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Abstract

We study the Hölderian regularity of Gaussian wavelets series and show

that they display, almost surely, three types of points: slow, ordinary and

rapid. In particular, this fact holds for the Fractional Brownian Motion.

We also show that this property is satisfied for a multifractal extension

of Gaussian wavelet series. Finally, we remark that the existence of slow

points is specific to these functions.
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Introduction

Let B denote the standard Brownian motion on R. The Khinchin law of the
iterated logarithm [23] allows to control the behavior of B at a given point, in
the sense that for every t ∈ R, it holds

lim sup
r→0

|B(t+ r) −B(t)|√
|r| log log |r|−1

=
√
2 (1)

on an event of probability one. As a direct application of Fubini’s theorem, one
obtains that almost surely, the set of points t ∈ R such that (1) holds, called
ordinary points, has full Lebesgue measure. This contrasts with the uniform
Hölder condition obtained by Paul Lévy in 1937 which states that the uniform
modulus of continuity of B is of larger order: almost surely, one has

lim sup
r→0

sup
t∈[0,1]

|B(t+ r) −B(t)|√
|r| log |r|−1

=
√
2.

In particular, there exist exceptional points, called fast points, where the law of
the iterated logarithm fails. In 1974, Oray and Taylor studied how often this
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exceptional behavior holds and proved especially that the Hausdorff dimension
of the set {

t ∈ [0, 1] : lim sup
r→0

|B(t+ r) −B(t)|√
|r| log |r|−1

≥ λ
√
2

}

is given almost surely by 1− λ2 for every λ ∈ [0, 1], see [35].
In the meanwhile, Kahane proposed in [22] an easy way to study the regu-

larity and irregularity properties of the Brownian motion. Its method relies on
the expansion of B on [0, 1] in the so-called Faber-Schauder system. If Λ is the
triangular function

Λ : x 7→





x if 1
2 ≤ x < 1

1− x if 0 ≤ x < 1
2

0 otherwise,

and ξ, ξj,k (j ∈ N0 and k ∈ {0, . . . , 2j − 1}) are independent N (0, 1) random
variables then, we have

B(t) =

+∞∑

j=0

2j−1∑

k=0

ξj,k2
−j/2Λ(2jt− k) + ξt (2)

where the convergence is almost surely uniform for t ∈ [0, 1]. Working with
this expression, Kahane recovered the law of the iterated logarithm and the
estimation of the modulus of continuity of the Brownian motion. Furthermore,
Kahane obtained the existence of a third category of points, presenting a slower
oscillation. These points, called slow points, satisfy the condition

lim sup
r→0

|B(t+ r) −B(t)|√
|r|

< +∞.

The law of iterated logarithm and the study of the set of fast points has
naturally been studied and extended since then for more general classes of gaus-
sian processus such as gaussian processes with stationary increments, see e.g.
[29, 34, 9, 30, 33, 24]. In particular, given a fractional Brownian motion Bh of
index h ∈ (0, 1), one has almost surely

lim sup
r→0

|Bh(t+ r) −Bh(t)|
rh
√
log log |r|−1

=
√
2

and

lim sup
r→0

sup
t∈[0,1]

|Bh(t+ r) −Bh(t)|
rh
√
log |r|−1

=
√
2.

In 1999, Meyer, Sellan and Taqqu introduced a famous decomposition of
the fractional Brownian motion using a Lemarié-Meyer or sufficiently smooth
Daubechies wavelet ψ, which decorrelates the high frequencies [32]. More pre-
cisely, any fractional Brownian motion Bh of Hurst index h ∈ (0, 1) can be
written as

Bh(t) =
∑

j∈N

∑

k∈Z

2−hjξj,kψh+1/2(2
jt− k) +R(t) (3)
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where R is a smooth process, (ξj,k)(j,k)∈N×Z is a sequence of independent N (0, 1)
random variables, and ψα is defined by

ψ̂α(ξ) =
1

|ξ|α ψ̂(ξ).

Note that such a function leads to a biorthogonal wavelet basis, see Section 1.
Motivated by the study of fractional Brownian motions using this particular

decomposition, we develop in this paper a systematic study of the different
pointwise behaviors of random wavelets series of the form

fh =
∑

j∈N

∑

k∈Z

ξj,k2
−hjψ(2j · −k) (4)

where (ξj,k)(j,k)∈N×Z denote a sequence of independent N (0, 1) random vari-
ables, h ∈ (0, 1) is fixed and ψ is any compactly supported or smooth wavelet,
see Section 1 for a precise definition. Note that, even if the expression (4) is very
similar to (2), dealing with it requires much more technical arguments. Indeed,
due to the symmetry of the function Λ, most of the terms vanish in the expan-
sion of the increments B(t)−B(s) if s and t are closed enough. This fact can not
be used anymore while working with an arbitrary wavelet and compensations
of different terms may occurs.

Concerning the regularity of the function fh, one can show, see Proposition
1.3 below, that, for all s, t ∈ R,

E[(fh(t)− fh(s))
2] ≤ C|s− t|2h,

for some deterministic constant C > 0. Applying Kolmogorov continuity Theo-
rem for gaussian processes, one can deduce that almost surely, for every t ∈ R,
one has

lim sup
r→0

|fh(t+ r)− fh(t)|
rh−ε

< +∞

for every ε > 0. The aim of this paper is to characterize more precisely the
pointwise behavior of such a wavelet series, in the spirit of what is known for
the Brownian motion. Recently, generalized Hölder spaces has been introduced
to address this kind of questions [25, 27] as well as the regularity of solutions of
partial differential equations [26]. This article is the continuation of the work
done in [2, 4, 22] for the Brownian motion.

As a consequence of our results, we get that almost surely, the Hölder ex-
ponent of the random wavelet series fh is h while it does not belong to the
uniform Hölder space of order h. Nevertheless, if t is a slow point, fh belongs
to the pointwise Hölder space of order h at t. One can therefore wonder if this
feature is common or if it is specific to the functions under study in this paper.
To address this question, in Section 6 we recall two commonly used notions
of genericity: the prevalence and the Baire category point of view. We obtain
that, in both sense, the existence of slow points is a specific property of gaussian
random wavelets series.

The paper is structured as follows: in Section 1, before stating our main
result, we recall the most important tools used in the paper: discrete wavelet
transform and modulus of continuity as well as some fundamental inequalities.
Section 2 is devoted to exploring the regularity of the gaussian random wavelet
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serie (4) by identifying three precise pointwise estimates. In Section 3, we
focus on the irregularity that we deduced from the asymptotic behavior of the
wavelet coefficients. Then, using the obtain results of regularity and irregularity,
we prove our main result concerning the existence of slow, ordinary and rapid
points in Section 4. This fact is extended to multifractal gaussian random series
in Section 5. Finally, Section 6, focuses on the results of generecity for slow
points. In this paper, C stands for a deterministic constant not necessary the
same in different lines.

1 Preliminaries and statement of the main result

In this section, we present the notions needed for the statement of the main
theorem and the first result concerning the convergence of the wavelets series
defined in (4).

Let us first briefly recall some definitions and notations about wavelets and
biortogonal wavelets (for more precisions, see e.g. [15, 31, 28, 13]). Under some
general assumptions, there exist two functions φ and ψ, called wavelets, which
generate two orthonormal bases of L2(R), namely

{φ(· − k)}k∈Z ∪ {ψ(2j · −k) : j ∈ N, k ∈ Z}

and
{ψ(2j · −k) : j ∈ Z, k ∈ Z}.

Any function f ∈ L2(R) can be decomposed as follows,

f =
∑

k∈Z

Ckφ(· − k) +
∑

j∈N

∑

k∈Z

cj,kψ(2
j · −k) =

∑

j∈Z

∑

k∈Z

cj,kψ(2
j · −k)

where

cj,k = 2j
∫

R

f(x)ψ(2jx− k) dx

and

Ck =

∫

Rn

f(x)φ(x − k) dx.

Let us remark that we do not choose the L2(R) normalization for the wavelets,
but rather an L∞(R) normalization, which is better fitted to the study of the
Hölderian regularity. Amoung the families of wavelet basis that exist, we are
mostly interested in two classes: The Lemarié-Meyer wavlets for which φ and
ψ belong to the Schwartz class S(R), or Daubechies wavelets for which φ and
ψ are compactly supported functions. In both cases, the first moment of the
wavelet ψ vanishes.

The setting in which we work is more general that just orthogonal wavelet
basis, so that it allows to cover the important example supply by the fractional
Brownian motion. Biorthogonal wavelet bases are a couple of two Riesz wavelet
bases of L2(R) generated respectively by ψ and ψ̃ and such that

2j/22j
′/2

∫

R

ψ(2jx− k)ψ̃(2j
′

x− k′)dx = δj,j′δk,k′ .
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In that case, any function f ∈ L2(R) can be decomposed as

f =
∑

j∈Z

∑

k∈Z

cj,kψ(2
j · −k)

where

cj,k = 2j
∫

R

f(x)ψ̃(2jx− k)dx.

Wavelet basis and biorthogonal wavelet basis give a powerful tool to study
the regularity and irregularity of functions or signals belonging to numerous
functional spaces, see e.g. [21, 31, 6, 19, 1, 20, 12, 17, 25, 27]. In this paper,
they will be used to get irregularity properties in Section 3.

Let us now present two lemmata that allow to prove the uniform convergence
on any compact set of the series defined in (4), where ψ comes from any wavelet
basis or biorthogonal wavelet basis. The first one is very classical and the
second one gives informations about the asymptotic behavior of a sequence of
i.i.d gaussian random variables.

Lemma 1.1. There exists a constant C1 > 0 such that, for all x ∈ R
d

∑

k∈Z

1

(1 + |x− k|)4 ≤ C1.

Lemma 1.2. [3, 5] Let (ξj,k)(j,k)∈N×Z be a sequence of independent N (0, 1)
random variables. There are an event Ω∗ of probability 1 and a positive random
variable C2 of finite moment of every order such that, for all ω ∈ Ω∗ and
(j, k) ∈ Z

2, the inequality

|ξj,k(ω)| ≤ C2(ω)
√
log(3 + j + |k|) (5)

holds.

Let fh denote the process defined in (4). For all j ∈ N, we set

fh,j =
∑

k∈Z

ξj,k2
−hjψ(2j · −k).

and remark that, if inequality (5) holds then, thanks to Lemma 1.1 and the fast
decay of the wavelet and its derivative (or using the compactness of the support
of ψ), the sum in the right-hand side converges uniformly on any compact set,
as well as the sum

∑

k∈Z

ξj,k2
(1−h)jDψ(2j · −k). (6)

Therefore, for all j, fh,j is continuously differentiable with derivativeDfh,j given
by (6). In particular, the process fh is well defined and bounded on the event
Ω∗ of probability 1. In the following, we will hence work on this event without
mentioning it explicitly.

Using similar arguments, the following Proposition gives us a first informa-
tion concerning the regularity of the function fh.
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Proposition 1.3. Let fh be the random wavelet series defined in (4). If ψ
is continously differentiable, there exists a constant C > 0 such that, for all
s, t ∈ R

E[(fh(t)− fh(s))
2] ≤ C|s− t|2h.

Proof. From the independence of the centered random variables in (ξj,k)(j,k)∈N×Z,
we have

E[(fh(t)− fh(s))
2] =

∑

j∈N

∑

k∈Z

2−2hj(ψ(2jt− k)− ψ(2js− k))2.

Let us fix t and assume that s and ν ∈ Z are such that

2−ν < |t− s| ≤ 2−ν+1.

For all j ≤ ν, we set

Fj,t : x 7→
∑

k∈Z

2−2hj(ψ(2jt− k)− ψ(2jx− k))2.

Let us then remark that Fj,t is continuously differentiable on any compact set.
If ψ is compactly supported, this is obvious. Otherwise, it comes from the fast
decay of ψ and Lemma 1.1. In any case, by the mean value theorem, there exist
x1 between s and t such that

|Fj,t(s)− Fj,t(t)| =
∣∣∣∣∣(s− t)

∑

k∈Z

2(1−2h)j2(ψ(2jt− k)− ψ(2jx1 − k))Dψ(2jx1 − k)

∣∣∣∣∣

≤ C

∣∣∣∣∣(s− t)
∑

k∈Z

2(1−2h)j(ψ(2jt− k)− ψ(2jx1 − k))

∣∣∣∣∣ .

Applying again the mean-value theorem to the function

gj : x 7→
∑

k∈Z

2(1−2h)jψ(2jx− k),

we get
|Fj,t(s)− Fj,t(t)| ≤ C|s− t|22(2−2h)j

because ∑

k∈Z

Dψ(2jt− k)

can be uniformly bounded, by the fast decay and Lemma 1.1 or using the com-
pact support of ψ. With the same argument, we also get, for all j > ν,
∣∣∣∣∣
∑

k∈Z

2−2hj(ψ(2jt− k)− ψ(2js− k))2

∣∣∣∣∣ ≤ 2−2hj
∑

k∈Z

4((ψ(2jt− k))2 + (ψ(2js− k))2)

≤ C2−2hj .
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Putting all of these together, we have

E[(fh(t)− fh(s))
2] =

∑

j≤ν

∑

k∈Z

2−2hj(ψ(2jt− k)− ψ(2js− k))2

+
∑

j>ν

∑

k∈Z

2−2hj(ψ(2jt− k)− ψ(2js− k))2

≤ C(|s− t|2
∑

j≤ν

2(2−2h)j +
∑

j>ν

2−2hj)

≤ C(|s− t|22(2−2h)ν + 2−2hν)

≤ C|s− t|2h.

From the last proposition and Kolmogorov continuity Theorem for gaussian
processes, we know that the sample path of fh are almost surely locally Hölder-
continuous of order h− ε for every ε > 0. Our aim in this paper is to give more
precise information concerning the regularity of fh. In order to state it, we recall
finally that a modulus of continuity is an increasing function ω : R+ → R

+

satisfying ω(0) = 0 and for which there is C > 0 such that ω(2x) ≤ Cω(x)
for all x ∈ R

+. Wavelet characterizations of regularity require the following
additional regularity property for moduli of continuity, see [21]: A modulus of
continuity ω is regular if there is N ≥ 0 such that





∞∑

j=J

2Njω(2−j) ≤ C2NJω(2−J)

J∑

j=−∞
2(N+1)jω(2−j) ≤ C2(N+1)Jω(2−J)

(7)

for all J ≥ 0. Our main result will use three different regular moduli of conti-
nuity:

• the modulus of continuity ωr of the rapid points is defined by

ω(h)
r (x) = |x|h

√
log |x|−1

• the modulus of continuity ωo of the ordinary points is defined by

ω(h)
o (x) = |x|h

√
log log |x|−1

• the modulus of continuity ωs of the slow points is defined by

ω(h)
s (x) = |x|h.

Theorem 1.4. Almost surely, the random wavelets series defined in (4) satisfies
the following property for every non-empty interval I of R:

• For almost every t ∈ I,

lim sup
s→t

|fh(s)− fh(t)|
ω
(h)
o (|s− t|)

< +∞ (8)
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and if ω is a modulus of continuity such that ω = o(ω
(h)
o ), then

lim sup
s→t

|fh(s)− fh(t)|
ω(|s− t|) = +∞, (9)

Such points are called ordinary points.

• There exists t ∈ I such that

lim sup
s→t

|fh(s)− fh(t)|
ω
(h)
r (|s− t|)

< +∞ (10)

and if ω is a modulus of continuity such that ω = o(ω
(h)
r ), then

lim sup
s→t

|fh(s)− fh(t)|
ω(|s− t|) = +∞, (11)

Such points are called rapid points.

• There exists t ∈ I such that

lim sup
s→t

|fh(s)− fh(t)|
ω
(h)
s (|s− t|)

< +∞. (12)

and if ω is a modulus of continuity such that ω = o(ω
(h)
s ), then

lim sup
s→t

|fh(s)− fh(t)|
ω(|s− t|) = +∞. (13)

Such points are called slow points.

Remark 1.5. Theorem 1.4 is stated in full generality but let us already empha-
size that it can be improved while considering compactly supported wavelets.
Indeed, in this case, one can show the strict positiveness of the limits in (8),
(10) and (12), see Remark 4.2 below.

Theorem 1.4 generalises the famous result of Kahane about the different
pointwise behaviors of the Brownian motion, see [22, Theorem 3 in Chapter 16].
Moreover, it can be applied to the random wavelet series in (3), hence it proves
the existence of the three types of points for the fractional Brownian motion.

Remark 1.6. A good tool to determine the regularity of a locally bounded
function f at a point t is to compute its Hölder exponent hf (t). If α > 0,
we say that f belongs to the pointwise Hölder space Cα(t) if there exists a
polynomial Pt of degree strictly less than α and a constant C > 0 such that, for
all j ∈ N,

sup
x∈B(x0,2−j)

|f(x)− Pt(x)| ≤ C2−αj .

It is straightforward to show that, as soon as α < β, Cβ(t) ⊆ Cα(t). Therefore,
we define the pointwise Hölder exponent of f at point t by

hf (t) = sup{α > 0 : f ∈ Cα(t)}.

Theorem 1.4 tells us in particular that, if t is an ordinary or rapid point, then,
for all ε > 0, fh ∈ Ch−ε(t) and fh /∈ Ch(t) which gives hfh(t) = h. On the
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contrary, if t is a slow point, fh ∈ Ch(t) while, for all ε > 0, fh /∈ Ch+ε(t)
and so, again, hfh(t) = h. In fact, the finiteness of the limits (8), (10) and
(12) means that the function f belongs to a generalized pointwise Hölder space
[25, 27] associated to the corresponding modulus of continuity.

The next sections are dedicated to the proof of this result. Any open interval
in R can be written as a countable union of dyadic intervals. Then, to prove
Theorem 1.4, it is sufficient to show that, for all dyadic interval of the form λj,k =
[k2−j, (k + 1)2−j[ with j ∈ N, k ∈ Z, there exist an event Ωj,k of probability
1 such that, for all ω ∈ Ωj,k, almost every t ∈ λj,k is ordinary and there exist
tr ∈ λj,k which is rapid and ts ∈ λj,k which is slow. For the sake of simpleness
in notation, we will only do the proofs in full details for λ0,0 = [0, 1). In fact,
after dilatations and translations, our proofs hold true for any arbitrary dyadic
interval. Note also that the proofs will be done in the case where the wavelet ψ
is in the Schwartz class; it can easily be adapted and simplified if ψ is compactly
supported.

2 Regularity properties

In this section, we establish inequalities (8), (10) and (12). Concerning rapid
and ordinary points, the conduct of the proof is similar. First we use Lemma
1.2 to bound the coefficients in (4). Then we use the fast decay of the wavelet
to measure the contribution of the coefficients associated to dyadic intervals
that are far away from the point of interest t in the difference |fh(s) − fh(t)|.
Concerning the slow points, we take advantage of a procedure initiated by Ka-
hane in [22] to identify points for which we can obtain more precise information
concerning the coefficients of the “closest” intervals while we still use Lemma 1.2
and the fast decay for the “furthest” one.

2.1 Rapid points

To prove the existence of rapid points, we apply Lemma 1.2 and get an uni-
form modulus of continuity for the function fh. We deal with the coefficients
associated to furthest intervals thanks to the following lemma.

Lemma 2.1. There exists a constant C1 > 0 such that, for all j ∈ N0 and
x ∈ (0, 1),

∑

|k|>2j+1

√
log(3 + j + |k|)

(1 + |2jx− k|)5 ≤ C1

Proof. Let us fix j ∈ N0 and x ∈ (0, 1). As |k| > 2j+1, obviously, k
2j /∈ (−2, 2)

so let n /∈ {0,±1,−2} be such that n2j ≤ k < (n+ 1)2j. Now, as x ∈ (0, 1), we
have

|2jx− k| ≥ 2j|x− n| − 1 ≥ 2j(|n| − 1)− 1 ≥ |k|
2

− 1.

Thus, for all such j, k and x, we have
√
log(3 + j + |k|)
(1 + |2jx− k|) ≤ 2

√
log(3 + 2|k|)

|k|

9



and we conclude using the boundedness of the function x 7→
√

log(3+2x)

x on
[1,+∞[ and Lemma 1.1.

Proposition 2.2. Almost surely, there exists a constant C1 > 0 such that, for
all t, s ∈ (0, 1) we have

|fh(s)− fh(t)| ≤ C1|t− s|h
√
log |t− s|−1.

In particular, one has almost surely

lim sup
s→t

|fh(s)− fh(t)|
ω
(h)
r (|s− t|)

< +∞

for every t ∈ (0, 1).

Proof. Let us assume that t, s and ν ∈ N are such that

2−ν < |t− s| ≤ 2−ν+1.

For all j ≤ ν, by the mean value theorem, there exists x between s and t such
that

|fh,j(t)− fh,j(s)| ≤ |t− s||Dfh,j(x)| (14)

and, using the fast decay of Dψ and (5), it follows that

|Dfh,j(x)| ≤ CC22
(1−h)j




∑

|k|≤2j+1

√
log(3 + j + |k|)

(1 + |2jx− k|)4

+
∑

|k|>2j+1

√
log(3 + j + |k|)

(1 + |2jx− k|)5


 .

We bound the second sum by Lemma 2.1 while, for the first sum, we have

∑

|k|≤2j+1

√
log(3 + j + |k|)

(1 + |2jx− k|)4 ≤ C
∑

|k|≤2j+1

√
j

(1 + |2jx− k|)4 ≤ C
√
j

by Lemma 1.1. Thus, we obtain

|
∑

j≤ν

(fh,j(t)− fh,j(s))| ≤ CC2|t− s|2(1−h)ν
√
ν

≤ CC2(ω)|t− s|h
√
log |t− s|−1.

Now, if j > ν, by splitting the sums in the same way, we also have

|fh,j(t)| ≤ CC22
−hj
√
j and |fh,j(s)| ≤ CC22

−hj
√
j

which obviously leads to

|
∑

j>ν

fh,j(t)| ≤ CC2|t− s|h
√
log |t− s|−1

and
|
∑

j>ν

fh,j(s)| ≤ CC2|t− s|h
√

log |t− s|−1.

The conclusion follows immediately.
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2.2 Ordinary points

To establish the existence of ordinary points, we need to introduce some nota-
tions. If j ∈ N0, and t ∈ (0, 1), we denote by kj(t) the unique positive integer
in {0, . . . , 2j − 1} such that t ∈ [kj(t)2

−j , (kj(t) + 1)2−j). We also define, for all
n ∈ N the set

κtj(n) = {k ∈ Z : |k − kj(t)| ≤ n}
The main proof of this section consists in applying Lemma 1.2 to a sequence
of independent N (0, 1) random variables indexed from kj(t). Then, Lemmata
2.3 and 2.4 help us to deal with the coefficients associated with the furthest
intervals.

Lemma 2.3. There exists a constant C1 > 0 such that, for all j ∈ N0, t ∈ (0, 1)
and x ∈ (0, 1) such that |t− x| ≤ 2−j+1 we have

∑

k/∈κt
j(j)

√
log(3 + j + |k − kj(t)|)

(3 + |2jx− k|)(1 + |2jx− k|)4 ≤ C1

Proof. Let us fix j ∈ N0, t ∈ (0, 1) and x ∈ (0, 1) such that |t− x| ≤ 2−j+1. If
k /∈ κtj(j), we immediately have |2jx − kj(t)| ≤ 3 and thus |2jx − k| ≥ |kj(t) −
k| − 3. Therefore,

√
log(3 + j + |k − kj(t)|)

(3 + |2jx− k|) ≤
√
log(3 + 2|k − kj(t)|)

|kj(t)− k|

and the conclusion follows just like in Lemma 2.1.

Lemma 2.4. There exists a constant C1 > 0 such that, for all j ∈ N0, t ∈ (0, 1)
and s ∈ (0, 1) such that |2js− kj(t)| ≤ j we have

∑

k/∈κt
j(2j)

√
log(3 + j + |k − kj(t)|)

(1 + |2js− k|)5 ≤ C1

Proof. Let us fix j ∈ N0 t ∈ (0, 1) and s ∈ (0, 1) such that |2js − kj(t)| ≤ j. If

k /∈ κtj(2j), of course, |2js− kj(t)| < |k−kj(t)|
2 and thus |2js− k| ≥ |k−kj(t)|

2 . It
follows that

√
log(3 + j + |k − kj(t)|)

1 + |2js− k| ≤ 2

√
log(3 + 2|k − kj(t)|)

|k − kj(t)|

and, again, we conclude just like in Lemma 2.1.

Proposition 2.5. Almost surely, for almost every t ∈ (0, 1),

lim sup
s→t

|fh(s)− fh(t)|
ω
(h)
o (|t− s|)

< +∞.

Proof. Let us fix t ∈ (0, 1), and j ∈ N0 and let 0 ≤ kj(t) < 2j be such that
t ∈ [kj(t)2

−j , (kj(t)+1)2−j [. A simple modification of Lemma 1.2 insure us the

11



existence of a positive random variable Ct of finite moment of every order such
that, almost surely

|ξj,k| ≤ Ct

√
log(3 + j + |k − kj(t)|).

As previously, if s ∈ (0, 1) and ν ∈ N is such that

2−ν < |t− s| ≤ 2−ν+1,

we first start by considering, for all j ≤ ν ,|Dfh,j(x)| for a x between s and t.
In this case, we have

|Dfh,j(x)| ≤ CCt2
(1−h)j




∑

k∈κt
j(j)

√
log(3 + j + |k − kj(t)|)

(1 + |2jx− k|)4

+
∑

k/∈κt
j(j)

√
log(3 + j + |k − kj(t)|)

(3 + |2jx− k|)(1 + |2jx− k|)4





and we bound the second sum by Lemma 2.3, while, for the first sum, we have

∑

k∈κt
j(j)

√
log(3 + j + |k − kj(t)|)

(1 + |2jx− k|)4 ≤ C
∑

k∈κt
j(j)

√
log(j)

(1 + |2jx− k|)4 ≤ C
√
log(j)

by Lemma 1.1. These inequalities lead to

|
∑

j≤ν

(fh,j(t)− fh,j(s))| ≤ CCt|t− s|h
√
log log |t− s|−1. (15)

To bound |fh,j(t)|, for all j > ν, we use the same techniques and get

|
∑

j>ν

fh,j(t)| ≤ CCt|t− s|h
√

log log |t− s|−1.

The bound for |fh,j(s)| is a little bit more tricky. As |2js− kj(t)| ≤ 2j−ν+2,
we first consider the case when 2j−ν+2 ≤ j, then

|fh,j(s)| ≤ CCt2
−hj




∑

k∈κt
j(2j)

√
log(3 + j + |k − kj(t)|)

(1 + |2js− k|)4

+
∑

k/∈κt
j(2j)

√
log(3 + j + |k − kj(t)|)

(1 + |2js− k|)5


 .

The second sum is this time bounded using Lemma 2.4 while we again use
Lemma 1.1 to get

∑

k∈κt
j(2j)

√
log(3 + j + |k − kj(t)|)

(1 + |2js− k|)4 ≤ C
√
log(j).
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Now, if j < 2j−ν+2,

|fh,j(s)| ≤ CCt2
−hj




∑

k∈κs
j(2

j−ν+2)

√
log(3 + j + |k − kj(t)|)

(1 + |2js− k|)4

+
∑

k/∈κs
j(2

j−ν+2)

√
log(3 + j + |k − kj(t)|)

(1 + |2js− k|)5




and, as |kj(s)− kj(t)| ≤ 2j−ν+1 + 2, for all k ∈ κsj(2
j−ν+2) we have

log(3+ j+ |k− kj(t)|) ≤ log(3+ j+ |kj(s)− kj(t)|+ |k− kj(s)|) ≤ log(42j−ν+2)

while, for all k /∈ κsj(2
j−ν+2),

√
log(3 + j + |k − kj(t)|)

(1 + |2js− k|)5 ≤ log(3 + j + |kj(s)− kj(t)|+ |k − kj(s)|)
|k − kj(s)|

≤ log(4|k − kj(s)|)
|k − kj(s)|

≤ C

which gives us
|fh,j(s)| ≤ CCt2

−hj
√
j − ν. (16)

In total, using (15) and (16), we get

|
∑

j>ν

fh,j(s)| ≤
∑

j>ν

CCt2
−hj
√
j − ν

√
log(j)

≤ CCt|t− s|h
√
log log |t− s|−1.

The conclusion comes from Fubini’s Theorem.

2.3 Slow points

2.3.1 An iterative procedure for slow points

The following procedure is inspired by the one initially described by Kahane in
[22] to identify slow points for the Brownian motion. We generalized it here by
introducing an extra parameter m ∈ N in order to use it for any1 h > 0. Some
clarifications are also made.

If µ ∈ N, ξ ∼ N (0, 1) and l ∈ N0, we note

pl(µ) = P(2lµ < |ξ| ≤ 2l+1µ).

For all j, l ∈ N0 and 0 ≤ k < 2j , we define

Sµ
j,l = {k ∈ {0, . . . , 2j − 1} : 2lµ < |ξj,k| ≤ 2l+1µ}

and
Λj,l(k) = {k′ ∈ {0, . . . , 2j − 1} : |k − k′| ≤ 2ml}.

1Kahane only considered the case h = 1

2
and so its construction is made with m = 3 which

is sufficient to fulfill the condition h >
1

m
we will need afterward.

13



Note that #Λj,l(k) ≤ 2ml+1 + 1. For all j ∈ N0, we define a closed set from the
dyadic intervals [k2−j, (k + 1)2−j ] for which k belongs to the set

Iµj = {k ∈ {0, . . . , 2j − 1} : ∀l ∈ N0, Λj,l(k) ∩ Sµ
j,l = ∅},

namely, we consider
Fµ
j =

⋃

k∈Iµ
j

[k2−j, (k + 1)2−j ].

We want to show that, almost surely, there exists µ ∈ N such that

Sµ
low

=
⋂

j∈N0

Fµ
j 6= ∅

which is equivalent to the fact that, for all J ∈ N0,

Sµ
low,J =

⋂

j≤J

Fµ
j

is non-empty, as (Sµ
low,J)J∈N0

is a decreasing sequence of compact sets. In other
words, if we denote by Nµ

J the number of subintervals of Sµ
low,J , we want to

show that
P(
⋃

µ∈N

⋂

J∈N0

{Nµ
J ≥ 1}) = 1.

For this purpose, we will consider sufficiently large µ such that the inequality

+∞∑

l=0

(2ml+1 + 1)(pl(µ) + l
√
pl(µ)(1 − pl(µ))) <

1

4
(17)

holds. Moreover, if J1 is fixed, let us remark that the construction of Sµ
low,J1

needs to consider at most
∑J1

j=0 2
j i.i.d. N (0, 1) random variables and, by

increasing µ if necessary, one can choose to remove the intervals [0, 2−J1] and
[1− 2−J1, 1] from Sµ

low,J1
at this step if necessary while making P(Nµ

J1
≥ (32 )

J1)
as close to 1 as we want. This trick helps us to start our construction with a
arbitrary close to 1 “initial value” of probability and to make sure that, at the
end, the resulting points will differ from 0 and 1.

Lemma 2.6. For all µ ∈ N sufficiently large such that condition (17) holds, the
sequence (Nµ

J )J∈N0
of random variables satisfies the formula

P(Nµ
J+1 ≥ (

3

2
)J+1) ≥ (1− (

2

3
)J )P(Nµ

J ≥ (
3

2
)J), ∀J ∈ N0. (18)

Proof. For all J , we define2

Iµ
J = {k ∈ {0, . . . , 2J − 1} : [k2−J , (k + 1)2−J ] ⊆ Sµ

low,J},

and remark that Iµ
J+1 is obtained by removing from 2Iµ

J ∪ 2Iµ
J +1 the elements

k ∈ {0, . . . , 2J+1 − 1} such that ΛJ+1,l(k) ∩ Sµ
J+1,l 6= ∅ for a l ∈ N0. But now,

if Nµ
J = N , for all such a l,

#(Sµ
J+1,l ∩ (2Iµ

J ∪ 2Iµ
J + 1)) ∼ B(2N, pl(µ))

2We obviously have N
µ

J
= #I

µ

J
.
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so we have, by Tchebycheff’s inequality, that

#(Sµ
J+1,l ∩ (2Iµ

J ∪ 2Iµ
J + 1)) ≤ 2N(pl(µ) + (l + 1)

√
pl(µ)(1 − pl(µ)))

with probability greater than 1 − (l + 1)−2N−1. Thus the number of removed
k is bounded by

2N
+∞∑

l=0

(2ml+1 + 1)(pl(µ) + l
√
pl(µ)(1 − pl(µ)))

with probability greater than 1 − N−1. Now, with condition (17), we get, for
all J ,

P(Nµ
J+1 ≥ 3

2
NJ |Nµ

J = N) ≥ 1−N−1

which gives us

P(Nµ
J+1 ≥ (

3

2
)J+1) ≥ P((Nµ

J+1 ≥ 3

2
Nµ

J ) ∩ (Nµ
J ≥ (

3

2
)J))

=
∑

N≥( 3
2
)J

P(Nµ
J+1 ≥ 3

2
NJ |Nµ

J = N)P(Nµ
J = N)

≥
∑

N≥( 3
2
)J

(1−N−1)P(Nµ
J = N)

≥ (1− (
2

3
)J )

∑

N≥( 3
2
)J

P(Nµ
J = N)

= (1− (
2

3
)J )P(Nµ

J ≥ (
3

2
)J).

Proposition 2.7. Almost surely, there exists µ ∈ N such that (0, 1)∩Sµ
low

6= ∅.
Proof. From formula (18), if µ is large enough we deduce by induction that for
all J1, J with J1 ≤ J ,

P(Nµ
J ≥ 1) ≥ P(Nµ

J ≥ (
3

2
)J)

≥ P(Nµ
J1

≥ (
3

2
)J1)




J∏

j=J1

(1− (
2

3
)j)


 .

Let us remark that, as
∑∞

j=1(
2
3 )

j < ∞, the infinite product
∏∞

j=1(1 − (23 )
j)

converges to a non-zero limit and

lim
J1→+∞

+∞∏

j=J1

(1− (
2

3
)j) = 1.

Now, for all 0 < ε < 1
2 , one can choose J1 such that

+∞∏

j=J1

(1− (
2

3
)j) > 1− ε

15



and, by increasing µ if necessary, we can choose to remove the intervals [0, 2−J1]
and [1− 2−J1 , 1] from Sµ

low,J1
, if necessary and assume

P(Nµ
J1

≥ (
3

2
)J1) > 1− ε.

Therefore, as the sequence of events ({Nµ
J ≥ 1})J∈N0

is decreasing, we get

P
( ⋂

J∈N0

(Nµ
J ≥ 1)

)
≥ P(Nµ

J1
≥ (

3

2
)J1)




∞∏

j=J1

(1− (
2

3
)j)



 > (1− ε)2.

In total, we showed that, for all 0 < ε < 1
2 ,

P
( ⋃

µ∈N

⋂

J∈N0

(Nµ
J ≥ 1)

)
> (1− ε)2

and the conclusion follows immediately.

2.3.2 Existence of slow points

Now, using this iterative procedure, we establish the existence of points satisfy-
ing inequality (12). In this section, it will be convenient to write

fh,j =
∑

n∈Z

f
[n]
h,j (19)

where, for all n ∈ Z,

f
[n]
h,j =

(n+1)2j−1∑

k=n2j

ξj,k2
−hjψ(2j · −k)

is the partial sum involving the k for which the corresponding dyadic interval
[k2−j, (k + 1)2−j[ is included in [n, n+ 1[.

Proposition 2.8. Almost surely, there exists t ∈ (0, 1) such that

lim sup
s→t

|fh(s)− fh(t)|
ω
(h)
s (|t− s|)

< +∞.

Proof. Let us fix m ∈ N0 such that h ≥ 1/m. The iterative procedure with m
gives that almost surely, (0, 1)∩Sµ

low
6= ∅. Now let t ∈ (0, 1)∩Sµ

low
. There exists

r > 0 such that [t − r, t + r] ⊂ (0, 1) and so, let us take s ∈ [t − r, t + r] and
ν ∈ N be such that

2−ν < |t− s| ≤ 2−ν+1.

We are going to estimate from above |fh(t)− fh(s)|.
For all j ≤ ν, once again, by the Mean Value Theorem, there exists x between

s and t such that

|fh,j(t)− fh,j(s)| ≤ |s− t||Dfh,j(x)|.
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To bound |Dfh,j(x)|, we will use the decomposition (19). For n = 0, if 0 ≤ l ≤
⌈j/m⌉, 0 ≤ k < 2j and |kj(t)− k| ≤ 2ml, then necessarily |ξj,k| ≤ 2lµ. Thus, if
we set

Λ0
j(t) = {0 ≤ k < 2j : |kj(t)− k| ≤ 1}

and, for all 1 ≤ l ≤ ⌈j/m⌉

Λl
j(t) = {0 ≤ k < 2j : 2m(l−1) < |kj(t)− k| ≤ 2ml},

we have, using the fast decay of Dψ,

|Df [0]
h,j(x)| ≤ 2(1−h)j

⌈j/m⌉∑

l=0

∑

k∈Λl(t)

|ξj,k||Dψ(2jx− k)| (20)

≤ C2(1−h)j

⌈j/m⌉∑

l=0

∑

k∈Λl
j(t)

2lµ
1

(3 + |2jx− k|)(1 + |2jx− k|)4 . (21)

As, for l ≥ 1 and k ∈ Λl
j(t), |2jx− k| ≥ |kj(t)− k| − 3 > 2m(l−1) − 3, we obtain

|Df [0]
h,j(x)| ≤ Cµ2(1−h)j

2j−1∑

k=0

1

(1 + |2jx− k|)4 .

Now, there exists3 Ct > 0, such that, for all n 6= 0 and n2j ≤ k < (n+1)2j − 1,
we have |2jx− k| ≥ Ct|n|2j , which gives

|Df [n]
h,j(x)| ≤ CC22

(1−h)j

(n+1)2j−1∑

k=n2j

1

(1 + |2jx− k|)4

√
log(3 + j + |k|)
Ct|n|2j

≤ CC22
(1−h)j

(n+1)2j−1∑

k=n2j

1

(1 + |2jx− k|)4 .

Let us define the random variable Cµ = max(C2, µ). By Lemma 1.1, we obtain,
for all j ≤ ν,

|fh,j(t)− fh,j(s)| ≤ Cµ2
(1−h)j|s− t|

and thus

|
∑

j≤ν

(fh,j(t)− fh,j(s))| ≤ CCµ2
(1−h)ν|s− t|

≤ CC∗
µ|s− t|h. (22)

Now, we consider the terms for j > ν and we will bound separately |fh,j(t)|
and |fh,j(s)|. For |fh,j(t)|, we just have to repeat the same procedure, using the

set Λl
j(t) to estimate |f [0]

h,j(t)| and Lemma 1.2 for |f [n]
h,j(t)| with n 6= 0. We then

3We can make this constant only dependant of t. Note that, as t is random, Ct is a random

variable as well.
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conclude that

|
∑

j>ν

fh,j(t)| ≤ C
∑

j>ν

Cµ2
−hj

≤ CCµ2
−hν

≤ CCµ|t− s|h

For |fh,j(s)|, the strategy remains the same: nothing changes to bound |f [n]
h,j(s)|

with n 6= 0 while, for n = 0, if l is the greatest integer such that |s−t| ≥ 2ml2−j,
the construction insures that, for all 1 ≤ l′ ≤ ⌈j/m⌉ and k ∈ Λl′

j (s),

|ξj,k| ≤ 2l2l
′

µ

and we get

|f [0]
h,j(s)| ≤ C2lµ2−hj

2j−1∑

k=0

1

(1 + |2js− k|)4 .

But as |t− s| ≤ 2−ν+1, we have l ≤ 1
m (j + 1− ν) and thus

2lµ2−hj ≤ 2
1
mµ2(

1
m−h)(j−ν)2−hν .

It gives, as we took 1
m < h, combined with Lemma 1.1,

|
∑

j>ν

fh,j(s)| ≤ CCµ|t− s|h. (23)

Finally, combining (22) with (23) allows to obtain

|fh(t)− fh(s)| ≤ CCµ|t− s|h

as desired.

3 Asymptotic behavior of wavelet coefficients

In this section we study the asymptotic behavior of the wavelet coefficients of
the Gaussian wavelet series. It will allow to get irregularity properties for the
random wavelets series fh, i.e. to prove that the three corrections obtained in
the previous section characterize exactly three possible pointwise behaviors. Let
us start by recalling the following result from [2, Lemma A.27].

Lemma 3.1. [2] Almost surely, for every t ∈ R, one has

lim sup
j→+∞

|ξj,kj(t)| ≥ 2−3/2
√
π.

Before stating the next lemma, let us recall that if ξ ∼ N (0, 1), then one has

lim
x→+∞

P
(
|ξ| > x

)

(2π−1)1/2x−1e−x2/2
= 1 . (24)

The following result follows the lines of [4].
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Lemma 3.2. Almost surely, for almost every t ∈ R, one has

lim sup
j→+∞

|ξj,kj(t)|√
log j

> 0 . (25)

Proof. By Fubini theorem, it is enough to prove that for every t ∈ R, (25) holds
almost surely. Let us fix t ∈ R. For every m ∈ N, we consider the event

Am(t) =

{
max

2m≤j<2m+1
|ξ2j ,kj(t)| ≥

√
m log 2

}
.

Using the independance of the random variables ξj,k, (j, k) ∈ N× Z, we have

P (Am(t)) = 1−
∏

2m≤j<2m+1

P

(
|ξ2j ,kj(t)| <

√
m log 2

)

= 1−
(
1− P

(
|ξ| >

√
m log 2

))2m

where ξ ∼ N (0, 1). Using (24) and the fact that log(1 − x) ≤ −x if x ∈ (0, 1),
we obtain for m large enough

P (Am(t)) ≥ 1−
(
1− C

2−
m
2√

m log 2

)2m
≥ 1− exp

(
−C 2

m
2√

m log 2

)

where C = 1
2

√
2
π . Hence, it follows that

+∞∑

m=0

P (Am(t)) = +∞

and since that the events Am(t), m ∈ N, are independents, the Borel-Cantelli
lemma implies that

P



⋂

M∈N

⋃

m≥M

Am(t)


 = 1 .

It gives that almost surely, for infinitely manym ∈ N, there is j ∈ {2m, . . . , 2m+1−
1} such that

|ξ2j ,kj(t)| ≥
√
m log 2 ≥

√
log j − log 2.

The conclusions follows.

The last lemma we need is proved in [4]. Note that in this paper, the authors
works in a more general context. Indeed, it is only required that the sequence
of standard Gaussian random variables satisfy the following condition: there is
N ∈ N such that for every (j1, k1), (j2, k2) ∈ N× Z satisfying

(
k1 −N

2j1
,
k1 +N

2j1

)
∩
(
k2 −N

2j2
,
k2 +N

2j2

)
= ∅ ,

the random variables ξj1,k1
and ξj2,k2

are independant.

Lemma 3.3. [4] Almost surely, for every non-empty open interval I of R, there
is t ∈ I such that

lim sup
j→+∞

{ |ξj,kj(t)|√
j

}
> 0 .
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4 Proof of the main result

Putting together Propositions 2.2, 2.5, 2.8 and Lemmata 3.1, 3.2 and 3.3, we
can summarize the results obtained in the previous sections as follows.

Corollary 4.1. Almost surely,

• there exists t ∈ (0, 1) such that

lim sup
s→t

|fh(s)− fh(t)|
ω
(h)
r (|t− s|)

< +∞ and lim sup
j→+∞

|cj,⌊2j t⌋|
ω
(h)
r (2−j)

> 0,

• for almost every t ∈ (0, 1),

lim sup
s→t

|fh(s)− fh(t)|
ω
(h)
o (|t− s|)

< +∞ and lim sup
j→+∞

|cj,⌊2j t⌋|
ω
(h)
o (2−j)

> 0,

• there exists t ∈ (0, 1) such that

lim sup
s→t

|fh(s)− fh(t)|
ω
(h)
s (|t− s|)

< +∞ and lim sup
j→+∞

|cj,⌊2j t⌋|
ω
(h)
s (2−j)

> 0.

We are now ready to prove our main result.

Proof of Theorem 1.4. Using Corollary 4.1, it suffices to prove the second part
of the result. Let us consider t ∈ (0, 1) for which there is v ∈ {r, o, s} such that

lim sup
s→t

|fh(s)− fh(t)|
ω
(h)
v (|t− s|)

< +∞ and lim sup
j→+∞

|cj,⌊2jt⌋|
ω
(h)
v (2−j)

> 0. (26)

Let us fix a modulus of continuity ω such that ω = o(ω
(h)
v ). Assume by contra-

diction that

lim sup
s→t

|fh(s)− fh(t)|
ω(|s− t|) < +∞. (27)

Given an arbitrary fixed j ∈ N, we set k = ⌊2jt⌋. The first vanishing moment
of the wavelet allows to write

|cj,k| =

∣∣∣∣2
j

∫

R

ψ(2jx− k)
(
fh(x)− fh(t)

)
dx

∣∣∣∣

≤ 2j
∫

B(t,2−j)

|ψ(2jx− k)|
∣∣fh(x)− fh(t)

∣∣dx

+2j
j−1∑

l=0

∫

Bl

|ψ(2jx− k)|
∣∣fh(x)− fh(t)

∣∣dx

+2j
∫

R\B(t,1)

|ψ(2jx− k)|
∣∣fh(x) − fh(t)

∣∣dx (28)

where for every l ∈ {0, . . . , j − 1}, Bl denotes the set B(t, 2−l) \ B(t, 2−l−1) .
The first term can be controlled by using the modulus of continuity ω in the
following way

2j
∫

B(t,2−j)

|ψ(2jx− k)|
∣∣fh(x) − fh(t)

∣∣dx ≤ Cω(2−j) (29)
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for some positive constant C by assumption (27). In order to deal with the
second term, we use in addition the fast decay of the wavelet to get the existence
of a natural number N and a constant C such that

2j
j−1∑

l=0

∫

Bl

|ψ(2jx− k)|
∣∣fh(x)− fh(t)

∣∣dx ≤ C

j−1∑

l=0

ω(2−l)

∫

Bl

2j

(1 + |2jx− k|)2N dx.

Notice then that if x ∈ Bl, then

1 + |2jx− k| ≥ 1 + 2j |x− t| − |2jt− k| ≥ 2j−l−1.

It implies that

2j
j−1∑

l=0

∫

Bl

|ψ(2jx− k)|
∣∣fh(x)− fh(t)

∣∣dx ≤ C

j−1∑

l=0

ω(2−l)2−N(j−l−1)

∫

Bl

2j

(1 + |2jx− k|)N dx

≤ C

j−1∑

l=0

ω(2−l)2−N(j−l−1)

∫

R

1

(1 + |y|)N dy

= C′2−Nj

j−1∑

l=0

ω(2−l)2Nl

≤ C′′ω(2−j) (30)

for some constants C′, C′′ and using (7). It remains to bound the last term.
Again, the fast decay of the wavelet together with the boundedness of the ran-
dom wavelets series fh leads to

2j
∫

R\B(t,1)

|ψ(2jx− k)|
∣∣fh(x)− fh(t)

∣∣dx ≤ 2‖fh‖∞
∫

R\B(t,1)

2j

(1 + |2jx− k|)2N dx

≤ 2‖fh‖∞2−Nj

∫

R

2j

(1 + |y|)N dy

≤ C2−Nj (31)

for some positive constant C, since |2jx − k| ≥ 2j if |t − x| ≥ 1. Putting (28),
(29), (30) and (31) together, we finally obtain

|cj,k| ≤ C
(
ω(2−j) + 2−Nj)

for some positive constant C, so that

lim sup
j→+∞

|cj,k|
ω(2−j)

< +∞

if N is chosen large enough. This contradicts the second part of (26) since
ω = o(ω

(h)
v ).

Remark 4.2. As mentionned earlier, let us notice that if the wavelet ψ is
compactly supported, and if t is a rapid, ordinary or slow point, then ωv gives
the exact pointwise behavior of f at t, meaning that

0 < lim sup
s→t

|f(s)− f(t)|
ω
(h)
v (|t− s|)

< +∞
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where v = r, v = o or v = s respectively. Indeed, in this case, one has directly

|cj,k| ≤ 2j
∫

B(t,R2−j)

|ψ(2jx− k)|
∣∣fh(x) − fh(t)

∣∣dx

≤ C sup
x:|x−t|<R2−j

|fh(x)− fh(t)|

where R can be computed via the support of the wavelet and C is a positive
constant.

The last Remak applies in particular to the fractional Brownian motion
thanks to the representation (3). Indeed, as R is a smooth process, it does not
modify the pointwise regularity and irregularity properites.

Corollary 4.3. Almost surely, the fractional Brownian motion satisfies the
following property for every non-empty interval I of R:

• almost every t ∈ I is ordinary:

0 < lim sup
s→t

|fh(s)− fh(t)|
|t− s|h

√
log log |t− s|−1

< +∞,

• there exists t ∈ I which is fast:

0 < lim sup
s→t

|fh(s)− fh(t)|
|t− s|h

√
log |t− s|−1

< +∞,

• there exists t ∈ I which is slow:

0 < lim sup
s→t

|fh(s)− fh(t)|
|t− s|h < +∞.

5 Extension to the multifractal case

Let us now consider a multifractal version of the previously introduced Gaus-
sian wavelets series. This is in the spirit of the multifractional Brownian motion
introduced in [36, 8] by replacing the constant Hurt exponent h in the stochastic
integral defining this process by a continuous function H(·). In this paper, we
adopt the strategy of [7] which takes advantage of wavelets series expansion. It
consists in substituting the exponent h at level (j, k) in (4) by H(k2−j). In [3],
the authors showed that, under some Hölderian regularity assumptions for the
function H , both generalizations are equivalent in the sense that the multifrac-
tional Brownian Motion BH(·) and the Gaussian wavelets series associated to
H(·) only differs by a smooth process, similarly to (3).

Here, we just need a weaker regularity condition to obtain a generalized
version of Theorem 1.4. Namely, we consider a compact set K ⊆ (0, 1) and a
function H : R → K, for which there exits a constant CH > 0 such that

|H(x) −H(y)| ≤ CH

| log |x− y|| (32)

for all x, y with |x−y| < 1. Of course, such a functionH is necessarily continuous
and any Hölder-continuous function satisfies (32).
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This function allows to define the multifractal random wavelet series

fH =
∑

j∈N

∑

k∈Z

ξj,k2
−H(k2−j)jψ(2j · −k). (33)

Our goal is to show that, the function t 7→ H(t) maps any t ∈ R to its Hölder
exponent and that, even in this generalized setting, slow, ordinary and rapid
points can still be highlighted. Note that, in [14], it is proved that, if H is the
function “Hölder exponent” of a continuous function then there exists a sequence
(Pj)j∈N0

of polynomials such that
{
H(t) = lim infj→+∞ Pj(t)

‖DPj‖∞ ≤ j, ∀j ∈ N0

(34)

In the situation of deterministic wavelet series with coefficients (2−jH(k2−j ))j,k,
conditions (34) are also sufficient to recover the irregularity from the function
H [12]. Because of condition (32), our function H is not as general, but if a
function H checks conditions (34) and if we assume the existence of a constant
C > 0 such that, for all t ∈ R and j ∈ N0,

|H(t)− Pj(t)| ≤ Cj−1

then, (32) is satisfied.

Theorem 5.1. Let I denote any non-empty interval of R. Almost surely, the
random wavelets series defined in (33) satisfies the following property:

• For almost every t ∈ I,

lim sup
s→t

|fH(s)− fH(t)|
ω
(H(t))
o (|s− t|)

< +∞ (35)

and if ω is a modulus of continuity such that ω = o(ω
(H(t))
o ), then

lim sup
s→t

|fH(s)− fH(t)|
ω(|s− t|) = +∞, (36)

• There exists t ∈ I such that

lim sup
s→t

|fH(s)− fH(t)|
ω
(H(t))
r (|t− s|)

< +∞, (37)

and if ω is a modulus of continuity such that ω = o(ω
(H(t))
r ), then

lim sup
s→t

|fH(s)− fH(t)|
ω(|s− t|) = +∞, (38)

• There exists t ∈ I such that

lim sup
s→t

|fH(s)− fH(t)|
ω
(H(t))
s

< +∞ (39)

and if ω is a modulus of continuity such that ω = o(ω
(H(t))
s ), then

lim sup
s→t

|fH(s)− fH(t)|
ω(|s− t|) = +∞. (40)
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Proof. The part concerning the irregularity can easily be adapted from the
constant case H(t) = h. It suffices to notice that the three superior limits
appearing in Corollary 4.1 and that concerns the wavelet coefficients are still
stricly postive, using (32).

The idea and techniques for the regularity are similar to the ones of Propo-
sitions 2.2, 2.5 and 2.8 except that, in addition to “control” the randoms coeffi-
cients with the help of the fast decay of the wavelets, we also need to “control”
the variation of the function 2H(·)j , with j ∈ N. Again, we will do so using the
fast decay of the wavelets.

Let us list how to modify the proofs of Propositions 2.2, 2.5 and 2.8 in order
to find the expected inequalities

Rapid points:

To bound |DfH,j(x)| in (14), the idea consists to split the sum over |k| ≤ 2j+1

in two and provides additional information for the sum over |k| > 2j+1:

(i) If k is such that |k| < 2j+1 and |2jt − k| ≤ 2j/2 then
|H(t)−H(k2−j)| ≤ 2CHj

−1 and thus

2(1−H(k2−j))j |ξj,k||Dψ(2jx− k)| ≤ 22CH2(1−H(t))j |ξj,k||Dψ(2jx− k)|

≤ C22CH2(1−H(t))j

√
log(3 + j + |k|)

(1 + |2jx− k|)4 .

(ii) If k is such that |k| < 2j+1 and |2jt− k| > 2j/2, we have

|2jx− k| > 2j/2 − 2

and thus, if β > 2(supK − infK), we get, using the fast decay of Dψ,

2(1−H(k2−j))j |ξj,k||Dψ(2jx− k)| ≤ C
2(1−H(t))j2(supK−infK)j |ξj,k|

(1 + |2jx− k|)4(2 + |2jx− k|)β

≤ C2(1−H(t))j

√
log(3 + j + |k|)

(1 + |2jx− k|)4 .

(iii) For |k| > 2j+1 of course |2jx − k| > 2j and one can use the same trick to
get

2(1−H(k2−j))j |ξj,k||Dψ(2jx− k)| ≤ C22CH2(1−H(t))j

√
log(3 + j + |k|)

(1 + |2jx− k|)5 .

From this, the bound

|
∑

j≤ν

(fH,j(t)− fH,j(s))| ≤ CC2|t− s|H(t)
√
log |t− s|−1

is obtained.
The same method applied on |fj(t)| (j > ν) leads to

|
∑

j>ν

fH,j(t)| ≤ CC2|t− s|H(t)
√
log |t− s|−1
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while, for |fH,j(s)|, replacing t by s in the reasoning, we get

|
∑

j>ν

fH,j(s)| ≤ CC22
−H(s)ν√ν

≤ CCC22
−H(t)ν

√
ν2(H(t)−H(s))ν

≤ CC2|t− s|H(t)
√
log |t− s|−1

as |H(t)−H(s)| ≤ (ν − 1)−1.

Ordinary points

In this case, to bound |DfH,j(x)| (with j ≤ ν), the sum for k ∈ κtj(j) remains
untouched as, for all such k, we have |t − k2−j | ≤ 2−j(j + 1) and thus we get
|H(t)−H(2−j)| ≤ CCHj

−1.
This time, this is the sum for k /∈ κtj(j) that we need to split:

(i) If k ∈ κtj(2
j/2) \ κtj(j), |k2−j − t| ≤ 22−j/2 and, similarly to the point (i)

in the rapid points, we have

2(1−H(k2−j))j |ξj,k||Dψ(2jx−k)| ≤ C22CH2(1−H(t))j

√
log(3 + j + |k − kj(t)|)

(3 + |2jx− k|)(1 + |2jx− k|)4 .

(ii) If k /∈ κtj(2
j/2) then |2jx − k| ≥ 2j/2 − 3 and we proceed just like in the

point (ii) for the rapid points to get

2(1−H(k2−j))j |ξj,k||Dψ(2jx−k)| ≤ C22CH2(1−H(t))j

√
log(3 + j + |k − kj(t)|)

(3 + |2jx− k|)(1 + |2jx− k|)4

again.

To bound |fH,j(t)| (with j > ν) the strategy remains the same while to bound
|fH,j(s)|, like in the proof of Proposition 2.2 we need to consider separately the
case where j ≥ 2j−ν+2 and when j < 2j−ν+2.

If j ≥ 2j−ν+2, we take into account the three sums:

(i) the sum over k ∈ κtj(2j) where |H(t)−H(2−j)| ≤ CCHj
−1 and thus which

remains untouched,

(ii) the sum over k ∈ κtj(2
j/2)\κtj(2j) where we use |H(t)−H(2−j)| ≤ CCHj

−1

to deal with the exponent,

(iii) the sum over k /∈ κtj(2
j/2) where we deal with the exponent just like in (ii)

and (iii) for the rapid points.

In total, we get
|fH,j(s)| ≤ CCt2

−jH(t)
√
log(j)

Now if 2j−ν+2 < j we consider:

(i) the sum over κsj(2
j/2) for which we deal similarly to the sum over κtj(2

j/2)
above
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(ii) the sum over κsj(2
j−ν+2) \ κsj(2j/2) where the exponent is treated like in

(ii) and (iii) for the rapid points.

(iii) the sum for k /∈ κsj(2
j−ν+2) where, again, we treat the exponent like in (ii)

and (iii) for the rapid points.

In total, in this case, we get

|fH,j(s)| ≤ CCt2
−jH(s)

√
j − ν.

The conclusion follows from the same arguments as for the rapid points.

Slow points

First, we note that the natural m in Kahane procedure must be chosen such
that
1/m < infK.

To bound |Df [0]
H,j(x)| (with j ≤ ν), we split the sum (20) in two:

(i) for 0 ≤ l ≤ ⌊j/2m⌋, then for all k ∈ Λl
j(t), we have |x − k2−j| ≤ C2−j/2

and thus one uses |H(x)−H(k2−j)| ≤ CCHj
−1 to deal with the exponent.

(ii) for ⌊j/2m⌋ < l ≤ ⌈j/m⌉, then for all k ∈ Λl
j(t), |2jx − k| ≥ 2j/2 − 3 and

we treat the exponent like for the rapid points in (ii).

To bound |Df [n]
H,j(x)| with n 6= 0, we use |2jx − k| ≥ Ct|n|2j to treat the

exponent like in the rapid points in (iii).
With this, we obtain

|
∑

j≤ν

(fH,j(t)− fH,j(s))| ≤ CC∗|s− t|α.

We can use the same method to have

|
∑

j>ν

fH,j(t)| ≤ CCµ2
−H(t)ν

and, using the same arguments as in the end of Proposition 2.8, with the fact
that 1/m < infK ≤ H(s), we have

|
∑

j>ν

fH,j(t)| ≤ CCµ2
−H(s)ν ≤ CCµ2

−H(t)ν

just as in the conclusion for the rapid points.

6 Genericity of the non-existence of slow points

The aim of this section is to prove that the results obtained in the previous
section are spectific to these Gaussian random wavelet series. On this purpose,
let us define the Fréchet space

Cրh :=
⋂

α<h

Cα([0, 1]),
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where for every α ∈ (0, h), Cα([0, 1]) denote the Hölder space of order α. This
space and its topology can be equivalently defined using sequence of wavelet
coefficients as follows: If we consider α > 0, α /∈ N, then for any f ∈ Cα([0, 1]),
one has

sup
j∈N

sup
k∈{0,...,2j−1}

2αj|cj,k| < +∞ (41)

where (cj,k)j∈N,k∈{0,...,2j−1} denotes the sequence of wavelet coefficients of f on
[0, 1]. It allows to identify (algebraically and topologically) the Hölder space
Cα([0, 1]) with the space of complex sequences (cj,k)j∈N,k∈{0,...,2j−1} satisfying
(41), isee [31]. When α ∈ N, we will also denote by Cα([0, 1]) the space of
functions satisfying the condition (41).

We will prove that in Cրh, “most of” the functions do not present a slow
pointwise behavior as the one exhibited for Gaussian wavelet series, i.e. does
not belong to the space Ch(t) formed by the functions f such that

lim sup
s→t

|f(s)− f(t)|
|s− t|h < +∞.

We will use in this purpose two notions of genericity: the prevalence and the
Baire category points of view.

The notion of prevalence supplies an extension of the notion of “almost ev-
erywhere” (for the Lebesgue measure) in infinite dimensional spaces. In a metric
infinite dimensional vector space, no measure is both σ-finite and translation in-
variant. However, one can consider a natural extension of the notion of “almost
everywhere” which is translation invariant, see [10, 18].

Definition 6.1. Let E be a complete metric vector space. A Borel set A ⊂ E
is Haar-null if there exists a compactly supported probability measure µ such
that

∀x ∈ E, µ(x+A) = 0. (42)

If this property holds, the measure µ is said to be transverse to A. A subset of
E is called Haar-null if it is contained in a Haar-null Borel set. The complement
of a Haar-null set is called a prevalent set.

In order to prove that a set is Haar-null in a functional space E, one can
often use for transverse measure the law of a stochastic process, see [11, 16] for
some applications of this method. If P is a property that can be satisfied by
points of E, one can prove that P holds only on a Haar-null set by exhibiting
a stochastic process X whose sample paths lies in a compact subset of E and
such that for all f ∈ E almost surely the property P does not hold for X + f .

In our setting, the stochastic process that will be used is a random wavelet
series. The following result allows to get that the sample paths of this series are
almost surely in a compact set of Cրh. Let us first describe this subset.

Lemma 6.2. Let h > 0 and let (αj)j∈N be a non-decreasing sequence of (0, h)
with tends to h. The subset

K =

{
f ∈ Cրh : max

k∈{0,...,2j−1}
|cj,k| ≤ 2−αjj ∀j ∈ N

}

is compact in Cրh, where (cj,k)j∈N,k∈{0,...,2j−1} denotes the sequence of wavelet
coefficients of f .
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Proof. Clearly, K is closed in Cրh. Since this last space is a Fréchet space, it
suffices now to prove that K is totally bounded. Let us fix ε > 0 and α < h.
Then there exists J ∈ N such that 2−αjj < ε2−αj for every j ≥ J , which implies
that

sup
j≥J,k∈{0,...,2j−1}

2αj |cj,k| < ε

for the sequence of wavelet coefficients (cj,k)j∈N,k∈{0,...,2j−1} of any f ∈ K.
Moreover, since the product

P =

J−1∏

j=0

2j−1∏

k=0

[−2−αj,kj , 2αj,kj ]

where we have set αj,k = αj for every k ∈ {0, . . . , 2j − 1}, is compact, one can
find a finite number of sequences c1, . . . , cL with support included in {(j, k) :
j ≤ J − 1, k ∈ {0, . . . , 2j − 1}} such that

P ⊆
L⋃

l=1

J−1∏

j=0

2j−1∏

k=0

(
clj,k − δ, clj,k + δ

)
,

where δ < 2−αJε. For every l, we define f l =
∑J−1

j=0

∑2j−1
k=0 clj,kψ(2

j · −k). In
order to conclude, let us show that

K ⊆
L⋃

l=1

{
f ∈ Cրh : ‖f − f l‖α < ε

}
.

If f ∈ K, its truncated sequence (cj,k)j≤J−1,k∈{0,...,2j−1} of wavelet coefficients
belongs to P . Hence, for a l ∈ {1, . . . , L}, one has

2αj |cj,k − clj,k| ≤ δ2αj < ε

if j ≤ J − 1, and
2αj |cj,k − clj,k| = 2αj |cj,k| < ε

if j ≥ J .

Before stating our result, we need to recall the following wavelet “almost
characterization” of the pointwise Hölder regularity. It relies on alternative
quantities, namely the wavelet leaders. In order to define them, we need to
introduce the notation cλ to denote the wavelet coefficient cj,k, where λ is the
dyadic interval

λ = λ(j, k) =

[
k

2j
,
k + 1

2j

)

Then, if 3λ denote the interval with the same center as λ but three times larger,
the wavelet leader dλ is defined by

dλ = sup
λ′⊂3λ

|cλ′ |. (43)

Note that this supremum is finite as soon as f is locally bounded. In [20], the
author proved that if f ∈ Ch(t) for some h > 0, then there exists a constant
C > 0 such that

dλ(j,kj(t)) ≤ C2−αj . (44)

28



This inequality will allow us to construct wavelet series which do not belong to
Ch(t) for every t ∈ [0, 1].

Proposition 6.3. Let h > 0. The set of functions f such that f /∈ Ch(t) for
every t ∈ [0, 1] is prevalent in Cրh.

Proof. Let us consider a sequence (jn)n∈N satisfying jn+1 > jn + ⌊log2 j2n⌋ + 1
and let us set αn = h− 1√

jn
for every n ∈ N. Let us define the random wavelets

series

f =
∑

n∈N

jn+1−1∑

j=jn

2j−1∑

k=0

2−αnjεj,kψj,k

where (εj,k)j∈N,k∈{0,...,2j−1} is a sequence of independent U([−1, 1]) random vari-
ables. Clearly, for every α < h, one has

2−αnj ≤ 2−αj

if j ∈ {jn, . . . , jn+1 − 1} for n large enough. Using the characterization given in
(41), it follows that f ∈ Cα([0, 1]). Moreover, from Lemma 6.2, we know that
the process f takes its values in a compact subset of Cրh.

Let us now show that almost surely f /∈ Ch(t) for every t ∈ [0, 1]. Let
us fix M ∈ N. For every n ∈ N, if one consider the subintervals of scale
j′ = jn + ⌊log2 j2n⌋+ 1 in the supremum appearing in the definition (43) of the
wavelet leaders, one has

P

(
inf

k∈{0,...,2jn−1}
djn,k ≤M2−hjn

)
≤

2jn−1∑

k=0

P

(
sup

λ′⊆λjn,k

|2−αnj
′

ελ′ | ≤M2−hjn

)

≤ 2jn
(
2αnj

′

M2−hjn
)2j′−jn

≤ 2jn+j2nhj
2hj2n
n 2−j5/2n M j2n .

The Borel-Cantelli Lemma implies that almost surely, one has

djn,k > M2−hjn

for every n large enough and every k ∈ {0, . . . , 2jn − 1}. Since M ∈ N is
arbitrary, (44) gives the announced result. In order to conclude, it suffices to
prove that the previous result is still valid if we replace the wavelet series f by

f̃ = f + g

for a function g ∈ Cրh. In this case, the wavelet coefficients 2−αnj of f are
replaced by

2−αnjεj,k + cj,k = 2−αnj(εj,k + 2αnjcj,k).

It implies that the random variables defining the wavelets series are still inde-
pendant but no more centered since they are shifted by a deterministic quantity.
Clearly, the probabilities computed before can only become smaller, hence the
Borel-Cantelli lemma still holds.
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To end the paper, we show that the same result holds true if one replaces
the notion of prevalence by the genericity in the sense supplied by the Baire
category theorem. Let us recall that a subset A of a Baire space X is of first
category (or meager) if it is included in a countable union of closed sets of X
with empty interior. The complement of a set of first category is Baire-residual;
it contains a countable union of dense open sets of X .

Proposition 6.4. Let h > 0. The set of functions f such that f /∈ Ch(t) for
every t ∈ [0, 1] is Baire-residual in Cրh.

Proof. Let us consider the non-decreasing sequence (αj)j∈N of (0, h) with con-
verges to h defined by αj = h− 1√

j
. For every J ∈ N, the set CJ is formed by the

functions f ∈ Cրh whose sequence of wavelet coefficients (cj,k)j∈N,k∈{0,...,2j−1}
satisfies

2αjj |cj,k| ∈ N \ {0} ∀j ≥ J , ∀k ∈ {0, . . . , 2j − 1}.
Finally, we define the open sets UJ by

UJ =
⋃

j≥J

{
g ∈ Cրh : ∃f ∈ Cj such that ‖f − g‖αj <

1

2

}
.

Notice that if g ∈ UJ with wavelet coefficients (ej,k)j∈N,k∈{0,...,2j−1}, then there
is f ∈ Cj0 for a j0 ≥ J , with wavelet coefficients (cj,k)j∈N,k∈{0,...,2j−1} such that

|ej0,k| ≥ |cj0,k| − |ej0,k − cj0,k| ≥ 2−αj0 j0 − 1

2
2−αj0j0 =

1

2
2−αj0 j0

for every k ∈ {0, . . . , 2j0 − 1}. Now, assume that g belongs to the set R defined
by

R =
⋂

J∈N

UJ .

If there exists t ∈ [0, 1] such that g ∈ Ch(t), (44) gives the existence of a constant
C > 0 such that

dj,kj(t) ≤ C2−hj.

Since g ∈ R, one gets

1

2
2−αjj =

1

2
2−hj+

√
j ≤ C2−hj

for infintely many j, which is impossible. Consequently, g /∈ Ch(t) for every
t ∈ [0, 1].

To conclude, it suffices to prove that the open sets UJ are dense in Cրh.
Let us fix J ∈ N, g ∈ Cրh, α < h and ε > 0. Let J0 ≥ J be large enough to
ensure that both α < αJ0

and 2(α−αJ0
)J0 < ε are satisfied. We construct the

function f via its sequence of wavelet coefficients by setting

cj,k =





ej,k if j < J0

2−αjj [2αjjej,k] if j ≥ J0 and 2αjj |ej,k| ≥ 2,

2−αjj if j ≥ J0 and 2αjj |ej,k| < 2,

so that f ∈ CJ0
⊆ UJ and |2αjjcj,k − 2αjjej,k| ≤ 1 for every j ≥ J0. Hence one

has
2αj |ej,k − cj,k| ≤ 2(α−αj)j ≤ 2(α−αJ0

)J0 < ε

for every j ≥ J0, which allows to conclude.
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