[en] Ecological theory postulates that niches of co-occurring species must differ along some ecological dimensions in order to allow their stable coexistence. Yet, many biological systems challenge this competitive exclusion principle. Insectivorous bats from the Northern Hemisphere typically form local assemblages of multiple species sharing highly similar functional traits and pertaining to identical feeding guilds. Although their trophic niche can be accessed with unprecedented details using genetic identification of prey, the underlying mechanisms of resource partitioning remain vastly unexplored. Here, we studied the differential diet of three closely-related bat species of the genus Plecotus in sympatry and throughout their entire breeding season using DNA metabarcoding. Even at such a small geographic scale, we identified strong seasonal and spatial variation of their diet composition at both intra- and interspecific levels. Indeed, while the different bats fed on a distinct array of prey during spring, they showed higher trophic niche overlap during summer and fall, when all three species switched their hunting behaviour to feed on few temporarily abundant moths. By recovering 19 ecological traits for over 600 prey species, we further inferred that each bat species used different feeding grounds and hunting techniques, suggesting that niche partitioning was primarily habitat-driven. The two most-closely related bat species exhibited very distinct foraging habitat preferences, while the third, more distantly-related species was more generalist. These results highlight the need of temporally comprehensive samples to fully understand species coexistence, and that valuable information can be derived from the taxonomic identity of prey obtained by metabarcoding approaches.
Disciplines :
Zoology
Author, co-author :
Andriollo, Tommy ; Department of Mammalogy and Ornithology, Natural History Museum of Geneva, Geneva, Switzerland ; Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
Michaux, Johan ; Université de Liège - ULiège > Département des sciences de la vie > Laboratoire de génétique de la conservation ; CIRAD, Agirs Unit, TA C- 22/E- Campus international de Baillarguet, Montpellier Cedex 5, France
Ruedi, Manuel ; Department of Mammalogy and Ornithology, Natural History Museum of Geneva, Geneva, Switzerland
Language :
English
Title :
Food for everyone: Differential feeding habits of cryptic bat species inferred from DNA metabarcoding.
We gratefully acknowledge the people who helped us with guano sampling (alphabetically): Lucie Cauwet, Janik Pralong, Carlos Rouco, Cyril Schönbächler, Emmanuel Tardy, Laurent Vallotton and Eric Verelst. We also thank the owners of buildings who rendered this study possible. Lise‐Marie Pigneur (Université de Liège) helped during laboratory work, and Adrien André (Université de Liège) helped with Illumina raw data extraction. Bernard Landry, Charles Lienhard and John Hollier (MHNG) provided useful entomological expertise. Raphaël Covain (MHNG) and Stéphane Dray (CNRS, Lyon) provided valuable expertise on statistical analyses. Antton Alberdi (University of Copenhagen), Jan Pawlowski (University of Geneva), Jean Mariaux and Lionel Monod (MHNG) provided useful comments on an earlier version of the manuscript, as well as two anonymous reviewers. Anouk Mentha (Conservatory and Botanical Garden of the City of Geneva) helped with cartographic data. TA also thanks Frédéric Boyer, Eric Coissac, Eric Marcon, Pierre Taberlet and Lucie Zinger for fruitful discussions during the eighth DNA metabarcoding school held in French Guiana. We thank the library of the Natural History Museum of Geneva for access to their collections and the World Bat Library which allowed us to access hard‐to‐find bibliographic resources. This study benefitted from the financial support from the Direction Générale de l'Agriculture et de la Nature de l’État de Genève and the Fondation Ernst & Lucie Schmidheiny.We gratefully acknowledge the people who helped us with guano sampling (alphabetically): Lucie Cauwet, Janik Pralong, Carlos Rouco, Cyril Schönbächler, Emmanuel Tardy, Laurent Vallotton and Eric Verelst. We also thank the owners of buildings who rendered this study possible. Lise-Marie Pigneur (Université de Liège) helped during laboratory work, and Adrien André (Université de Liège) helped with Illumina raw data extraction. Bernard Landry, Charles Lienhard and John Hollier (MHNG) provided useful entomological expertise. Raphaël Covain (MHNG) and Stéphane Dray (CNRS, Lyon) provided valuable expertise on statistical analyses. Antton Alberdi (University of Copenhagen), Jan Pawlowski (University of Geneva), Jean Mariaux and Lionel Monod (MHNG) provided useful comments on an earlier version of the manuscript, as well as two anonymous reviewers. Anouk Mentha (Conservatory and Botanical Garden of the City of Geneva) helped with cartographic data. TA also thanks Frédéric Boyer, Eric Coissac, Eric Marcon, Pierre Taberlet and Lucie Zinger for fruitful discussions during the eighth DNA metabarcoding school held in French Guiana. We thank the library of the Natural History Museum of Geneva for access to their collections and the World Bat Library which allowed us to access hard-to-find bibliographic resources. This study benefitted from the financial support from the Direction Générale de l'Agriculture et de la Nature de l’État de Genève and the Fondation Ernst & Lucie Schmidheiny.
Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society. Series B (Methodological), 44(2), 139–177. https://doi.org/10.1111/j.2517-6161.1982.tb01195.x
Alberdi, A., & Aizpurua, O. (2018). Plecotus macrobullaris (Chiroptera: Vespertilionidae). Mammalian Species, 50(958), 26–33. https://doi.org/10.1093/mspecies/sey003
Alberdi, A., Aizpurua, O., Aihartza, J., & Garin, I. (2014). Unveiling the factors shaping the distribution of widely distributed alpine vertebrates, using multi-scale ecological niche modelling of the bat Plecotus macrobullaris. Frontiers in Zoology, 11(1), 77. https://doi.org/10.1186/s12983-014-0077-6
Alberdi, A., Aizpurua, O., Bohmann, K., Gopalakrishnan, S., Lynggaard, C., Nielsen, M., & Gilbert, M. T. P. (2019). Promises and pitfalls of using high-throughput sequencing for diet analysis. Molecular Ecology Resources, 19(2), 327–348. https://doi.org/10.1111/1755-0998.12960
Alberdi, A., Garin, I., Aizpurua, O., & Aihartza, J. (2012). The foraging ecology of the mountain long-eared bat Plecotus macrobullaris revealed with DNA mini-barcodes. PLoS One, 7(4), e35692. https://doi.org/10.1371/journal.pone.0035692
Alberdi, A., Garin, I., Aizpurua, O., & Aihartza, J. (2013). Review on the geographic and elevational distribution of the Mountain long-eared bat Plecotus macrobullaris, completed by utilising a specific mist-netting technique. Acta Chiropterologica, 15(2), 451–461. https://doi.org/10.3161/150811013X679071
Aldasoro, M., Garin, I., Vallejo, N., Baroja, U., Arrizabalaga-Escudero, A., Goiti, U., & Aihartza, J. (2019). Gaining ecological insight on dietary allocation among horseshoe bats through molecular primer combination. PLoS One, 14(7), e0220081. https://doi.org/10.1371/journal.pone.0220081
Aldridge, H., & Rautenbach, I. (1987). Morphology, echolocation and resource partitioning in insectivorous bats. Journal of Animal Ecology, 56(3), 763–778.
Altermatt, F. (2010). Climatic warming increases voltinism in European butterflies and moths. Proceedings of the Royal Society B: Biological Sciences, 277(1685), 1281–1287. https://doi.org/10.1098/rspb.2009.1910
Anderson, M. E., & Racey, P. A. (1991). Feeding behaviour of captive brown long-eared bats, Plecotus auritus. Animal Behaviour, 42(3), 489–493. https://doi.org/10.1016/S0003-3472(05)80048-X
André, A., Mouton, A., Millien, V., & Michaux, J. R. (2017). Liver microbiome of Peromyscus leucopus, a key reservoir host species for emerging infectious diseases in North America. Infection, Genetics and Evolution, 52, 10–18. https://doi.org/10.1016/j.meegid.2017.04.011
Andreas, M. (2002). Potravní ekologie netopýrů Středomoří [Feeding ecology of bats in the Mediterranean] (163 pp.). PhD Thesis. Institute of Applied Ecology, Czech Agriculture University.
Andriollo, T., Ashrafi, S., Arlettaz, R., & Ruedi, M. (2018). Porous barriers? Assessment of gene flow within and among sympatric long-eared bat species. Ecology and Evolution, 8(24), 12841–12854. https://doi.org/10.1002/ece3.4714
Andriollo, T., Blanc, M., Schönbächler, C., & Hollier, J. (2016). Données nouvelles de fourmilions (Neuroptera, Myrmeleontidae) pour le bassin genevois [New antlion (Neuroptera, Myrmeleontidae) records for the Geneva Basin]. Entomo Helvetica, 9, 13–18.
Andriollo, T., Gillet, F., Michaux, J. R., & Ruedi, M. (2019). The menu varies with metabarcoding practices: A case study with the bat Plecotus auritus. PLoS One, 14(7), e0219135. https://doi.org/10.1371/journal.pone.0219135
Andriollo, T., Landry, B., Guibert, B., Pastore, M., & Baumgart, P. (2019). Nouveaux ajouts à la liste des Lépidoptères du canton de Genève [New additions to the list of Lepidoptera for the canton of Geneva]. Entomo Helvetica, 12, 9–28.
Andriollo, T., & Ruedi, M. (2018). Novel molecular tools to identify Plecotus bats in sympatry and a review of their distribution in Switzerland. Revue Suisse De Zoologie, 125(1), 61–72. https://doi.org/10.5281/zenodo.1196013
Arlettaz, R. (1996). Feeding behaviour and foraging strategy of free-living mouse-eared bats, Myotis myotis and Myotis blythii. Animal Behaviour, 51(1), 1–11.
Arlettaz, R. (1999). Habitat selection as a major resource partitioning mechanism between the two sympatric sibling bat species Myotis myotis and Myotis blythii. Journal of Animal Ecology, 68(3), 460–471.
Arrizabalaga-Escudero, A., Clare, E. L., Salsamendi, E., Alberdi, A., Garin, I., Aihartza, J., & Goiti, U. (2018). Assessing niche partitioning of co-occurring sibling bat species by DNA metabarcoding. Molecular Ecology, 27(5), 1273–1283. https://doi.org/10.1111/mec.14508
Arrizabalaga-Escudero, A., Merckx, T., García-Baquero, G., Wahlberg, N., Aizpurua, O., Garin, I., & Aihartza, J. (2019). Trait-based functional dietary analysis provides a better insight into the foraging ecology of bats. Journal of Animal Ecology, 88, 1587–1600. https://doi.org/10.1111/1365-2656.13055
Arthur, L., & Lemaire, M. (2015). Les chauves-souris de France, Belgique, Luxembourg et Suisse (2nd ed., 544 pp.). Biotope Éditions, Mèze; Muséum national d’histoire naturelle.
Ashrafi, S., Beck, A., Rutishauser, M., Arlettaz, R., & Bontadina, F. (2011). Trophic niche partitioning of cryptic species of long-eared bats in Switzerland: implications for conservation. European Journal of Wildlife Research, 57(4), 843–849. https://doi.org/10.1007/s10344-011-0496-z
Ashrafi, S., Bontadina, F., Kiefer, A., Pavlinić, I., & Arlettaz, R. (2010). Multiple morphological characters needed for field identification of cryptic long-eared bat species around the Swiss Alps. Journal of Zoology, 281(4), 241–248. https://doi.org/10.1111/j.1469-7998.2010.00697.x
Ashrafi, S., Rutishauser, M., Ecker, K., Obrist, M. K., Arlettaz, R., & Bontadina, F. (2013). Habitat selection of three cryptic Plecotus bat species in the European Alps reveals contrasting implications for conservation. Biodiversity and Conservation, 22(12), 2751–2766. https://doi.org/10.1007/s10531-013-0551-z
Barataud, M. (1990). Éléments sur le comportement alimentaire des oreillards brun et gris Plecotus auritus (Linnaeus, 1758) et Plecotus austriacus (Fischer, 1829). Le Rhinolophe, 7, 3–10.
Barataud, M. (2015). Acoustic ecology of European bats: species, identification, study of their habitats and foraging behaviour. Collection Inventaires & Biodiversité, (vol. 8, 352 pp.). Biotope Éditions, Mèze; Muséum national d’histoire naturelle.
Baroja, U., Garin, I., Aihartza, J., Arrizabalaga-Escudero, A., Vallejo, N., Aldasoro, M., & Goiti, U. (2019). Pest consumption in a vineyard system by the lesser horseshoe bat (Rhinolophus hipposideros). PLoS One, 14(7), e0219265. https://doi.org/10.1371/journal.pone.0219265
Bauerová, Z. (1982). Contribution to the trophic ecology of the grey long-eared bat, Plecotus austriacus. Folia Zoologica, 31, 113–122.
Bauer, K. (1960). Die Säugetiere des Neusiedlersee-Gebietes (Österreich). Bonner Zoologische Beiträge, 11, 141–344.
Beck, A. (1995). Fecal analyses of European bat species. Myotis, 32(33), 109–119.
Benda, P., Andreas, M., Kock, D., Lučan, R., Munclinger, P., Nova, P., Obuch, J., Ochman, K., Reiter, A., Uhrin, M., & Weinfurtova, D. (2006). Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 4. Bat fauna of Syria: distribution, systematics, ecology. Acta Societatis Zoologicae Bohemoslovacae, 70, 1–329.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289–300.
Blažek, J., Konečný, A., & Bartonička, T. (2021). Bat aggregational response to pest caterpillar emergence. Scientific Reports, 11, 13634. https://doi.org/10.1038/s41598-021-93104-z
Bohmann, K., Monadjem, A., Lehmkuhl Noer, C., Rasmussen, M., Zeale, M. R. K., Clare, E., Jones, G., Willerslev, E., & Gilbert, M. T. P. (2011). Molecular diet analysis of two African free-tailed bats (Molossidae) using high throughput sequencing. PLoS One, 6(6), e21441. https://doi.org/10.1371/journal.pone.0021441
Boyles, J. G., Cryan, P. M., McCracken, G. F., & Kunz, T. H. (2011). Economic importance of bats in agriculture. Science, 332(6025), 41–42. https://doi.org/10.1126/science.1201366
Brown, V. A., Braun de Torrez, E., & McCracken, G. F. (2015). Crop pests eaten by bats in organic pecan orchards. Crop Protection, 67, 66–71. https://doi.org/10.1016/j.cropro.2014.09.011
Calabria, G., Máca, J., Bächli, G., Serra, L., & Pascual, M. (2012). First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. Journal of Applied Entomology, 136(1–2), 139–147. https://doi.org/10.1111/j.1439-0418.2010.01583.x
Chang, Y., Song, S., Li, A., Zhang, Y., Li, Z., Xiao, Y., Jiang, T., Feng, J., & Lin, A. (2019). The roles of morphological traits, resource variation and resource partitioning associated with the dietary niche expansion in the fish-eating bat Myotis pilosus. Molecular Ecology, 28(11), 2944–2954. https://doi.org/10.1111/mec.15127
Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 43(4), 783–791. https://doi.org/10.2307/2531532
Clare, E. L. (2014). Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications. Evolutionary Applications, 7(9), 1144–1157. https://doi.org/10.1111/eva.12225
Clare, E. L., Barber, B. R., Sweeney, B. W., Hebert, P. D. N., & Fenton, M. B. (2011). Eating local: influences of habitat on the diet of little brown bats (Myotis lucifugus). Molecular Ecology, 20(8), 1772–1780. https://doi.org/10.1111/j.1365-294X.2011.05040.x
Clarke, L. J., Soubrier, J., Weyrich, L. S., & Cooper, A. (2014). Environmental metabarcodes for insects: in silico PCR reveals potential for taxonomic bias. Molecular Ecology Resources, 14(6), 1160–1170. https://doi.org/10.1111/1755-0998.12265
Cohen, Y., Bar-David, S., Nielsen, M., Bohmann, K., & Korine, C. (2020). An appetite for pests: Synanthropic insectivorous bats exploit cotton pest irruptions and consume various deleterious arthropods. Molecular Ecology, 29(6), 1185–1198. https://doi.org/10.1111/mec.15393
Colwell, R. K. (2013). estimates: Statistical estimation of species richness and shared species from samples. University of Connecticut. Version 9 and earlier. User’s Guide and application.
Colwell, R. K., Chao, A., Gotelli, N. J., Lin, S.-Y., Mao, C. X., Chazdon, R. L., & Longino, J. T. (2012). Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology, 5(1), 3–21. https://doi.org/10.1093/jpe/rtr044
Courtois, J.-Y., Rist, D., & Beuneux, G. (2011). Les chauves-souris de Corse (166 pp.). Albiana.
de Jong, Y., Verbeek, M., Michelsen, V., Bjørn, P. P., Los, W., Steeman, F., Bailly, N., Basire, C., Chylarecki, P., Stloukal, E., Hagedorn, G., Wetzel, F. T., Glöckler, F., Kroupa, A., Korb, G., Hoffmann, A., Häuser, C., Kohlbecker, A., Müller, A., & Güntsch, A. … Penev, L. (2014). Fauna Europaea – all European animal species on the web. Biodiversity Data Journal, 2, e4034. https://doi.org/10.3897/BDJ.2.e4034
Deagle, B. E., Thomas, A. C., McInnes, J. C., Clarke, L. J., Vesterinen, E. J., Clare, E. L., Kartzinel, T. R., & Eveson, J. P. (2018). Counting with DNA in metabarcoding studies: how should we convert sequence reads to dietary data? Molecular Ecology, 28(2), 391–406. https://doi.org/10.1111/mec.14734
Dietrich, S., Szameitat, D. P., Kiefer, A., Schnitzler, H.-U., & Denzinger, A. (2006). Echolocation signals of the plecotine bat, Plecotus macrobullaris Kuzyakin, 1965. Acta Chiropterologica, 8(2), 465–475. https://doi.org/10.3161/1733-5329(2006)8[465:esotpb]2.0.co;2
Dolédec, S., Chessel, D., ter Braak, C. J. F., & Champely, S. (1996). Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics, 3(2), 143–166. https://doi.org/10.1007/bf02427859
Dray, S., Choler, P., Dolédec, S., Peres-Neto, P. R., Thuiller, W., Pavoine, S., & ter Braak, C. J. F. (2014). Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology, 95(1), 14–21. https://doi.org/10.1890/13-0196.1
Dray, S., & Dufour, A.-B. (2007). The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1–20. https://doi.org/10.18637/jss.v022.i04
Dray, S., & Legendre, P. (2008). Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology, 89(12), 3400–3412. https://doi.org/10.1890/08-0349.1
Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461. https://doi.org/10.1093/bioinformatics/btq461
Elbrecht, V., Braukmann, T. W. A., Ivanova, N. V., Prosser, S. W. J., Hajibabaei, M., Wright, M., & Steinke, D. (2019). Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ, 7, e27801v27801. https://doi.org/10.7717/peerj.7745
Elbrecht, V., Taberlet, P., Dejean, T., Valentini, A., Usseglio-Polatera, P., Beisel, J.-N., Coissac, E., Boyer, F., & Leese, F. (2016). Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects. PeerJ, 4, e1966. https://doi.org/10.7717/peerj.1966
Emrich, M. A., Clare, E. L., Symondson, W. O. C., Koenig, S. E., & Fenton, M. B. (2014). Resource partitioning by insectivorous bats in Jamaica. Molecular Ecology, 23(15), 3648–3656. https://doi.org/10.1111/mec.12504
Entwistle, A. C., Racey, P. A., & Speakman, J. R. (1996). Habitat exploitation by a gleaning bat, Plecotus auritus. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1342), 921–931. https://doi.org/10.1098/rstb.1996.0085
Galan, M., Pons, J.-B., Tournayre, O., Pierre, É., Leuchtmann, M., Pontier, D., & Charbonnel, N. (2018). Metabarcoding for the parallel identification of several hundred predators and their prey: application to bat species diet analysis. Molecular Ecology Resources, 18(3), 474–489. https://doi.org/10.1111/1755-0998.12749
Gilliéron, J., Schönbächler, C., Rochet, C., & Ruedi, M. (2015). Atlas des chauves-souris du bassin genevois. Faune Genève - Volume 1 (262 pp.). CCO-Genève.
Gotelli, N. J., Hart, E., & Ellison, A. M. (2013). ecosimr: A software package to fit ecological null models. Retrieved from http://www.uvm.edu/~ngotelli/EcoSim/EcoSim.html
Hardin, G. (1960). The competitive exclusion principle. Science, 131(3409), 1292–1297. https://doi.org/10.1126/science.131.3409.1292
Hollier, J. (2012). 8.30. Ordre Neuroptera. In B. Merz (ed), Liste annotée des insectes (Insecta) du canton de Genève (pp. 198–199). Instrumenta Biodiversitatis 8, Muséum d'histoire naturelle, 532 pp.
Holt, R. D. (2009). Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proceedings of the National Academy of Sciences of the United States of America, 106(Supplement 2), 19659–19665. https://doi.org/10.1073/pnas.0905137106
Horn, H. S. (1966). Measurement of "overlap" in comparative ecological studies. The American Naturalist, 100(914), 419–424.
Huson, D. H., Auch, A. F., Qi, J., & Schuster, S. C. (2007). MEGAN analysis of metagenomic data. Genome Research, 17, 377–386. https://doi.org/10.1101/gr.5969107
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427. https://doi.org/10.1101/sqb.1957.022.01.039
Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., & Madden, T. L. (2008). NCBI BLAST: a better web interface. Nucleic Acids Research, 36, W5–W9. https://doi.org/10.1093/nar/gkn201
Jusino, M. A., Banik, M. T., Palmer, J. M., Wray, A. K., Xiao, L., Pelton, E., Barber, J. R., Kawahara, A. Y., Claudio Gratton, M., Peery, Z., & Lindner, D. L. (2018). An improved method for utilizing high-throughput amplicon sequencing to determine the diets of insectivorous animals. Molecular Ecology Resources, 19, 176–190. https://doi.org/10.1111/1755-0998.12951
Juste, J., Ibàñez, C., Muñoz, J., Trujillo, D., Benda, P., Karataş, A., & Ruedi, M. (2004). Mitochondrial phylogeography of the long-eared bats (Plecotus) in the Mediterranean Palaearctic and Atlantic islands. Molecular Phylogenetics and Evolution, 31(3), 1114–1126. https://doi.org/10.1016/j.ympev.2003.10.005
Kaňuch, P., Janečková, K., & Krištín, A. (2005). Winter diet of the noctule bat Nyctalus noctula. Folia Zoologica, 54(1–2), 53–60.
Kartzinel, T. R., Chen, P. A., Coverdale, T. C., Erickson, D. L., Kress, W. J., Kuzmina, M. L., Rubenstein, D. I., & Wang, W. & Pringle, R. M. (2015). DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proceedings of the National Academy of Sciences, 112(26), 8019–8024. https://doi.org/10.1073/pnas.1503283112
Kervyn, T., & Libois, R. (2008). The diet of the serotine bat: A comparison between rural and urban environments. Belgian Journal of Zoology, 138(1), 41–49.
Kiefer, A., & Veith, M. (2002). A new species of long-eared bat from Europe (Chiroptera: Vespertilionidae). Myotis, 39, 5–16.
Kolkert, H., Andrew, R., Smith, R., Rader, R., & Reid, N. (2020). Insectivorous bats selectively source moths and eat mostly pest insects on dryland and irrigated cotton farms. Ecology and Evolution, 10(1), 371–388. https://doi.org/10.1002/ece3.5901
Kunz, T. H., Braun de Torrez, E., Bauer, D., Lobova, T., & Fleming, T. H. (2011). Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223, 1–38. https://doi.org/10.1111/j.1749-6632.2011.06004.x
Lawlor, L. R. (1980). Structure and stability in natural and randomly constructed competitive communities. American Naturalist, 116(3), 394–408. https://doi.org/10.1086/283634
Leelapaibul, W., Bumrungsri, S., & Pattanavibool, A. (2009). Diet of wrinkle-lipped free-tailed bat (Tadarida plicata Buchannan, 1800) in central Thailand: Insectivorous bats potentially act as biological pest control agents. Acta Chiropterologica, 7(1), 111–119. https://doi.org/10.3161/1733-5329(2005)7[111:DOWFBT]2.0.CO;2
Legendre, P., Galzin, R., & Harmelin-Vivien, M. L. (1997). Relating behavior to habitat: solutions to the fourth-corner problem. Ecology, 78(2), 547–562. https://doi.org/10.2307/2266029
Leray, M., Meyer, C. P., & Mills, S. C. (2015). Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet. PeerJ, 3, e1047. https://doi.org/10.7717/peerj.1047
Letten, A. D., Ke, P.-J., & Fukami, T. (2017). Linking modern coexistence theory and contemporary niche theory. Ecological Monographs, 87, 161–177.
Levins, R. (1968). Evolution in changing environments: some theoretical explorations, Vol. 2 (120 pp.). Princeton University Press.
Lopes, C. M., De Barba, M., Boyer, F., Mercier, C., da Silva Filho, P. J. S., Heidtmann, L., Galiano, D., Kubiak, B. B., Langone, P., Garcias, F. M., Gielly, L., Coissac, E., & de Freitas, T. R. O. & Taberlet, P. (2015). DNA metabarcoding diet analysis for species with parapatric vs sympatric distribution: a case study on subterranean rodents. Heredity, 114(5), 525–536. https://doi.org/10.1038/hdy.2014.109
Mancina, C. A., García-Rivera, L., & Miller, B. W. (2012). Wing morphology, echolocation, and resource partitioning in syntopic Cuban mormoopid bats. Journal of Mammalogy, 93(5), 1308–1317. https://doi.org/10.1644/11-mamm-a-331.1
Mattei-Roesli, M. (2010). Situazione del genere Plecotus (Chiroptera) nel Cantone Ticino (Svizzera). Bollettino Della Società Ticinese Di Scienze Naturali, 98, 31–34.
Mazzi, D., Bravin, E., Meraner, M., Finger, R., & Kuske, S. (2017). Economic impact of the introduction and establishment of Drosophila suzukii on sweet cherry production in Switzerland. Insects, 8(1), 18. https://doi.org/10.3390/insects8010018
Meineke, T. (1991). Auswertung von Fraßresten der beiden Langohrarten Plecotus auritus L. und Plecotus austriacus Fischer. Naturschutz Und Landschaftspflege in Niedersachsen, 26, 37–45.
Morisita, M. (1959). Measuring of the dispersion and analysis of distribution patterns. Memories of the Faculty of Science, Kyushu University. Series E Biology, 2(21), 215–235.
Motte, G. (2011). Étude comparée de l’écologie de deux espèces jumelles de Chiroptères (Mammalia: Chiroptera) en Belgique: l’oreillard roux (Plecotus auritus) (Linn., 1758) et l’oreillard gris (Plecotus austriacus) (Fischer, 1829) (p. 123). PhD Thesis, Université de Liège.
Nicholls, B., & Racey, P. A. (2006). Habitat selection as a mechanism of resource partitioning in two cryptic bat species Pipistrellus pipistrellus and Pipistrellus pygmaeus. Ecography, 29(5), 697–708. https://doi.org/10.1111/j.2006.0906-7590.04575.x
Novella-Fernandez, R., Ibañez, C., Juste, J., Clare, E. L., Doncaster, C. P., & Razgour, O. (2020). Trophic resource partitioning drives fine-scale coexistence in cryptic bat species. Ecology & Evolution, 10(24), 14122–14136. https://doi.org/10.1002/ece3.7004
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Peter Solymos, M., Stevens, H. H., Szoecs, E., & Wagner, H. (2020). vegan: Community Ecology Package.
Olofsson, M., Vallin, A., Jakobsson, S., & Wiklund, C. (2011). Winter predation on two species of hibernating butterflies: monitoring rodent attacks with infrared cameras. Animal Behaviour, 81(3), 529–534. https://doi.org/10.1016/j.anbehav.2010.12.012
Patrick, L. E., & Stevens, R. D. (2014). Investigating sensitivity of phylogenetic community structure metrics using North American desert bats. Journal of Mammalogy, 95(6), 1240–1253. https://doi.org/10.1644/14-mamm-a-007
Poltavsky, A. N. (2014). Phenological groups of snout moths (Lepidoptera: Pyralidae, Crambidae) of Rostov-on-Don area (Russia). Phegea, 42(1), 22–24.
Preatoni, D. G., Spada, M., Wauters, L. A., Tosi, G., & Martinoli, A. (2011). Habitat use in the female Alpine long-eared bat (Plecotus macrobullaris): does breeding make the difference? Acta Chiropterologica, 13(2), 355–364. https://doi.org/10.3161/150811011x624820
Presley, S. J., Cisneros, L. M., Higgins, C. L., Klingbeil, B. T., Scheiner, S. M., & Willig, M. R. (2018). Phylogenetic and functional underdispersion in Neotropical phyllostomid bat communities. Biotropica, 50(1), 135–145. https://doi.org/10.1111/btp.12501
Quéméré, E., Hibert, F., Miquel, C., Lhuillier, E., Rasolondraibe, E., Champeau, J., Rabarivola, C., Nusbaumer, L., Chatelain, C., Gautier, L., Ranirison, P., Crouau-Roy, B., & Taberlet, P. & Chikhi, L. (2013). A DNA metabarcoding study of a primate dietary diversity and plasticity across its entire fragmented range. PLoS One, 8(3), e58971. https://doi.org/10.1371/journal.pone.0058971
Ratnasingham, S., & Hebert, P. D. N. (2007). bold: The Barcode of Life Data System (http://www.barcodinglife.org. Molecular Ecology Notes, 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
Razgour, O., Clare, E. L., Zeale, M. R. K., Hanmer, J., Schnell, I. B., Rasmussen, M., Gilbert, T. P., & Jones, G. (2011). High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. Ecology and Evolution, 1(4), 556–570. https://doi.org/10.1002/ece3.49
Riedinger, V., Muller, J., Stadler, J., Ulrich, W., & Brandl, R. (2013). Assemblages of bats are phylogenetically clustered on a regional scale. Basic and Applied Ecology, 14(1), 74–80. https://doi.org/10.1016/j.baae.2012.11.006
Robineau, R., Bachelard, P., Bérard, R., Colomb, C., Demerges, D., Doux, Y., Fournier, F., Gibeaux, C., Maechler, J., & Schmitt, P. & Tautel, C. (2007). Guide des papillons nocturnes de France (287 pp.). Delachaux et Niestlé.
Robinson, M. F. (1990). Prey selection by the brown long-eared bat, Plecotus auritus. Myotis, 28, 5–18.
Robinson, M. F., & Stebbings, R. E. (1993). Food of the serotine bat, Eptesicus serotinus—is faecal analysis a valid qualitative and quantitative technique? Journal of Zoology, 231(2), 239–248. https://doi.org/10.1111/j.1469-7998.1993.tb01915.x
Roswag, A., Becker, N. I., Drangusch, R., Kuhring, K., Ohlendorf, B., & Encarnação, J. A. (2018). Teasing apart cryptic species groups: Nutritional ecology and its implications for species-specific conservation of the Myotis mystacinus group. Population Ecology, 61(1), 14–24. https://doi.org/10.1002/1438-390X.1003
Roswag, A., Becker, N. I., & Encarnação, J. A. (2018). Isotopic and dietary niches as indicators for resource partitioning in the gleaner bats Myotis bechsteinii, M. nattereri, and Plecotus auritus. Mammalian Biology, 89(1), 62–70. https://doi.org/10.1016/j.mambio.2017.12.006
Rutishauser, M. D., Bontadina, F., Braunisch, V., Ashrafi, S., & Arlettaz, R. (2012). The challenge posed by newly discovered cryptic species: disentangling the environmental niches of long-eared bats. Diversity and Distributions, 18(11), 1107–1119. https://doi.org/10.1111/j.1472-4642.2012.00904.x
Rydell, J., Bogdanowicz, W., Boonman, A., Pettersson, S., Suchecka, E., & Pomorski, J. J. (2016). Bats may eat diurnal flies that rest on wind turbines. Mammalian Biology, 81(3), 331–339. https://doi.org/10.1016/j.mambio.2016.01.005
Salinas-Ramos, V. B., Ancillotto, L., Bosso, L., Sánchez-Cordero, V., & Russo, D. (2020). Interspecific competition in bats: state of knowledge and research challenges. Mammal Review, 50(1), 68–81. https://doi.org/10.1111/mam.12180
Salinas-Ramos, V. B., Herrera Montalvo, L. G., León-Regagnon, V., Arrizabalaga-Escudero, A., & Clare, E. L. (2015). Dietary overlap and seasonality in three species of mormoopid bats from a tropical dry forest. Molecular Ecology, 24(20), 5296–5307. https://doi.org/10.1111/mec.13386
Sato, J. J., Shimada, T., Kyogoku, D., Komura, T., Uemura, S., Saitoh, T., & Isagi, Y. (2018). Dietary niche partitioning between sympatric wood mouse species (Muridae: Apodemus) revealed by DNA meta-barcoding analysis. Journal of Mammalogy, 99(4), 952–964. https://doi.org/10.1093/jmammal/gyy063
Schnitzler, H.-U., & Kalko, E. K. V. (2001). Echolocation by insect-eating bats. BioScience, 51(7), 557–569. https://doi.org/10.1641/0006-3568(2001)051[0557:ebieb]2.0.co;2
Schoener, T. W. (1974). Resource partitioning in ecological communities. Science, 185(4145), 27–39. https://doi.org/10.1126/science.185.4145.27
Spitz, J., Ridoux, V., & Brind'Amour, A. (2014). Let's go beyond taxonomy in diet description: testing a trait-based approach to prey–predator relationships. Journal of Animal Ecology, 83(5), 1137–1148. https://doi.org/10.1111/1365-2656.12218
Spitzenberger, F., Strelkov, P., Winkler, H., & Haring, E. (2006). A preliminary revision of the genus Plecotus (Chiroptera, Vespertilionidae) based on genetic and morphological results. Zoologica Scripta, 35(3), 187–230. https://doi.org/10.1111/j.1463-6409.2006.00224.x
Spitzenberger, F., Haring, E., & Tvrtković, N. (2002). Plecotus microdontus (Mammalia, Vespertilionidae), a new bat species from Austria. Natura Croatica, 11, 1–18.
Swift, S. M., Racey, P. A., & Avery, M. I. (1985). Feeding ecology of Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) during pregnancy and lactation. II. Diet. The Journal of Animal Ecology, 54(1), 217–225. https://doi.org/10.2307/4632
Taberlet, P., Bonin, A., Zinger, L., & Coissac, E. (2018). Environmental DNA: for biodiversity research and monitoring (253 pp.). Oxford University Press. https://doi.org/10.1093/oso/9780198767220.001.0001
ter Braak, C. J. F., Cormont, A., & Dray, S. (2012). Improved testing of species traits-environment relationships in the fourth corner problem. Ecology, 93(7), 1525–1526. https://doi.org/10.1890/12-0126.1
Tournayre, O., Leuchtmann, M., Filippi-Codaccioni, O., Trillat, M., Piry, S., Pontier, D., Charbonnel, N.,& Galan, M. (2020). In silico and empirical evaluation of twelve COI & 16S metabarcoding primer sets for insectivorous diet analyses. Ecology and Evolution, 10(13), 6310–6332. https://doi.org/10.1002/ece3.6362
Tvrtković, N., Pavlinić, I., & Haring, E. (2005). Four species of long-eared bats (Plecotus, Geoffroy, 1818; Mammalia, Vespertilionidae) in Croatia: field identification and distribution. Folia Zoologica, 54(1–2), 75–88.
Vallejo, N., Aihartza, J., Goiti, U., Arrizabalaga-Escudero, A., Flaquer, C., Puig, X., & Garin, I. (2019). The diet of the notch-eared bat (Myotis emarginatus) across the Iberian Peninsula analysed by amplicon metabarcoding. Hystrix, the Italian Journal of Mammalogy, 30(1), 59–64. https://doi.org/10.4404/hystrix-00189-2019
Vaughan, N. (1997). The diets of British bats (Chiroptera). Mammal Review, 27(2), 77–94. https://doi.org/10.1111/j.1365-2907.1997.tb00373.x
Vesterinen, E. J., Lilley, T., Laine, V. N., & Wahlberg, N. (2013). Next generation sequencing of fecal DNA reveals the dietary diversity of the widespread insectivorous predator Daubenton's Bat (Myotis daubentonii) in Southwestern Finland. PLoS One, 8(11), e82168. https://doi.org/10.1371/journal.pone.0082168
Vesterinen, E. J., Puisto, A. I. E., Blomberg, A. S., & Lilley, T. M. (2018). Table for five, please: Dietary partitioning in boreal bats. Ecology and Evolution, 8(22), 10914–10937. https://doi.org/10.1002/ece3.4559
Wiklund, C., Vallin, A., Friberg, M., & Jakobsson, S. (2008). Rodent predation on hibernating peacock and small tortoiseshell butterflies. Behavioral Ecology and Sociobiology, 62(3), 379–389. https://doi.org/10.1007/s00265-007-0465-4
Zeale, M. R. K., Butlin, R. K., Barker, G. L. A., Lees, D. C., & Jones, G. (2011). Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Molecular Ecology Resources, 11(2), 236–244. https://doi.org/10.1111/j.1755-0998.2010.02920.x