Historical and future weather data for dynamic building simulations in Belgium using the regional climate model MAR: typical and extreme meteorological year and heatwaves
[en] Abstract. Increasing temperatures due to global warming will influence
building, heating, and cooling practices. Therefore, this data set aims to
provide formatted and adapted meteorological data for specific users who
work in building design, architecture, building energy management
systems, modelling renewable energy conversion systems, or others
interested in this kind of projected weather data. These meteorological data
are produced from the regional climate model MAR (Modèle
Atmosphérique Régional in French) simulations. This regional model,
adapted and validated over Belgium, is forced firstly, by the ERA5 reanalysis,
which represents the closest climate to reality and secondly, by three Earth system models (ESMs) from
the Sixth Coupled Model Intercomparison Project database, namely,
BCC-CSM2-MR, MPI-ESM.1.2, and MIROC6. The main advantage of using the MAR
model is that the generated weather data have a high resolution (hourly data
and 5 km) and are spatially and temporally homogeneous. The generated weather
data follow two protocols. On the one hand, the Typical Meteorological Year
(TMY) and eXtreme Meteorological Year (XMY) files are generated largely
inspired by the method proposed by the standard ISO15927-4, allowing the
reconstruction of typical and extreme years, while keeping a plausible
variability of the meteorological data. On the other hand, the heatwave
event (HWE) meteorological data are generated according to a method used to
detect the heatwave events and to classify them according to three criteria
of the heatwave (the most intense, the longest duration, and the highest
temperature). All generated weather data are freely available on the open
online repository Zenodo (https://doi.org/10.5281/zenodo.5606983,
Doutreloup and Fettweis, 2021) and these data are produced within
the framework of the research project OCCuPANt
(https://www.occupant.uliege.be/ (last access: 24 June 2022) – ULiège).
Amaripadath, Deepak ; Université de Liège - ULiège > Urban and Environmental Engineering
Attia, Shady ; Université de Liège - ULiège > Urban and Environmental Engineering
Language :
English
Title :
Historical and future weather data for dynamic building simulations in Belgium using the regional climate model MAR: typical and extreme meteorological year and heatwaves
Publication date :
06 July 2022
Journal title :
Earth System Science Data
ISSN :
1866-3508
eISSN :
1866-3516
Publisher :
Copernicus GmbH
Volume :
14
Issue :
7
Pages :
3039-3051
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Development Goals :
7. Affordable and clean energy 11. Sustainable cities and communities 13. Climate action
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979-2015) and identification of dominant processes, The Cryosphere, 13, 281-296, https://doi.org/10.5194/tc-13-281-2019, 2019.
Barnaby, C. S. and Crawley, U. B.: Weather data for building performance simulation, in: Building Performance Simulation for Design and Operation, edited by: Hensen J. L. M. and Lamberts R., Routledge, London, https://doi.org/10.4324/9780203891612, 2011.
Bruffaerts, N., De Smedt, T., Delcloo, A., Simons, K., Hoe-beke, L., Verstraeten, C., Van Nieuwenhuyse, A., Packeu, A., and Hendrickx, M.: Comparative long-term trend analysis of daily weather conditions with daily pollen concentrations in Brussels, Belgium, Int. J. Biometeorol., 62, 483-491, https://doi.org/10.1007/s00484-017-1457-3, 2018.
Buysse, D. J., Cheng, Y., Germain, A., Moul, D. E., Franzen, P. L., Fletcher, M., and Monk, T. H.: Night-to-night sleep variability in older adults with and without chronic insomnia, Sleep Med., 11, 56-64, https://doi.org/10.1016/j.sleep.2009.02.010, 2010.
Connolley, W. M. and Bracegirdle, T. J.: An Antarctic assessment of IPCC AR4 coupled models, Geophys. Res. Lett., 34, L22505, https://doi.org/10.1029/2007GL031648, 2007.
Doutreloup, S. and Fettweis X.: Typical & Extreme Meteorological Year and Heatwaves for Dynamic Building Simulations in Belgium based on MAR model Simulations (version 1.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.5606983, 2021.
Doutreloup, S., Wyard, C., Amory, C., Kittel, C., Erpicum, M., and Fettweis, X.: Sensitivity to Convective Schemes on Precipitation Simulated by the Regional Climate Model MAR over Belgium (1987-2017), Atmosphere, 10, 34, https://doi.org/10.3390/atmos10010034, 2019.
Duffie, J. A. and Beckman, W. A.: Solar Engineering of Thermal Processes, 4th edn., John Wiley & Sons, Inc., Hoboken, New Jersey, ISBN 978-0-470-87366-3, 2013.
Dunn, R. J. H., Alexander, L. V., Donat, M. G., Zhang, X., Bador, M., Herold, N., Lippmann, T., Allan, R., Aguilar, E., Barry, A. A., Brunet, M., Caesar, J., Chagnaud, G., Cheng, V., Cinco, T., Durre, I., Guzman, R. de, Htay, T. M., Ibadullah, W. M. W., Ibrahim, M. K. I. B., Khoshkam, M., Kruger, A., Kubota, H., Leng, T. W., Lim, G., Li-Sha, L., Marengo, J., Mbatha, S., McGree, S., Menne, M., Skansi, M. de los M., Ngwenya, S., Nkrumah, F., Oonariya, C., Pabon-Caicedo, J. D., Panthou, G., Pham, C., Rahimzadeh, F., Ramos, A., Salgado, E., Salinger, J., Sané, Y., Sopaheluwakan, A., Srivastava, A., Sun, Y., Tim-bal, B., Trachow, N., Trewin, B., Schrier, G. van der, Vazquez-Aguirre, J., Vasquez, R., Villarroel, C., Vincent, L., Vischel, T., Vose, R., and Yussof, M. N. B. H.: Development of an Updated Global Land In Situ-Based Data Set of Temperature and Precipitation Extremes: HadEX3, J. Geophys. Res.-Atmos., 125, e2019JD032263, https://doi.org/10.1029/2019JD032263, 2020.
European Standard: EN ISO 15927-4:2005 Hygrothermal performance of buildings-calculation and presentation of climatic data-Part 4: Hourly data for assessing the annual energy use for heating and cooling (ISO 15927-4:2005), 2005.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937-1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Eyring, V., Gillett, N. P., Achuta Rao, K. M., Barimalala, R., Bar-reiro Parrillo, M., Bellouin, N., Cassou, C., Durack, P. J., Kosaka, Y., McGregor, S., Min, S., Morgenstern, O., and Sun, Y.: Human Influence on the Climate System, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 423-552, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC-AR6-WGI-Chapter03.pdf (last access: 28 June 2022), 2021.
Ferrari, D. and Lee, T.: Beyond TMY: Climate data for specific applications, in: Proceedings 3rd International Solar Energy Society conference-Asia Pacific region (ISES-AP-08), Sydney, 25-28 November 2008, http://exemplary.com.au/download/FerrariLeeBeyondTMYpaperWC0093.pdf (last access: 24 June 2022), 2008.
Fettweis, X., Franco, B., Tedesco, M., van Angelen, J. H., Lenaerts, J. T. M., van den Broeke, M. R., and Gallée, H.: Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR, The Cryosphere, 7, 469-489, https://doi.org/10.5194/tc-7-469-2013, 2013.
Fettweis X., Wyard C., Doutreloup S., and Belleflamme A.: Noël 2010 en Belgique: neige en Flandre et pluie en Haute-Ardenne, Bull. Société Géographique Liège, 68, 97-107, 2017.
Finkelstein, J. M. and Schafer, R. E.: Improved goodness-of-fit tests, Biometrika, 58, 641-645, https://doi.org/10.1093/biomet/58.3.641, 1971.
Fouillet, A., Rey, G., Laurent, F., Pavillon, G., Bellec, S., Guihenneuc-Jouyaux, C., Clavel, J., Jougla, E., and Hémon, D.: Excess mortality related to the August 2003 heat wave in France, Int. Arch. Occup. Environ. Health, 80, 16-24, https://doi.org/10.1007/s00420-006-0089-4, 2006.
Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., von Storch, J.-S., Brüggemann, N., Haak, H., and Stös-sel, A.: Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP), Geosci. Model Dev., 12, 3241-3281, https://doi.org/10.5194/gmd-12-3241-2019, 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flem-ming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P. de, Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999-2049, https://doi.org/10.1002/qj.3803, 2020.
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 3-32, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC-AR6-WGI-SPM.pdf (last access: 28 June 2022), 2021.
Kittel, C.: Present and future sensitivity of the Antarctic surface mass balance to oceanic and atmospheric forcings: insights with the regional climate model MAR, PhD Thesis, Université de Liège, Liège, Belgique, Liège, https://hdl.handle.net/2268/258491 (last access: 24 June 2022), 2021.
Kittel, C., Amory, C., Agosta, C., Jourdain, N. C., Hofer, S., Del-hasse, A., Doutreloup, S., Huot, P.-V., Lang, C., Fichefet, T., and Fettweis, X.: Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet, The Cryosphere, 15, 1215-1236, https://doi.org/10.5194/tc-15-1215-2021, 2021.
Larsen, M. A. D., Petrović, S., Radoszynski, A. M., McKenna, R., and Balyk, O.: Climate change impacts on trends and extremes in future heating and cooling demands over Europe, Energy Build., 226, 110397, https://doi.org/10.1016/j.enbuild.2020.110397, 2020.
Lee, J. Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J. P., Engelbrecht, F., Fischer, E., Fyfe, J. C., Jones, C., May-cock, A., Mutemi, J., Ndiaye, O., Panickal, S., and Zhou, T.: Future Global Climate: Scenario-Based Projections and Near-Term Information, Camb. Univ. Press, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 553-672, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC-AR6-WGI-Chapter04.pdf (last access: 28 June 2022), 2021.
Ouzeau, G., Soubeyroux, J.-M., Schneider, M., Vautard, R., and Planton, S.: Heat waves analysis over France in present and future climate: Application of a new method on the EURO-CORDEX ensemble, Clim. Serv., 4, 1-12, https://doi.org/10.1016/j.cliser.2016.09.002, 2016.
Pérez-Andreu V., Aparicio-Fernández C., Martínez-Ibernón A., and Vivancos J.-L.: Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate, Energy, 165, 63-74, https://doi.org/10.1016/j.energy.2018.09.015, 2018.
Ramon, D., Allacker, K., van Lipzig, N. P. M., De Troyer, F., and Wouters, H.: Future Weather Data for Dynamic Building Energy Simulations: Overview of Available Data and Presentation of Newly Derived Data for Belgium, in: Energy Sustainability in Built and Urban Environments, 1st edn., edited by: Motoasca, E., Agarwal, A. K., and Breesch, H., Springer, Singapore, 111-138, ISBN 978-981-13-3283-8, https://doi.org/10.1007/978-981-13-3284-5-6, 2019.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da Silva, L. A., Smith, S., Ste-hfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., and Tavoni, M.: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, Global Environ. Chang., 42, 153-168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.
Ridder, K. D. and Gallée, H.: Land Surface-Induced Regional Climate Change in Southern Israel, J. Appl. Mete-orol. Climatol., 37, 1470-1485, https://doi.org/10.1175/1520-0450(1998)037<1470:LSIRCC>2.0.CO;2, 1998.
RMI: Rapport climatique 2020 de l'information aux services cli-matiques, edited by: Gellens, D., Royal Meteorological Institute of Belgium, Brussels, ISSN 2033-8562, https://www.meteo.be/resources/misc/climate-report/RapportClimatique-2020.pdf (last access: 24 June 2022), 2020.
Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., and Zhou, B.: Weather and Climate Extreme Events in a Changing Climate, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Water-field, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1513-1766, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC-AR6-WGI-Chapter11.pdf (last access: 28 June 2022), 2021.
Sherwood, S. C. and Huber, M.: An adaptability limit to climate change due to heat stress, P. Natl. Acad. Sci. USA, 107, 9552-9555, https://doi.org/10.1073/pnas.0913352107, 2010.
Suarez-Gutierrez, L., Müller, W. A., Li, C., and Marotzke, J.: Hotspots of extreme heat under global warming, Clim. Dy-nam., 55, 429-447, https://doi.org/10.1007/s00382-020-05263-w, 2020.
Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'ishi, R., Yamazaki, D., Suzuki, T., Kurogi, M., Kataoka, T., Watanabe, M., and Kimoto, M.: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6, Geosci. Model Dev., 12, 2727-2765, https://doi.org/10.5194/gmd-12-2727-2019, 2019.
Termonia, P., Van Schaeybroeck, B., De Cruz, L., De Troch, R., Caluwaerts, S., Giot, O., Hamdi, R., Vannitsem, S., Duchêne, F., Willems, P., Tabari, H., Van Uytven, E., Hosseinzadehtalaei, P., Van Lipzig, N., Wouters, H., Vanden Broucke, S., van Ypersele, J.-P., Marbaix, P., Villanueva-Birriel, C., Fettweis, X., Wyard, C., Scholzen, C., Doutreloup, S., De Ridder, K., Gobin, A., Lauwaet, D., Stavrakou, T., Bauwens, M., Müller, J.-F., Luyten, P., Ponsar, S., Van den Eynde, D., and Pottiaux, E.: The CORDEX.be initiative as a foundation for climate services in Belgium, Clim. Serv., 11, 49-61, https://doi.org/10.1016/j.cliser.2018.05.001, 2018.
Brits E., Boone I., Verhagen B., Dispas M., Vanoyen H., Van der Stede Y., and Van Nieuwenhuyse A.: Climate change and health: set-up of monitoring of potential effects of climate change on human health and on the health of animals in Belgium. Unit environment and health, Brussels, Belgium, https://www.belspo.be/belspo/organisation/publ/pub-ostc/agora/ragjj146-en.pdf (last access: 28 June 2022), 2009.
Wilcox, S. and Marion, W.: Users Manual for TMY3 Data Sets, Technical report NREL/TP-581-43156, Task No. PVA7.6101, https://www.nrel.gov/docs/fy08osti/43156.pdf, 2008.
Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., Jie, W., Zhang, J., Liu, Y., Zhang, L., Zhang, F., Zhang, Y., Wu, F., Li, J., Chu, M., Wang, Z., Shi, X., Liu, X., Wei, M., Huang, A., Zhang, Y., and Liu, X.: The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6, Geosci. Model Dev., 12, 1573-1600, https://doi.org/10.5194/gmd-12-1573-2019, 2019.
Wyard, C., Scholzen, C., Doutreloup, S., Hallot, É., and Fet-tweis, X.: Future evolution of the hydroclimatic conditions favouring floods in the south-east of Belgium by 2100 using a regional climate model, Int. J. Climatol., 41, 647-662, https://doi.org/10.1002/joc.6642, 2021.