Blavier, Martin ; Université de Liège - ULiège > Master en sc. chimiques, à fin.
Gelfand, N.
Levine, R. D.
Remacle, Françoise ; Université de Liège - ULiège > Molecular Systems (MolSys)
Language :
English
Title :
Entanglement of electrons and nuclei during ultrafast excitation: A most compact representation of the molecular wave function
Publication date :
2022
Journal title :
Chemical Physics Letters
ISSN :
0009-2614
Publisher :
Elsevier, Netherlands
Pages :
139885
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique COST - European Cooperation in Science and Technology Binational Science Foundation US-Israel erasmus+
Nisoli, M., Decleva, P., Calegari, F., Palacios, A., Martín, F., Attosecond electron dynamics in molecules. Chem. Rev. 117:16 (2017), 10760–10825.
Vrakking, M.J.J., Lepine, F., Attosecond molecular dynamics. 2019, The Royal Society of Chemistry, Cambridge, Theoretical and Computational Chemistry.
Ramasesha, K., Leone, S.R., Neumark, D.M., Real-time probing of electron dynamics using attosecond time-resolved spectroscopy. Ann. Rev. Phys. Chem. 67:1 (2016), 41–63.
Born, M., Huang, K., Dynamical Theory of Crystal Lattices. 1954, Oxford University Press, Oxford.
Izmaylov, A.F., Franco, I., Entanglement in the born-oppenheimer approximation. J. Chem. Theory Comput. 13:1 (2017), 20–28.
McKemmish, L.K., McKenzie, R.H., Hush, N.S., Reimers, J.R., Quantum entanglement between electronic and vibrational degrees of freedom in molecules. J. Chem. Phys., 135, 2011, 244110.
Li, J., Kais, S., Entanglement classifier in chemical reactions. Sci. Adv., 5, 2019, eaax5283.
Vrakking, M.J.J., Control of Attosecond Entanglement and Coherence. Phys. Rev. Lett., 126, 2021, 113203.
Remacle, F., Levine, R.D., On the inverse born-oppenheimer separation for high rydberg states of molecules. Int. J. Quant. Chem. 67:2 (1998), 85–100.
Abedi, A., Maitra, N.T., Gross, E.K.U., Exact factorization of the time-dependent electron-nuclear wave function. Phys. Rev. Lett., 105, 2010, 123002.
Agostini, F., Gross, E.K.U., Exact Factorization of the Electron-Nuclear Wave Function: Theory and Applications. Gonzalez, L., Lindh, R., (eds.) Quantum Chemistry and Dynamics of Excited States: Methods and Apllications, 2021, Wiley, Hoboken.
Agostini, F., Gross, E.K.U., Curchod, B.F.E., Electron-nuclear entanglement in the time-dependent molecular wavefunction, Comput. Theor. Chem. 1151 (2019), 99–106.
Larsson, H.R., Computing vibrational eigenstates with tree tensor network states (TTNS). J. Chem. Phys., 151, 2019, 204102.
Baiardi, A., Reiher, M., Large-Scale Quantum Dynamics with Matrix Product States. J. Chem. Theory Comput. 15:6 (2019), 3481–3498.
Hao, C., Yaoliang, Y., Xinhua, Z., Eric, X., Dale, S., Scalable and Sound Low-Rank Tensor Learning, 19th International Conference on Artificial Intelligence and Statistics. 2016, Cadiz, PMLR, 1114–1123.
Kunitski, M., Guan, Q., Maschkiwitz, H., Hahnenbruch, J., Eckart, S., Zeller, S., Kalinin, A., Schöffler, M., Schmidt, L.P.H., Jahnke, T., Blume, D., Dörner, R., Ultrafast manipulation of the weakly bound helium dimer. Nat. Phys. 17:2 (2021), 174–178.
Gadéa, F.X., Leininger, T., Accurate ab initio calculations for LiH and its ions, LiH+ and LiH. Theor. Chem. Acc. 116:4-5 (2006), 566–575.
Holka, F., Szalay, P.G., Fremont, J., Rey, M., Peterson, K.A., Tyuterev, V.G., Accurate ab initio determination of the adiabatic potential energy function and the Born-Oppenheimer breakdown corrections for the electronic ground state of LiH isotopologues. J. Chem. Phys., 134, 2011, 094306.
van den Wildenberg, S., Mignolet, B., Levine, R.D., Remacle, F., Temporal and spatially resolved imaging of the correlated nuclear-electronic dynamics and of the ionized photoelectron in a coherently electronically highly excited vibrating LiH molecule. J. Chem. Phys., 151, 2019, 134310.
Mulliken, R.S., Emler, W.C., Diatomic Molecules Results of Ab Initio Computations. 1977, Academic Press, New York.
Mulliken, R.S., Rydberg and Valence-Shell Character as Functions of Internuclear Distance in some Excited-States of CH, NH, H2, and N2. Chem. Phys. Lett. 14:2 (1972), 141–144.
Spelsberg, D., Meyer, W., Dipole-allowed excited states of N2: Potential energy curves, vibrational analysis, and absorption intensities. J. Chem. Phys. 115 (2001), 6438–6449.
Stahel, D., Leoni, M., Dressler, K., Non-adiabatic representations of the 1-sigma-u+ and 1-pi-u states of the N2 molecule. J. Chem. Phys. 79 (1983), 2541–2558.
Ajay, J.S., Komarova, K.G., Remacle, F., Levine, R.D., Time-dependent view of an isotope effect in electron-nuclear nonequilibrium dynamics with applications to N2. Proc. Natl. Acad. Sci. U.S.A. 115:23 (2018), 5890–5895.
Jayantha, S.A., Komarova, K.G., S.v.d. Wildenberg, F. Remacle, R.D. Levine, AttoPhotoChemistry: Coherent Electronic Dynamics and Nuclear Motion. Vrakking, M.J.J., Lepine, F., (eds.) Attosecond Molecular Dynamics, 2018, Royal Society of Chemistry, Cambridge, 308–347.
Lewis, B.R., Gibson, S.T., Zhang, W., Lefebvre-Brion, H., Robbe, J.M., Predissociation mechanism for the lowest Πu1 states of N2. J. Chem. Phys., 122, 2005, 144302.
G.H. Golub, C.F.V. Loan, Matrix Computations John Hopkins University Press, Baltimore, 2013.
Ekert, A., Knight, P.L., Entangled quantum systems and the Schmidt decomposition. Am. J. Phys. 63:5 (1995), 415–423.
Kołos, W., Wolniewicz, L., Nonadiabatic theory for diatomic molecules and its application to the hydrogen molecule. Rev. Mod. Phys. 35:3 (1963), 473–483.
Zhang, T., Golub, G.H., Rank-one approximation to high order tensors. Siam J. Matrix Anal. Appl. 23:2 (2001), 534–550.