
	 1	

Entanglement of electrons and nuclei  :  
A most compact representation of the molecular wave function  

 
Martin Blavier,1,2† Natalia Gelfand,2† R. D. Levine,2,3 F. Remacle1,2* 

 
1Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium  

2The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of 
Jerusalem, 91904 Jerusalem, Israel 

3 Department of Chemistry and Biochemistry and Department of Molecular and Medical 
Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 

CA 90095, USA 
 

ABSTRACT 

Ultrafast pumping displaces both electrons and nuclei from equilibrium so that the wave 

function is a double sum of separable terms for the dynamics of the electrons and nuclei. We 

convert the double sum into a single one by a matricization of the wave function and then 

generate an exact separable expression for the entangled molecular wave function. A most 

compact approximation with a minimum number of terms is obtained via Singular Value 

Decomposition. LiH and N2 are used as an illustration: the two differ in their adiabatic 

electronic dynamics in the energy range accessible by a UV pulse. 
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I. Introduction 

Early in the days of quantum mechanics Born and Oppenheimer demonstrated that there is 

a practical separation of electronic and nuclear dynamics in molecules. The high ratio of the 

nuclear to electronic mass is necessary for the separation. The energy gap between the 

ground and higher electronically excited states assists the wide applicability of the adiabatic 

approximation. But when the state is electronically excited, interaction with other states is 

the rule rather than an exception. A special case of interest in attoscience is ultrafast 

excitation that can coherently access several electronic states,[1-3] and so the wave function 

is inevitably a sum over separable components, sometimes known as the Born-Huang 

expansion.[4] Nowadays, this is usefully described as an entanglement[5-8] of the dynamics 

of the electrons and the nuclei. In extreme cases, such as high Rydberg states, one can think 

of an inverse separation where the slow electrons respond to the faster motion of the 

nuclei.[9] Recently, attention was given to a novel factorization of the wave function as a 

single product,[10-12] the exact factorization approach. In this approach, the total time-

dependent wave function is exactly factorized as a single correlated product of a time-

dependent nuclear and electronic wave function. The nuclear and electronic wave functions 

evolve according to coupled equations of motion involving in time-dependent potentials. 

This approach fully accounts for the correlation between electrons and nuclei. Another 

important development is a range of approximate methods based on matrix product 

states[13-15] suitable, in particular, for extended systems. While applied in the context of 

electronic-nuclear entanglement in molecules excited by attopulses, the approach proposed 

here is general and well suited to analyze entanglement between other kinds of molecular 

degrees of freedom, such as rotational and vibrational ones as is currently investigated in 

ultracold molecular physics.[16] 

 

II. Matricization of the molecular time-dependent wave function 

We here discuss an exact compaction of the entangled wave function. For practical purposes 

we show how to select the minimal number of separable terms for the best approximation. 

For conceptual purpose this compaction provides an essence of the dynamics. The key point 

is a systematic reduction in the number of terms in the expansion of the wave function while 
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keeping the best possible representation in the sense of the lowest norm of the deviation from 

the numerically exact result.  

The approach is illustrated by two contrasting examples: the ultrafast UV pumping of LiH 

and of N2 to their excited states of  symmetry. In the energy range accessible by a UV 

excitation, the two differ in their adiabatic electronic dynamics. A UV excitation brings LiH 

to many dissociative states that are only weakly coupled by non-adiabatic terms,[17-19] see 

Figure S1 of the supplementary materials, SM. The three optically UV accessible states of 

N2 are bound: one is valence and two are Rydberg excited states and all three are strongly 

coupled by non-adiabatic terms (Figure S1 of the SM).[20-24]  

The input data to our analysis are quantum dynamics computations of the wave function 

obtained by solving the time-dependent Schrödinger equation, as described in section S1 of 

the SM. The wave function is written as a double sum of separable products of a finite 

number electronic basis functions in an adiabatic approximation and door functions defined 

on a grid of equidistant points to provide a flexible description of the nuclear dynamics, 

equation (1):  

      (1) 

 is the j’th electronic adiabatic state and  is a door function centered at the i’th point 

of the grid. Ne  is the number of electronic states and Ng the number of door functions. The 

different electronic states as well as the different door states are orthogonal. An accurate 

numerical solution for the wave function, e.g.[25]  for the set of time-dependent coefficients 

, equation (S2) of the SM, is used as a basis for our development. Specifically, the 

matrix elements of the kinetic energy and of momentum are evaluated by a finite difference 

approximation, see the SM file. Typically, the non-adiabatic coupling terms of the electronic 

states are rapidly varying functions of the coordinate(s) so that a small grid spacing is needed 

and therefore the finite difference schemes converge already at a low order. The initial 

conditions for equation (1) is the molecule in its ground electronic state. A dipole coupling 

to the ultrafast laser field is included in the Hamiltonian and so treated to all orders in the 

strength of the field. The ultrashort laser pulse, equation (S3) of the SM, is switched early 

on. The time-dependent Schrödinger equation is propagated during the pulse and after its 

Σ
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decay because of the unfolding in time role of the nuclear-motion-induced non-adiabatic 

coupling between the electronic states. There is spin-orbit coupling between triplet and the 

three singlet states of N2.[26] This enables a slow dissociation[24] but the time scale is longer 

than what we consider here. 

 

 

 

Scheme 1. Steps in the compaction of the wave function, equation (1), for three grid points 

and two electronic states. 
 
The first step is to reduce the double sum of equation (1) to a single sum that is 

mathematically exactly equivalent. A practical way, see scheme 1, is to reshape[27] the 

vector of amplitude coefficients  as a two-dimensional matrix A. It is a rectangular 

matrix because typically the number  of grid points needed for realistic accuracy is 

different and larger than the number  of electronic states. Exceptions are extended 

systems for which many electronic states are used to describe a band. For molecules, we take 

it that . The matrix A(t) has rows where the elements of a given row i are the 

’s for the different electronic states . Each column of A(t) is the 

amplitude of a given electronic state in the different grid locations. To convert the double 

sum in equation (1) to a single sum, we apply a spectral decomposition of the rectangular 

matrix A(t) using its singular values and eigenvectors,[28] see scheme 1. The singular value 

decomposition (SVD) theorem states that there will be at most  non-zero singular values 

𝜎! labelled by the index m, m=1,...,Ne . Normalization of the wave function, equation (1), 
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implies that . We adopt the convention that these non-negative eigenvalues 

are arranged in a descending order with m = 1 being the largest. The SVD decomposition is 

that at any time t any matrix element of A(t) can be exactly written as a sum over  terms 

      (2)

 are the two singular eigenvectors associated with the m’th singular value 

.  has  components and it is the m’th eigenvector of the  

symmetric non-negative matrix  with the eigenvalue . The vector  

has  components for each value of m, m = 1,..,Ng, and it is the eigenvector of the larger 

matrix . The first  eigenvalues are the  and the rest are zero. The 

components of the eigenvector  are the grid states while the components of the 

eigenvector  are the electronically excited states. Inserting the SVD decomposition, 

equation (2), in the double sum form of the wave function leads to the single sum expression 

over  separable terms 

       (3) 

To write equation (3), we have defined new electronic, , and nuclear  states 
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entire set of basis states and we wish to contrast their behavior in the two examples of LiH 

and N2 and to examine what is a practical upper limit on the sum in equation (3) that we need 

for a good approximate representation of the wave function. 
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where for all practical aspects, including those of high spectroscopic accuracy, one separable 

term suffices.[30] So, our next question is “what constitutes an accurate approximation for 

the wave function with a smallest number of terms?” The SVD theorem[28] states that when 

the eigenvalues are ordered by decreasing value, as we do, truncation the sum (2) as a smaller 

number of terms is the best approximation in the sense of a minimal norm of the deviation. 

In other words, the sum (2) and therefore the expansion (3) are as accurate as possible for a 

given number of separable terms and this is so for each possible upper limit on the number 

of terms. Adding more terms in the sum can only improve the accuracy of the representation. 

When all  terms are kept, the representation is mathematically equivalent to the 

numerically exact wave function.	 A simple illustration is the equivalence of the sum 

 and the normalization of the wave function. With fewer terms, the sum is 

below one. In a practical approach we keep as many terms as needed to approach unity to 

the desired accuracy. 

 

III. Entanglement and compact representation of the wave function in LiH and in N2 

A UV excitation with a strong short pulse will also ionize a molecule. So for both N2 and 

LiH we use a weaker pulse where the high excited states are just barely populated and a 

significant fraction of the population stays in the ground state. The largest singular value 

will not fall much below unity and the corresponding primary singular vector  will 

be localized on the ground electronic state. The singular values, m =1,2,3 need to be kept for 

the  states of N2 and LiH as shown vs. time in Figure 1. 
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Figure 1. The larger singular values squared , m=1,2,3, shown as a function of time for 

N2 (a) and LiH (b). The totality of excited states, , is reached just after the pulse. 

Beyond that time the two cases are different and an interpretation is provided in the text.  

 

Details of the computation as well as parameters of the UV pulses are given in the SM, as 

well as the potential energy curves of the adiabatic states included in the computation of the 

dynamics for the two molecules (Figure S1). The carrier frequency and the duration of the 

ultrashort pulses are chosen to target a specific manifold of adiabatic electronic states. In N2, 

the valence Σ"  state and the lowest Rydberg state fall within the energy bandwidth 

(FWHM=1.18 eV) of the pulse (Figure S1a) while in LiH, the pulse is chosen to excite the 

Σ#, Σ$.and Σ% states (FWHM in energy=1.84 eV), which are not bound in this energy range 
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(Figure S1b). In both cases, the excitation by the pulse builds a coherent superposition of 

states. 

There are seven electronic states of LiH that are included in the expansion of the wave 

function. As shown in Figure 1, just three singular eigenvectors are necessary to well 

approximate the wave function for LiH. All the seven weights are plotted in Figure S3 of the 

SM and already the fourth is barely noticeable. For N2, the reduction is moderate as four 

electronic states are included in the exact computation. 

For N2 (Figure 1a) the UV pulse primarily accesses the valence excited state. It has a 

shallower potential than the two Rydberg states, which are about as tightly bound as the 

ground state and are therefore localized in the Franck-Condon region, FC. The wave packet 

excited on the valence state moves out and then comes back to the FC region where it is 

strongly coupled to the lower of the two Rydberg states.[24] At that time range there is a 

loss of population of the valence state due to a non-adiabatic transfer to the Rydberg state. 

The second eigenvector  is primarily the valence-excited state with the lower Rydberg 

state contributing equally at the region of strong non-adiabatic coupling, see Figure S4 of 

the SM that shows the detailed composition of the singular vectors  on the electronic 

states of N2. Note the mixing of the second and third eigenvectors as reflected in their 

weights, Figure 1a. It is completely analogous to the avoided crossing of the basis adiabatic 

states. The third eigenvector, , has a lower singular value, it rises at the region of strong 

non-adiabatic coupling where it is a linear combination of the valence excited state with the 

lower Rydberg state. Slightly before the rise of the third singular value the first eigenvalue 

is increasing as the second one is decreasing. This reflects the localization of the wave 

packets of the ground state and the valence state in the FC region. They can then be described 

by a single singular vector with u1 localized in the FC region (see Figure 2 below) and v1 

having components on the two electronic states. In LiH (Figure 1b) the different adiabatic 

electronic states are effectively changing their population only during the fast laser pulse. 

Their non-adiabatic coupling is weak, see Figure S2 of the SM, so that each singular 

eigenvector is approximately associated with a particular electronic state, Figure S4.  

The other key difference between N2 and LiH is shown in Figure 2 where the second and the 

third grid eigenvector of LiH (Figure 2 d) very clearly dissociates.  
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Figure 2. A heat map representation of the grid based first, second and third singular grid 

states in N2 (panels a,b,c) and LiH (panels d, e, f). The distance scale is different for the two 

because the light H atom moves with a high amplitude. The lowest grid state  is 

essentially the ground state in both molecules. It is tightly localized in N2 and less so in the 

weaker bound LiH. The states  and  differ dramatically. N2 executes a bound 

motion while LiH dissociates.  

 

The LiH potentials are quite shallow so the wave packet moves out with about a constant 

speed. Figure S5 of the SM shows the grid eigenvectors also for the two other isotopomers, 

LiD and LiT. For the heavier reduced mass the velocity is correspondingly lower. For N2 

(Figure 2) the second grid eigenvector exhibits the bound vibrational motion of the valence 

excited state but also shows the contribution of the Rydberg state at the time of the pulse and 

at the time of strong non-adiabatic coupling when the valence state returns to the FC region. 

The same is true for  which has the highest weight on the Rydberg state. The rise of the 
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first singular value in N2, Figure 1, reflects the localization of the three wave packets in the 

FC region. 

UV excitation of Σ electronic states in N2 and LiH shows a significant entanglement of 

electrons and nuclei that requires three separable terms to well approximate the wave 

function. But the nature of the terms is quite different. In N2 the vibrational motion remains 

bound and the nature of the separable terms differs very much in the region of the strong 

non-adiabatic coupling. The UV excited adiabatic states of LiH are dissociative and weakly 

coupled. A clear isotope effect of a classical mechanics origin is exhibited (Figure S5) in the 

grid based dissociative eigenvectors in LiX, X=H, D, T, where the heavier X atom takes 

longer to exit the FC region. 

 

IV. Conclusions 

Singular vectors were identified and illustrated, vectors that offer a most compact 

representation of the wave function when electrons and nuclei are entangled. The number of 

such states, needed for a good approximation, is smaller or, for LiH, significantly smaller 

than the number of electronically adiabatic basis states that are included in an exact 

numerical computation. The adiabatic components of the electronic singular eigenstates are 

shown in Figure S4 of the SM. For both N2 and LiH the ultrafast pulse creates the initial 

entanglement and about three eigenvectors are kept, Figure 1, for a realistic approximation 

of the wave function. This can be stated as a Schmidt index equal 3. The time dependence 

of the entanglement is directly computed. The strong non-adiabatic coupling of the valence 

and Rydberg excited states of N2 shows that an equally extensive entanglement evolves in 

time due to the coupling of adiabatic states. A very clear isotope effect is seen in the second 

nuclear singular state of LiH and its isotopomers, Figure S5 of the SM. 

In this report we analyzed the results of the time dependent wave function computed in a full 

electronic basis for a single nuclear coordinate. The compaction shows that a smaller number 

of singular states is numerically sufficient which implies that for the future it will be 

computationally efficient to develop a scheme which solves directly for the time evolution 

of the singular states. This will be particularly so when two or more vibrational coordinates 

need to be used. In this case, one will have to resort to higher order SVD[31] or product 

matrix state decomposition.[13-15]  
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