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ABSTRACT

Ultrafast pumping displaces both electrons and nuclei from equilibrium so that the wave
function is a double sum of separable terms for the dynamics of the electrons and nuclei. We
convert the double sum into a single one by a matricization of the wave function and then
generate an exact separable expression for the entangled molecular wave function. A most
compact approximation with a minimum number of terms is obtained via Singular Value

Decomposition. LiH and N are used as an illustration: the two differ in their adiabatic

electronic dynamics in the energy range accessible by a UV pulse.
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I. Introduction
Early in the days of quantum mechanics Born and Oppenheimer demonstrated that there is
a practical separation of electronic and nuclear dynamics in molecules. The high ratio of the
nuclear to electronic mass is necessary for the separation. The energy gap between the
ground and higher electronically excited states assists the wide applicability of the adiabatic
approximation. But when the state is electronically excited, interaction with other states is
the rule rather than an exception. A special case of interest in attoscience is ultrafast
excitation that can coherently access several electronic states,[1-3] and so the wave function
is inevitably a sum over separable components, sometimes known as the Born-Huang
expansion.[4] Nowadays, this is usefully described as an entanglement[5-8] of the dynamics
of the electrons and the nuclei. In extreme cases, such as high Rydberg states, one can think
of an inverse separation where the slow electrons respond to the faster motion of the
nuclei.[9] Recently, attention was given to a novel factorization of the wave function as a
single product,[10-12] the exact factorization approach. In this approach, the total time-
dependent wave function is exactly factorized as a single correlated product of a time-
dependent nuclear and electronic wave function. The nuclear and electronic wave functions
evolve according to coupled equations of motion involving in time-dependent potentials.
This approach fully accounts for the correlation between electrons and nuclei. Another
important development is a range of approximate methods based on matrix product
states[13-15] suitable, in particular, for extended systems. While applied in the context of
electronic-nuclear entanglement in molecules excited by attopulses, the approach proposed
here is general and well suited to analyze entanglement between other kinds of molecular
degrees of freedom, such as rotational and vibrational ones as is currently investigated in

ultracold molecular physics.[16]

II. Matricization of the molecular time-dependent wave function
We here discuss an exact compaction of the entangled wave function. For practical purposes
we show how to select the minimal number of separable terms for the best approximation.
For conceptual purpose this compaction provides an essence of the dynamics. The key point

is a systematic reduction in the number of terms in the expansion of the wave function while



keeping the best possible representation in the sense of the lowest norm of the deviation from
the numerically exact result.

The approach is illustrated by two contrasting examples: the ultrafast UV pumping of LiH
and of N to their excited states of X symmetry. In the energy range accessible by a UV
excitation, the two differ in their adiabatic electronic dynamics. A UV excitation brings LiH
to many dissociative states that are only weakly coupled by non-adiabatic terms,[17-19] see
Figure S1 of the supplementary materials, SM. The three optically UV accessible states of
N2 are bound: one is valence and two are Rydberg excited states and all three are strongly
coupled by non-adiabatic terms (Figure S1 of the SM).[20-24]

The input data to our analysis are quantum dynamics computations of the wave function
obtained by solving the time-dependent Schrodinger equation, as described in section S1 of
the SM. The wave function is written as a double sum of separable products of a finite
number electronic basis functions in an adiabatic approximation and door functions defined
on a grid of equidistant points to provide a flexible description of the nuclear dynamics,

equation (1):
¥)(1) =3 3 a0 )

‘e j> is the j’th electronic adiabatic state and ’gi> is a door function centered at the i’th point

ej> (1)

of the grid. N, is the number of electronic states and N, the number of door functions. The
different electronic states as well as the different door states are orthogonal. An accurate

numerical solution for the wave function, e.g.[25] for the set of time-dependent coefficients

al-j(t), equation (S2) of the SM, is used as a basis for our development. Specifically, the

matrix elements of the kinetic energy and of momentum are evaluated by a finite difference
approximation, see the SM file. Typically, the non-adiabatic coupling terms of the electronic
states are rapidly varying functions of the coordinate(s) so that a small grid spacing is needed
and therefore the finite difference schemes converge already at a low order. The initial
conditions for equation (1) is the molecule in its ground electronic state. A dipole coupling
to the ultrafast laser field is included in the Hamiltonian and so treated to all orders in the
strength of the field. The ultrashort laser pulse, equation (S3) of the SM, is switched early

on. The time-dependent Schrodinger equation is propagated during the pulse and after its



decay because of the unfolding in time role of the nuclear-motion-induced non-adiabatic
coupling between the electronic states. There is spin-orbit coupling between triplet and the
three singlet states of N».[26] This enables a slow dissociation[24] but the time scale is longer

than what we consider here.
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Scheme 1. Steps in the compaction of the wave function, equation (1), for three grid points

and two electronic states.

The first step is to reduce the double sum of equation (1) to a single sum that is

mathematically exactly equivalent. A practical way, see scheme 1, is to reshape[27] the

vector of amplitude coefficients al.j(t) as a two-dimensional matrix A. It is a rectangular

matrix because typically the number N g of grid points needed for realistic accuracy is

different and larger than the number N, of electronic states. Exceptions are extended

systems for which many electronic states are used to describe a band. For molecules, we take

it that N g > N,. The matrix A(t) has N g TOWs where the elements of a given row i are the

aij(t) ’s for the different electronic states j, j=1,2,..,N,. Each column of A(t) is the

amplitude of a given electronic state in the different grid locations. To convert the double
sum in equation (1) to a single sum, we apply a spectral decomposition of the rectangular

matrix A(t) using its singular values and eigenvectors,[28] see scheme 1. The singular value

decomposition (SVD) theorem states that there will be at most N, non-zero singular values

o, labelled by the index m, m=1,...,N. . Normalization of the wave function, equation (1),



. . N . . .
implies that > < ; 0',%1 (1) =1. We adopt the convention that these non-negative eigenvalues

are arranged in a descending order with m = 1 being the largest. The SVD decomposition is

that at any time 7 any matrix element of A(t) can be exactly written as a sum over N, terms
N
a; (=3, ¢ Gm(t)uim(t)v;r.m(t) )
u, (l) and VL (t) are the two singular eigenvectors associated with the m’th singular value
o, . V;rn (t) has N, components and it is the m’th eigenvector of the N,byN,
symmetric non-negative matrix AT(t)A(t) with the eigenvalue Grzn(t)' The vector um(t)
has N g components for each value of m, m = 1,..,N,, and it is the eigenvector of the larger
matrix A(t)AT(t). The first N, eigenvalues are the Grzn(t)‘s and the rest are zero. The
components of the eigenvector u,, (t) are the grid states while the components of the

eigenvector vm(l) are the electronically excited states. Inserting the SVD decomposition,

equation (2), in the double sum form of the wave function leads to the single sum expression

over N, separable terms

YO =X 0Ot )] V) 3)
m=1

To write equation (3), we have defined new electronic,

vm> , and nuclear |um> states

‘vm>:2i’v=elvjm‘ej> ’ ‘”m>:25§ uim(t)‘gi> (4)
m = 1,..,N. and m = 1,..,Ng, respectively. These states are potentially delocalized over the
entire set of basis states and we wish to contrast their behavior in the two examples of LiH
and Nz and to examine what is a practical upper limit on the sum in equation (3) that we need
for a good approximate representation of the wave function.

Equation (3) as written is the exact single sum over separable terms. It is the Schmidt

representation[29] of N, entangled electron-nuclear states. In any realistic problem, where

the electrons and nuclei are coupled, N, is larger than one. Yet, there are realistic cases



where for all practical aspects, including those of high spectroscopic accuracy, one separable
term suffices.[30] So, our next question is “what constitutes an accurate approximation for
the wave function with a smallest number of terms?”” The SVD theorem[28] states that when
the eigenvalues are ordered by decreasing value, as we do, truncation the sum (2) as a smaller
number of terms is the best approximation in the sense of a minimal norm of the deviation.
In other words, the sum (2) and therefore the expansion (3) are as accurate as possible for a
given number of separable terms and this is so for each possible upper limit on the number

of terms. Adding more terms in the sum can only improve the accuracy of the representation.

When all N, terms are kept, the representation is mathematically equivalent to the

numerically exact wave function. A simple illustration is the equivalence of the sum

N . . . .
DI O'rzn(t) =1 and the normalization of the wave function. With fewer terms, the sum is

below one. In a practical approach we keep as many terms as needed to approach unity to

the desired accuracy.

II1. Entanglement and compact representation of the wave function in LiH and in N
A UV excitation with a strong short pulse will also ionize a molecule. So for both N> and
LiH we use a weaker pulse where the high excited states are just barely populated and a

significant fraction of the population stays in the ground state. The largest singular value

will not fall much below unity and the corresponding primary singular vector |Vm:1> will

be localized on the ground electronic state. The singular values, m =1,2,3 need to be kept for

the X states of N2 and LiH as shown vs. time in Figure 1.
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Figure 1. The larger singular values squared 0'51 , m=1,2,3, shown as a function of time for

N> (a) and LiH (b). The totality of excited states, 1—0'12 , 1s reached just after the pulse.

Beyond that time the two cases are different and an interpretation is provided in the text.

Details of the computation as well as parameters of the UV pulses are given in the SM, as
well as the potential energy curves of the adiabatic states included in the computation of the
dynamics for the two molecules (Figure S1). The carrier frequency and the duration of the
ultrashort pulses are chosen to target a specific manifold of adiabatic electronic states. In No,
the valence X, state and the lowest Rydberg state fall within the energy bandwidth
(FWHM=1.18 eV) of the pulse (Figure S1a) while in LiH, the pulse is chosen to excite the
¥,, Zz.and X, states (FWHM in energy=1.84 eV), which are not bound in this energy range



(Figure S1b). In both cases, the excitation by the pulse builds a coherent superposition of
states.

There are seven electronic states of LiH that are included in the expansion of the wave
function. As shown in Figure 1, just three singular eigenvectors are necessary to well
approximate the wave function for LiH. All the seven weights are plotted in Figure S3 of the
SM and already the fourth is barely noticeable. For N, the reduction is moderate as four
electronic states are included in the exact computation.

For N> (Figure 1a) the UV pulse primarily accesses the valence excited state. It has a
shallower potential than the two Rydberg states, which are about as tightly bound as the
ground state and are therefore localized in the Franck-Condon region, FC. The wave packet
excited on the valence state moves out and then comes back to the FC region where it is
strongly coupled to the lower of the two Rydberg states.[24] At that time range there is a

loss of population of the valence state due to a non-adiabatic transfer to the Rydberg state.
The second eigenvector ‘v2> is primarily the valence-excited state with the lower Rydberg
state contributing equally at the region of strong non-adiabatic coupling, see Figure S4 of
the SM that shows the detailed composition of the singular vectors |vm> on the electronic

states of Na. Note the mixing of the second and third eigenvectors as reflected in their

weights, Figure la. It is completely analogous to the avoided crossing of the basis adiabatic

states. The third eigenvector, v3> , has a lower singular value, it rises at the region of strong

non-adiabatic coupling where it is a linear combination of the valence excited state with the
lower Rydberg state. Slightly before the rise of the third singular value the first eigenvalue
is increasing as the second one is decreasing. This reflects the localization of the wave
packets of the ground state and the valence state in the FC region. They can then be described
by a single singular vector with u; localized in the FC region (see Figure 2 below) and v;
having components on the two electronic states. In LiH (Figure 1b) the different adiabatic
electronic states are effectively changing their population only during the fast laser pulse.
Their non-adiabatic coupling is weak, see Figure S2 of the SM, so that each singular
eigenvector is approximately associated with a particular electronic state, Figure S4.

The other key difference between N> and LiH is shown in Figure 2 where the second and the

third grid eigenvector of LiH (Figure 2 d) very clearly dissociates.
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Figure 2. A heat map representation of the grid based first, second and third singular grid

states in N» (panels a,b,c) and LiH (panels d, e, f). The distance scale is different for the two

because the light H atom moves with a high amplitude. The lowest grid state |u1> is

essentially the ground state in both molecules. It is tightly localized in N> and less so in the

weaker bound LiH. The states |u2> and |u3> differ dramatically. N> executes a bound

motion while LiH dissociates.

The LiH potentials are quite shallow so the wave packet moves out with about a constant
speed. Figure S5 of the SM shows the grid eigenvectors also for the two other isotopomers,
LiD and LiT. For the heavier reduced mass the velocity is correspondingly lower. For N
(Figure 2) the second grid eigenvector exhibits the bound vibrational motion of the valence
excited state but also shows the contribution of the Rydberg state at the time of the pulse and

at the time of strong non-adiabatic coupling when the valence state returns to the FC region.

The same is true for |u3> which has the highest weight on the Rydberg state. The rise of the



first singular value in N2, Figure 1, reflects the localization of the three wave packets in the
FC region.

UV excitation of X electronic states in N2 and LiH shows a significant entanglement of
electrons and nuclei that requires three separable terms to well approximate the wave
function. But the nature of the terms is quite different. In N> the vibrational motion remains
bound and the nature of the separable terms differs very much in the region of the strong
non-adiabatic coupling. The UV excited adiabatic states of LiH are dissociative and weakly
coupled. A clear isotope effect of a classical mechanics origin is exhibited (Figure S5) in the
grid based dissociative eigenvectors in LiX, X=H, D, T, where the heavier X atom takes

longer to exit the FC region.

IV. Conclusions

Singular vectors were identified and illustrated, vectors that offer a most compact
representation of the wave function when electrons and nuclei are entangled. The number of
such states, needed for a good approximation, is smaller or, for LiH, significantly smaller
than the number of electronically adiabatic basis states that are included in an exact
numerical computation. The adiabatic components of the electronic singular eigenstates are
shown in Figure S4 of the SM. For both N> and LiH the ultrafast pulse creates the initial
entanglement and about three eigenvectors are kept, Figure 1, for a realistic approximation
of the wave function. This can be stated as a Schmidt index equal 3. The time dependence
of the entanglement is directly computed. The strong non-adiabatic coupling of the valence
and Rydberg excited states of N> shows that an equally extensive entanglement evolves in
time due to the coupling of adiabatic states. A very clear isotope effect is seen in the second
nuclear singular state of LiH and its isotopomers, Figure S5 of the SM.

In this report we analyzed the results of the time dependent wave function computed in a full
electronic basis for a single nuclear coordinate. The compaction shows that a smaller number
of singular states is numerically sufficient which implies that for the future it will be
computationally efficient to develop a scheme which solves directly for the time evolution
of the singular states. This will be particularly so when two or more vibrational coordinates
need to be used. In this case, one will have to resort to higher order SVD[31] or product

matrix state decomposition.[13-15]

10



Author contributions
MB and NG carried out the numerical calculations. All authors have contributed equally to

the analysis of the results and the writing of the manuscript.

Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the Fonds National de la Recherche Scientifique (Belgium),
F.R.S.-FNRS research grant # T.0205.20. Computational resources have been provided by
the Consortium des Equipements de Calcul Intensif (CECI), funded by the F.R.S.- FNRS
under Grant # 2.5020.11. Support of the COST action Attochem(CA18222) is also
acknowledged. MB is supported by an Erasmus+ grant between ULi¢ge and HUJI. NG is
supported by a joint NSF-BSF project with a BSF award number 2019722.

Appendix A. Supplementary material
Supplementary data associated with this article can be found, in the online version, at

https://

References

[1] M. Nisoli, P. Decleva, F. Calegari, A. Palacios, F. Martin, Attosecond Electron Dynamics
in Molecules, Chem. Rev. 117 (2017) 10760-10825.

[2] M.JJ. Vrakking, F. Lepine, Attosecond molecular dynamics, Theoretical and
Computational Chemistry, The Royal Society of Chemistry, Cambridge, 2019.

[3] K. Ramasesha, S.R. Leone, D.M. Neumark, Real-Time Probing of Electron Dynamics
Using Attosecond Time-Resolved Spectroscopy, Ann. Rev. Phys. Chem. 67 (2016) 41-63.
[4] M. Born, K.Huang, Dynamical Theory of Crystal Lattices, Oxford University Press,
Oxford, 1954.

[5] A.F. Izmaylov, 1. Franco, Entanglement in the Born—Oppenheimer Approximation, J.
Chem. Theory Comput. 13 (2017) 20-28.

[6] L.K. McKemmish, R.H. McKenzie, N.S. Hush, J.R. Reimers, Quantum entanglement
between electronic and vibrational degrees of freedom in molecules, J. Chem. Phys. 135
(2011) 244110.

11



[7] J. Li, S. Kais, Entanglement classifier in chemical reactions, Sci. Adv. 5 (2019)
eaax5283.

[8] M.J.J. Vrakking, Control of Attosecond Entanglement and Coherence, Phys. Rev. Lett.
126 (2021) 113203.

[9] F. Remacle, R.D. Levine, On the Inverse Born-Oppenheimer Separation for High
Rydberg States of Molecules, Int. J. Quant. Chem. 67 (1998) 85-100.

[10] A. Abedi, N.T. Maitra, E.K.U. Gross, Exact Factorization of the Time-Dependent
Electron-Nuclear Wave Function, Phys. Rev. Lett. 105 (2010) 123002.

[11] F. Agostini, E.K.U. Gross, Exact Factorization of the Electron-Nuclear Wave Function:
Theory and Applications, in: L. Gonzalez, R. Lindh (Eds.), Quantum Chemistry and
Dynamics of Excited States: Methods and Apllications, Wiley, Hoboken, 2021.

[12] F. Agostini, E.K.U. Gross, B.F.E. Curchod, Electron-nuclear entanglement in the time-
dependent molecular wavefunction, Comput. Theor. Chem. 1151 (2019) 99-106.

[13] H.R. Larsson, Computing vibrational eigenstates with tree tensor network states
(TTNS), J. Chem. Phys. 151 (2019) 204102.

[14] A. Baiardi, M. Reiher, Large-Scale Quantum Dynamics with Matrix Product States, J.
Chem. Theory Comput. 15 (2019) 3481-3498.

[15] C. Hao, Y. Yaoliang, Z. Xinhua, X. Eric, S. Dale, Scalable and Sound Low-Rank Tensor
Learning, 19th International Conference on Artificial Intelligence and Statistics, PMLR,
Cadiz, 2016, pp. 1114-1123.

[16] M. Kunitski, Q. Guan, H. Maschkiwitz, J. Hahnenbruch, S. Eckart, S. Zeller, A. Kalinin,
M. Schoffler, L.P.H. Schmidt, T. Jahnke, D. Blume, R. Doérner, Ultrafast manipulation of
the weakly bound helium dimer, Nature Physics 17 (2021) 174-178.

[17] F.X. Gadea, Accurate ab initio calculations for LiH and its ions, LiH+ and LiH, Theor.
Chem. Acc. 116 (2006) 566-575.

[18] F. Holka, P.G. Szalay, J. Fremont, M. Rey, K.A. Peterson, V.G. Tyuterev, Accurate ab
initio determination of the adiabatic potential energy function and the Born—Oppenheimer
breakdown corrections for the electronic ground state of LiH isotopologues, J. Chem. Phys.
134 (2011) 094306.

[19] S. van den Wildenberg, B. Mignolet, R.D. Levine, F. Remacle, Temporal and spatially
resolved imaging of the correlated nuclear-electronic dynamics and of the ionized
photoelectron in a coherently electronically highly excited vibrating LiH molecule, J. Chem.
Phys. 151 (2019) 134310.

[20] R.S. Mulliken, W.C. Emler, Diatomic Molecules Results of Ab Initio Computations,
Academic Press, New York, 1977.

[21] R.S. Mulliken, Rydberg and Valence-Shell Character as Functions of Internuclear
Distance in some Excited-States of CH, NH, H2, and N2, Chem. Phys. Lett. 14 (1972) 141-
144.

[22] D. Spelsberg, W. Meyer, Dipole-allowed excited states of N2: Potential energy curves,
vibrational analysis, and absorption intensities, J. Chem. Phys. 115 (2001) 6438-6449.

[23] D. Stahel, M. Leoni, K. Dressler, Non-adiabatic representations of the 1-sigma-u+ and
1-pi-u states of the N2 molecule, J. Chem. Phys. 79 (1983) 2541-2558.

[24] J.S. Ajay, K.G. Komarova, F. Remacle, R.D. Levine, Time-dependent view of an
isotope effect in electron-nuclear nonequilibrium dynamics with applications to N2, Proc.
Natl. Acad. Sci. U.S.A 115 (2018) 5890-5895.

12



[25] S.A. Jayantha, K.G. Komarova, S.v.d. Wildenberg, F. Remacle, R.D. Levine,
AttoPhotoChemistry: Coherent Electronic Dynamics and Nuclear Motion, in: M.J.J.
Vrakking, F. Lepine (Eds.), Attosecond Molecular Dynamics, Royal Society of Chemistry,
Cambridge, 2018, pp. 308-347.

[26] B.R. Lewis, S.T. Gibson, W. Zhang, H. Lefebvre-Brion, J.M. Robbe, Predissociation
mechanism for the lowest [Tul states of N2, J. Chem. Phys. 122 (2005) 144302.

[27] wikipedia, Vectorization, wikimedia foundation,
https://en.wikipedia.org/wiki/Vectorization (mathematics), 2021.

[28] G.H. Golub, C.F.V. Loan, Matrix Computations John Hopkins University Press,
Baltimore, 2013.

[29] A. Ekert, P.L. Knight, Entangled quantum systems and the Schmidt decomposition,
Am. J. Phys. 63 (1995) 415-423.

[30] W. Kotos, L. Wolniewicz, Nonadiabatic Theory for Diatomic Molecules and Its
Application to the Hydrogen Molecule, Rev. Mod. Phys. 35 (1963) 473-483.

[31] T. Zhang, G.H. Golub, Rank-one approximation to high order tensors, Siam J. Matrix
Anal. Appl. 23 (2001) 534-550.

13



