probabilités
Loosveldt, Laurent  ;  Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Language :
English
Title :
Slow, ordinary and rapid points for Gaussian Wavelets Series and application to Fractional Brownian Motions
Publication date :
2022
Journal title :
ALEA: Latin American Journal of Probability and Mathematical Statistics
eISSN :
1980-0436
Publisher :
Instituto Nacional de Matematica Pura e Aplicada, Brazil
Volume :
19
Pages :
1471–1495
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
33 pages
Available on ORBi :
since 08 July 2022

Statistics


Number of views
75 (9 by ULiège)
Number of downloads
27 (3 by ULiège)

Scopus citations®
 
6
Scopus citations®
without self-citations
1

Bibliography


Similar publications



Contact ORBi